Полисахарид это крахмал: Урок 11. полисахариды. крахмал. целлюлоза — Химия — 10 класс

Содержание

Урок 11. полисахариды. крахмал. целлюлоза — Химия — 10 класс

Химия, 10 класс

Урок № 11. Полисахариды. Крахмал. Целлюлоза

Перечень вопросов, рассматриваемых в теме: урок посвящён полисахаридам, их строению, свойствам, знакомству с самыми распространёнными полисахаридами: крахмалом и целлюлозой, их структурой, свойствами, нахождением в природе и ролью в жизни человека.

Глоссарий

Полисахариды – это высокомолекулярные углеводы, состоящие из большого числа молекул моносахаридов.

Реакция поликонденсации – процесс образования макромолекул, в котором выделяется низкомолекулярный побочный продукт.

Крахмал – продукт поликонденсации молекул альфа-глюкозы.

Целлюлоза – продукт поликонденсации молекул бета-глюкозы.

Реакция этерификации – процесс взаимодействия органического соединения, содержащего спиртовые функциональные группы, с кислотой, в результате которого образуется сложный эфир и вода.

Амилоза – линейные макромолекулы, состоящие из остатков альфа-глюкозы, входят в состав крахмала.

Амилопектин – разветвлённые макромолекулы, состоящие из остатков альфа-глюкозы, входят в состав крахмала.

Ацетатное волокно – искусственное волокно, получаемое на основе триацетата целлюлозы.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс].
    М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Полисахариды – это высокомолекулярные углеводы, состоящие из большого числа молекул моносахаридов.

Картофельный и кукурузный крахмал, гликоген, целлюлоза, входящая в состав древесины и хлопка, хитин, из которого построены панцири насекомых – это всё полисахариды.

Образование молекул полисахаридов

Крахмал состоит из макромолекул, которые образованы большим количеством молекул альфа-глюкозы.

При соединении двух молекул альфа-глюкозы образуется побочный продукт – молекула воды.

Реакция образования макромолекул, в которой выделяется низкомолекулярный побочный продукт, называется реакцией поликонденсации.

В результате реакции поликонденсации из молекул альфа-глюкозы: могут образовываться линейные макромолекулы.

Линейная макромолекула, образованная из молекул альфа-глюкозы, называется амилоза.

В результате поликонденсации молекул альфа-глюкозы могут образовываться и разветвленные макромолекулы, которые называются амилопектин.

Смесь амилозы и амилопектина называется крахмалом.

Макромолекулы целлюлозы образуются из молекул бета-глюкозы.

Образование целлюлозы также происходит в результате реакции поликонденсации. При этом образуется побочный низкомолекулярный продукт – вода.

Цепь молекулы целлюлозы образуется в результате последовательного присоединения всё новых и новых молекул бета-глюкозы.

Макромолекулы целлюлозы, в отличие от крахмала, имеют линейное строение.

Физические и химические свойства крахмала и целлюлозы

Крахмал – белый аморфный порошок без вкуса и запаха. Крахмал не растворяется в холодной воде, а в горячей воде набухает и образует клейстер.

Целлюлоза – белое твёрдое нерастворимое в воде вещество без вкуса и запаха.

При добавлении в качестве катализатора небольшого количества кислоты в раствор крахмала происходит его гидролиз. Макромолекулы распадаются на молекулы меньших размеров (декстрин, мальтоза), конечным продуктом реакции гидролиза является альфа-глюкоза.

Механизм реакции следующий: положительно заряженный ион водорода притягивается к кислородному мостику между двумя остатками альфа-глюкозы, соединяется с атомом кислорода. В результате связь разрывается. На атоме углерода второго фрагмента молекулы крахмала образуется положительный заряд, который притягивает к себе молекулу воды. Кислород в молекуле воды присоединяется к атому углерода, а один из ионов водорода отрывается от молекулы воды. В результате образуются молекулы декстрина, которые по такому же механизму гидролизуются с образованием молекул мальтозы. Конечным продуктом гидролиза крахмала являются молекулы альфа-глюкозы.

Если к раствору крахмала добавить каплю раствора йода, появляется синяя окраска. Это качественная реакция на крахмал.

При действии на целлюлозу уксусной кислоты образуются ацетатные эфиры целлюлозы.

Нахождение крахмала и целлюлозы в природе

Крахмал и целлюлоза широко распространены в природе.

Крахмал входит в состав многих растений. В пшенице содержание крахмала составляет 64 %, в рисе – 75 %, в кукурузе – 70 % и в картофеле – 24 %.

Целлюлоза – основной материал клеток растений, она придает прочность стеблям и веткам. Больше всего – 98 % целлюлозы в хлопковом волокне, до 85 % её содержится в льняном волокне. Древесина содержит до 50 % целлюлозы, а в соломе её 30 %.

Роль крахмала и целлюлозы в жизни человека

Полисахариды играют важную роль в жизни человека. Во-первых, полисахариды – это источник углеводов. Из полисахаридов делают бумагу, синтетические волокна и ткани (вискозный, ацетатный, медно-аммиачный шёлк, искусственный мех), фото- и киноплёнку, и даже взрывчатые вещества (бездымный порох).

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

1. Решение задачи на расчёт количества готового продукта, изготовленного из полисахаридов.

Условие задачи: Сколько бумаги (тонн) можно изготовить из 400 м3 древесины, если содержание целлюлозы в них составляет 52%, а для производства 1 кг печатной бумаги требуется 1,5 кг целлюлозы? Плотность древесины составляет 500 кг/м3. Ответ запишите в виде десятичной дроби с точностью до десятых.

Шаг первый: вычислить массу данного в условии объёма древесины:

400·500 = 200000 кг.

Шаг второй: вычислить массу целлюлозы, содержащуюся в 200000 кг древесины:

200000·0,52 = 104000 кг.

Шаг третий: из пропорции найти массу бумаги, которую можно получить из 104000 кг древесины.

; кг = 69,3 т.

Ответ 69,3.

2. Решение задач на нахождение выхода продукта реакции.

Условие задачи: Вычислите выход глюкозы, если из хлопка массой 150 кг получили 110 кг этого моносахарида. Массовая доля целлюлозы в хлопке составляет 95%. Ответ выразите в процентах, запишите в виде целого числа.

Шаг первый: вычислить содержание целлюлозы в 150 кг хлопка.

150·0,95 = 142,5 кг.

Шаг второй: записать уравнение реакции гидролиза целлюлозы с образованием глюкозы:

6Н10О5)п + пН2О пС6Н12О6.

Шаг третий: вычислить молярные массы целлюлозы и глюкозы:

М((С6Н10О5)п) = п·(6·12 + 1·10 + 5·16) = 162·п г/моль;

М(С

12О6) = 6·12 + 1·12 + 6·16 = 180 г/моль.

Шаг четвёртый: с помощью пропорции найти теоретически возможное количество глюкозы, которое может быть получено по этой реакции:

; кг.

Шаг пятый: найти выход глюкозы как отношение практически полученного количества глюкозы к теоретически возможному, выраженное в процентах:

%.

Так как в ответе требуется записать целое число, то округляем до 70%.

Ответ: 70.

Полисахарид — описание ингредиента, инструкция по применению, показания и противопоказания

Описание полисахарида

Полисахариды – это сложные биоорганические вещества, принадлежащие к классу углеводов. Другое их название – гликаны.

Полисахарид представляет собой полимерную молекулу, состоящую из моносахаридных остатков, объединенных гликозидной связью. То есть это сложная молекула, цепочка которой построена из объединенных друг с другом остатков более простых углеводов. Структуру вещества может составлять разное количество мономеров: от десятков до сотен. Она бывает разветвленной и линейной.

Полисахариды плохо растворяются в воде либо совсем не растворяются. Они бывают бесцветными и соломенными, не имеют вкуса и запаха.

Функции полисахаридов

К полисахаридам относятся разнообразные вещества, выполняющие в организме человека различные функции:

  • Энергетическая функция – гликоген, крахмал. Отвечают за накопление углеводов и снабжение организма глюкозой.
  • Запасающая функция – крахмал, гликоген. Создают запас энергии в жировых тканях.
  • Кофакторная – гепарин. Понижает свертываемость крови и выступает в качестве кофактора ферментативных соединений.
  • Опорная – хондроитинсульфат, целлюлоза. Целлюлоза содержится в растительных стеблевых тканях, а хондроитинсульфат – в животных костных.
  • Защитная – кислые гетерополисахариды. Входят в состав стенок клеток живых организмов. Входят в состав секрета, выделяемого железами, покрывающего стенки желудка, пищевода и других органов и защищающего их от механических повреждений и атак болезнетворных микроорганизмов.
  • Гидроосмотическая – кислые гетерополисахариды. Отвечают за удерживание воды и ионов с положительным зарядом в клетках, не дают накопиться жидкости в пространстве между клетками.
  • Структурная – кислые гетерополисахариды. Сконцентрированы в межклеточном веществе, проявляют цементирующие свойства.
Внимание! Полисахариды тяжело усваиваются в организме человека ввиду сложной структуры. Однако они крайне важны и должны присутствовать в рационе каждого человека.

Сложные углеводы улучшают пищеварение. Растворимые полимеры связываются с желчными кислотами и растворяют их, улучшая усвоение, что способствует понижению уровня холестерина в крови. Кроме того, они тормозят всасывание простых сахаров, нормализуют концентрацию липидов в крови и очищают кишечник.

Фармакологические свойства

Эко-сертифицированные полисахариды активно применяются в медицине. Они проявляют противоопухолевую, антитоксическую, противовирусную, антисклеротическую активность.

Большой интерес для медицины представляет антисклеротическое действие гликанов. Они образуют с кровяными белками комплексы, препятствующие прилипанию холестерина к сосудистым стенкам, что снижает риск атеросклероза.

Антитоксическая функция связана со способностью полимеров выводить из организма тяжелые металлы, радионуклиды, токсины, продукты метаболизма.

Полисахариды. Крахмал

Полисахариды

К полисахаридам относятся целлюлоза и крахмал. Макромолекулы этих веществ (СбН10О5)n состоят из связанных друг с другом остатков глюкозы и различаются лишь строением мономерного звена, из которого «сплетены» цепочки. У крахмала исходным веществом служит A-глюкоза, а у целлюлозы — это B-глюкоза.

Крахмал

Крахмал

Крахмал образуется в растениях из глюкозы. Это как бы энергетический резерв растений, который легко можно перевести обратно в глюкозу. Он накапливается в семенах зерновых культур и клубнях картофеля в виде крупинок размером 2—180 мкм. По составу крахмал неоднороден: на 20% состоит из амилозы (соединённых в длинную цепь 1000—6000 остатков A-глюкозы), а на 80% — из амилопектина (разветвлённого полимера, содержащего до 6000 остатков A-глюкозы). У амилозы макромолекулы закручены в спираль, а у амилопектина — имеют шаровидную форму.

Крахмальный клейстер

Крахмал нерастворим в холодной воде, однако в горячей он легко набухает, образуя вязкий коллоидный раствор — крахмальный клейстер.

Полимер, сходный по строению с крахмалом, но с ещё более разветвлённой структурой — гликоген. Он содержится в животных организмах, в частности в печени человека его около 10%. Гликоген хорошо растворим в горячей воде и не образует клейстер. При недостатке питания организм начинает использовать гликоген, расщепляя его до глюкозы.

При гидролизе крахмала постепенно разрываются связи между отдельными фрагментами глюкозы: сначала образуются декстрины, представляющие собой осколки макромолекул крахмала, которые содержат несколько десятков остатков глюкозы, затем дисахарид мальтоза, а конечный продукт этой реакции — глюкоза.
Способность крахмала хорошо поглощать влагу нашло применение в косметических средствах, он содержится в пудрах и масках (крахмал из риса и кукурузы). И лишь целлюлоза, хотя и состоит из молекул глюкозы, не представляет для человека никакой питательной ценности. Это происходит потому, что в организме человека (в отличие, например, от жвачных животных) не вырабатываются ферменты, расщепляющие макромолекулы целлюлозы на молекулы глюкозы.

Окисление сахара

Окисление 1 г глюкозы освобождает из неё около 16 кДж энергии. Столько же даёт окисление 1 г сахарозы.
Наверно, большинство из нас любят сладкое. Каждый день в среднем человек употребляет приблизительно 500 г сахарозы (сахара). Но такое количество сахара поступает в организм не в виде сахарозы, а в виде крахмала: через хлеб, макароны, лапшу, картофель и т.д. При правильном и умеренном питании в сутки человек должен употреблять не более 75 г сахарозы, что составляет всего от 12 до 14 кусочков сахара (которые продают в коробках «Рафинад»), при этом сюда же причисляется и тот сахар, который используется при приготовлении пищи!

(способы получения целлюлозы — см. в разделе что такое бумага)

Что самое сладкое

Что самое сладкое? Если Вы скажете, что самым сладким продуктом является пищевой сахар, то несомненно будете правы. Да, пищевой сахар (или сахароза – 99,9% сахар) одно из самых распространённых и чистых органических веществ, которые производит наша промышленность. Объёмы, этого продукта, значительно превышают любую другую пищевую культуру.

Сахарозу используют в качестве эталонного продукта, если приходится сравнивать на «сладкость» другие продукты.

Как же отследить сладость того или иного продукта? Чувствительность одного человека нельзя принимать за эталонную, так как сколько людей – столько и вкусов! Поэтому в таких случаях существуют специальные комиссии экспертов, результаты которых анализируются и усредняются. Эксперты, особенно опытные, люди с повышенной вкусовой чувствительностью. Они могут ощущать наличие сахарозы в продукте питания, если её будет всего лишь 0,35 г/л!

А вот, например, считают ли сладким мёд пчёлы? Считают, но не таким сладким, как это чувствует человек! Пчёлы имеют в 1000 раз более «притуплённый» вкус к сладкому, вот, например, даже если в 1 л раствора растворено 20 г сахара (2% раствор) – они никогда не посчитают такой раствор сладким! Так, в нектаре цветов, которым питаются пчёлы, сахарозы значительно больше (до 70%, что примерно в 1,7 раза слаще сахарозы). Пчёлы даже не обратили бы внимание на 2%-й раствор сахара.

Что касается фруктозы, то она является природным сахаром, к тому же ещё и самым сладким! Фруктоза в 1,7 раза более сладкая, чем сахароза.

Ещё один продукт – глюкоза менее сладкий, чем сахар (сахароза) – почти в 1,3 раза. Интересный факт при получении сладкого продукта можно наблюдать, если в процессе химической реакции в молекуле сахарозы заменить 3 группы -OH (гидроксильные) на атомы Cl (хлора), то в результате такой реакции получается химическое вещество, в 2000 раз более сладкое, чем сахар!

Несколько слов о молочном сахаре!

Молочный сахар – ещё один из распространённых сахаров. Его ещё называют лактоза.
Лактоза содержится в молоке (около 5%). Что же касается сладости лактозы, то она почти в 3 раза менее сладкая, чем сахароза.

Как многие, наверное, знают многоатомные спирты также имеют сладковатый и сладкий вкус. Так, среди продуктов питания можно встретить продукты, содержащие сорбит НОСН2(СНОН)4СН2ОН и ксилит НОСН2(СНОН)3СН2ОН. Их синтезируют в нашей промышленности при производстве витамина С. По сладости они различны: сорбит – в 2 раза менее сладкий, чем сахар, а ксилит – в 4 раза более сладкий. Естественно, спирт – никак нельзя назвать сахаром! Для усвоения спиртов, инсулин не требуется, поэтому люди, больные сахарным диабетом, пользуются именно такими продуктами питания!

Для женщин и девушек, которые считают калории в пище, будет интересно знать, что такие сахара – не содержат калорий!

Углеводы: полисахариды. Важнейшие представители

К полисахаридам относятся крахмал, гликоген и целлюлоза.

Полисахариды – это природные высокомолекулярные соединения, которые состоят из множества остатков моносахаридов.

nC6H12O6 → (C6H10O5)n + nH2O

В зелёных растениях из углекислого газа и воды в процессе фотосинтеза образуется глюкоза, из которой под действием ферментов образуется крахмал.

Крахмал содержится в виде зёрен в таких растениях, как рис (до 86 %), картофель (около 25 %), кукуруза (около 70 %), пшеница (около 75 %).

Крахмал представляет собой смесь двух полисахаридов: амилозы (это 20 % по массе) и амилопектина (около 80 % по массе). Амилоза представляет собой полимер линейного, неразветвлённого строения, её молекулярная масса равна 106. Амилопектин – это полисахарид, имеющий разветвлённое строение. Он состоит из остатков глюкозы в циклической α-форме. Молекулярная масса его – 109. Амилоза лучше растворяется в воде, чем амилопектин.

Молекулярная формула крахмала – 6Н10О5)n.

Доказано, что молекулы крахмала состоят из остатков α-глюкозы. Макромолекулы крахмала имеют вид двойной спирали. Каждое это звено состоит из шести остатков глюкозы, которые соединены атомами кислорода.

Шесть звеньев спирали образуют пространственную структуру крахмала, внутри которой имеются пустоты, они заполнены молекулами воды.

Крахмал – это белое аморфное вещество, нерастворим в холодной воде, в горячей воде образует клейстер.

Рассмотрим химические свойства крахмала.

Характерной реакцией крахмала является реакция с раствором йода. Так, при действии на крахмал спиртового раствора йода появляется синее окрашивание. Эта окраска исчезает при нагревании и появляется при охлаждении. Данная реакция является качественной на крахмал.

Если провести гидролиз крахмала при кипячении с серной кислотой, то образуется глюкоза.

При ферментативном гидролизе образуется дисахарид – мальтоза.

То есть при гидролизе крахмала образуются промежуточные вещества: сначала декстрины, затем дисахариды, как мальтоза, и на конечной стадии – глюкоза.

В промышленности крахмал получают из картофеля, кукурузы и риса, то есть тех продуктов, где его содержание велико. Крахмал – это источник углеводов. Крахмал применяется в пищевой, фармацевтической промышленности, для производства глюкозы, в качестве клея.

Строение гликогена такое же, как и амилопектина, но степень разветвления гликогена выше. Гликоген растворим в воде, но не образует клейстера.

Гликоген – это резервный полисахарид у животных, он синтезируется и хранится в печени и мышцах.

Целлюлоза входит в состав всех клеточных оболочек растений. Волокна хлопка, льна и конопли в основном состоят из целлюлозы, в древесине её содержится около 50 %. Вата – это почти 100%-ная целлюлоза.

Молекулярная формула целлюлозы также 6Н10О5)n. Но степень полимеризации её гораздо выше, чем крахмала. Макромолекулы целлюлозы построены из остатков β-глюкозы. Все макромолекулы целлюлозы имеют линейное строение.

В организме человека нет ферментов, которые бы расщепляли целлюлозу, но некоторые микроорганизмы, обитающие в почве,  в желудке жвачных животных, муравьях-древоточцах могут это сделать.

Целлюлоза – это белое аморфное вещество, не растворяется в воде и органических растворителях. Гигроскопична, при нагревании обугливается.

Каждый остаток глюкозы в макромолекуле целлюлозы содержит три гидроксильные группы: [C6H7O2(OH)3]n.

Рассмотрим химические свойства целлюлозы.

При гидролизе целлюлозы образуется конечный продукт – глюкоза.

В результате реакции целлюлозы с уксусной кислотой или ангидридом уксусной кислоты образуется сложный эфир – триацетилцеллюлоза.

[C6H7O2(OH)3]n + 3nCH3COOH → [C6H7O2(OCOCH3)3]n + 3nH2O

Сложный эфир образуется и в результате реакции целлюлозы с азотной кислотой, при этом получается тринитроцеллюлоза.

[C6H7O2(OH)3]n + 3nHNO3 → [C6H7O2(ONO2)3]n + 3nH2O

Целлюлозу используют в текстильной промышленности для получения искусственных волокон, в текстильной промышленности используют и готовые волокна льна, хлопка. Из целлюлозы получают этиловый спирт, который используют в качестве технического спирта. Тринитропроизводные целлюлозы используют как взрывчатые вещества и при производстве бездымного пороха. Большое количество целлюлозы идёт на изготовление бумаги.

Подобно целлюлозе в растениях, опорные и механические функции у ракообразных и некоторых насекомых выполняет хитин – это полимер, который входит в состав наружного скелета.

Таким образом, молекулярная формула полисахаридов – (С6Н10О5)n. Крахмал построен из остатков α-глюкозы. Он состоит из макромолекул линейного строения – амилозы и макромолекул разветвлённого строения – амилопектина. Качественной реакцией на крахмал является реакция со спиртовым раствором йода. Конечным продуктом гидролиза крахмала является глюкоза. При гидролизе целлюлозы также образуется глюкоза. Для целлюлозы характерны реакции этерификации с образованием сложных эфиров.

§ 3. Полисахариды

§ 3. ПОЛИСАХАРИДЫ

Низкомолекулярные полисахариды

В зависимости от числа остатков моносахаридов в составе олигосахарида различают дисахариды, трисахариды и т. д. Наиболее часто встречаются дисахариды. К дисахаридам относятся сахароза (свекловичный или тростниковый сахар), лактоза (молочный сахар), мальтоза (солодовый сахар) и целлобиоза.

Молекула сахарозы состоит из остатков -D-глюкопиранозы и -D-фруктофуранозы. Связь между остатками моносахаридов осуществляется за счет гликозидных гидроксильных групп обеих молекул. 

В молекуле сахарозы нет свободной гликозидной группы OH. Для нее не характерна таутомерия, т.е. она не способна образовывать альдегидную группу и поэтому не обладает восстанавливающими свойствами. Как многоатомный спирт сахароза растворяет гидроксид меди (II) с образованием комплексной соли. В кислой среде она гидролизуется с образованием исходных глюкозы и фруктозы.

Лактоза, важнейшее питательное вещество молока, состоит из остатков -D-галактопиранозы и D-глюкопиранозы. Так как в остатке глюкозы присутствует свободный гликозидный гидроксил, может образовываться цепная форма глюкозы с альдегидной группой. Последняя снова образует пиранозный цикл в — или -форме. Поэтому в глюкозном остатке лактозы гликозидная группа ОН показана волнистой линией. Так как в водном растворе лактозы присутствует форма с альдегидной группой, лактоза – восстанавливающий дисахарид. Она дает реакцию «серебряного зеркала», реагирует с Фелинговой жидкостью:


Интересно знать! Дисахарид лактоза, поступая в организм человека с молоком, гидролизуется ферментом лактазой, расщепляясь на составляющие лактозу моносахариды – галактозу и глюкозу. Фермент лактаза выделяется тонким кишечником. Однако некоторые этнические группы населения в азиатских и африканских странах имеют мутацию, приведшую к отсутствию в их организмах этого фермента. Поэтому они страдают непереносимостью молочной пищи. Эта особенность называется непереносимостью лактозы. Это одна из причин отсутствия молочной пищи в китайской кухне (она используется только в одном небольшом регионе).  

Мальтоза и целлобиоза  – продукты неполного гидролиза крахмала, происходящего под влиянием ферментов, содержащихся в солоде (проросших зернах ячменя, которые используются при приготовлении пива) и целлюлозы соответственно. При гидролизе они распадаются с образованием двух молекул глюкозы. 

 

Высокомолекулярные полисахариды

Молекулы высокомолекулярных полисахаридов состоят более   чем   из    10   моносахаридных   остатков, связанных О-гликозидными связями и образующих линейные и разветвленные цепи. В состав простейших полисахаридов входят остатки только одного моносахарида (гомополисахариды), более сложные (гетерополисахариды) состоят из остатков двух или более различных моносахаридов. Кроме обычных пентоз и гексоз, в состав полисахаридов могут входить и различные их производные: дезокисисахара, аминосахара, уроновые кислоты и др. Наиболее важными полисахаридами являются крахмал, целлюлоза и гликоген.

Крахмал – широко распространенный в природе полисахарид, играющий роль резервного вещества многих растений. В состав крахмала входят два полисахарида – амилоза (20 – 30  %) и амилопектин (70 – 80  %). Эти полисахариды построены из остатков -D-глюкопиранозы. Молекулы амилозы построены линейно и имеют меньшую молекулярную массу (до 500 000):

Молекулы амилопектина имеют боковые ответвления:

Молекулярная масса его может превышать 1 000 000. Амилопектин в отличие от амилозы при набухании образует клейстер. Аналогичную структуру имеет и «животный крахмал» – гликоген. Гликоген синтезируется в клетках животных из глюкозы и запасается в печени до 7 % от общей массы и мышцах до 4 %. Гликоген выполняет функцию депо глюкозы: при необходимости он подвергается гидролизу, что позволяет поддерживать постоянную концентрацию глюкозы в крови.

Целлюлоза – главная составная часть оболочек растительных клеток, выполняющая функции конструкционного материала. Молекулы целлюлозы построены из остатков -D-глюкопиранозы:

 

Макромолекулярные цепи целлюлозы имеют линейное строение с молекулярной массой, превышающей 1 000 000. Организм человека не приспособлен к перевариванию целлюлозы (хотя она и является составной частью клетчатки), потому что в нем   отсутствуют   ферменты,  позволяющие  гидролизовать  -1,4-связи в целлюлозе. Однако коровы и другие жвачные животные, благодаря симбиозу с микроорганизмами, имеют необходимые ферменты и поэтому могут переваривать целлюлозу.

Химические свойства целлюлозы и крахмала определяются наличием большого числа гидроксильных групп. В промышленности используется способность целлюлозы образовывать алкильные, ацильные (ацетатные волокна) и нитропроизводные (нитроцеллюлоза). 

 

При гидролизе крахмала и целлюлозы образуется глюкоза. Реакция проводится в кислой среде.

Крахмал и гликоген дают цветную реакцию с раствором иода в иодиде калия. Крахмал окрашивается в темно-синий цвет, а гликоген – в винно-красный.

Широко распространен в природе хитин – главный скелетный полисахарид беспозвоночных. Хитин является клеточным компонентом стенок грибов, некоторых зеленых водорослей. По химической природе он представляет собой полиаминосахарид. 

Представителями гетерополисахаридов являются кислые мукополисахариды, или гликозаминогликаны. Обычно они присоединяются к белкам. Они присутствуют в межклеточном веществе, хрящах, сухожилиях, коже и выполняют структурную и защитную функцию. К гетерополисахаридам относится также и гепарин, о его функции мы говорили ранее.

Полисахарид — Polysaccharide — qaz.wiki

Полимеры с длинными углеводами, включая крахмал, гликоген, целлюлозу и хитин.

Амилозы представляет собой линейный полимер из глюкозы , главным образом связана с & alpha ; (1 → 4) облигаций. Он может состоять из нескольких тысяч единиц глюкозы. Это один из двух компонентов крахмала , другой — амилопектин .

Полисахариды ( ), или поликарбогидраты , являются наиболее распространенными углеводы содержатся в пище. Это длинноцепочечные полимерные углеводы, состоящие из моносахаридных единиц, связанных вместе гликозидными связями . Этот углевод может реагировать с водой ( гидролиз ) с использованием ферментов амилазы в качестве катализатора, который производит составляющие сахара ( моносахариды или олигосахариды ). Их структура варьируется от линейной до сильно разветвленной. Примеры включают запасные полисахариды, такие как крахмал , гликоген и галактоген, и структурные полисахариды, такие как целлюлоза и хитин .

Полисахариды часто довольно неоднородны, содержат незначительные модификации повторяющейся единицы. В зависимости от структуры эти макромолекулы могут иметь свойства, отличные от своих моносахаридных строительных блоков. Они могут быть аморфными или даже нерастворимыми в воде. Когда все моносахариды в полисахариде относятся к одному типу, полисахарид называется гомополисахаридом или гомогликаном , но когда присутствует более одного типа моносахаридов, они называются гетерополисахаридами или гетерогликанами .

Природные сахариды обычно состоят из простых углеводов, называемых моносахаридами с общей формулой (CH 2 O) n, где n равно трем или более. Примерами моносахаридов являются глюкоза , фруктоза и глицеральдегид . Между тем, полисахариды имеют общую формулу C x (H 2 O) y, где x обычно представляет собой большое число от 200 до 2500. Когда повторяющиеся звенья в основной цепи полимера представляют собой шестиуглеродные моносахариды , как это часто бывает, общая формула упрощается до (C 6 H 10 O 5 ) n , где обычно 40 ≤ n ≤ 3000 .

Как показывает практика, полисахариды содержат более десяти моносахаридных единиц, тогда как олигосахариды содержат от трех до десяти моносахаридных единиц; но точное отсечение может несколько варьироваться в зависимости от соглашения. Полисахариды — важный класс биологических полимеров . Их функция в живых организмах обычно связана со структурой или хранением. Крахмал (полимер глюкозы) используется в растениях в качестве запасного полисахарида, находясь в форме как амилозы, так и разветвленного амилопектина . У животных структурно подобный полимер глюкозы представляет собой более плотно разветвленный гликоген , иногда называемый «животным крахмалом». Свойства гликогена позволяют ему быстрее метаболизироваться, что соответствует активному образу жизни движущихся животных. У бактерий они играют важную роль в их многоклеточности.

Целлюлоза и хитин являются примерами структурных полисахаридов. Целлюлоза используется в клеточных стенках растений и других организмов и считается самой распространенной органической молекулой на Земле. Он имеет множество применений, таких как значительная роль в бумажной и текстильной промышленности, и используется в качестве сырья для производства вискозы (с помощью процесса вискозы ), ацетата целлюлозы, целлулоида и нитроцеллюлозы. Хитин имеет аналогичную структуру, но имеет азотсодержащие боковые ответвления, увеличивающие его прочность. Он обнаружен в экзоскелете членистоногих и в клеточных стенках некоторых грибов . Он также имеет множество применений, в том числе хирургические нити . Полисахариды также включают каллозу или ламинарин , хризоламинарин , ксилан , арабиноксилан , маннан , фукоидан и галактоманнан .

Функция

Структура

Пищевые полисахариды — распространенные источники энергии. Многие организмы могут легко расщеплять крахмал до глюкозы; однако большинство организмов не может метаболизировать целлюлозу или другие полисахариды, такие как хитин и арабиноксиланы . Эти типы углеводов могут метаболизироваться некоторыми бактериями и простейшими. Например, жвачные животные и термиты используют микроорганизмы для обработки целлюлозы .

Несмотря на то, что эти сложные полисахариды плохо усваиваются, они являются важными элементами питания для человека. Эти углеводы, называемые диетической клетчаткой , помимо других преимуществ, улучшают пищеварение. Основное действие пищевых волокон заключается в изменении характера содержимого желудочно-кишечного тракта и в изменении того, как усваиваются другие питательные вещества и химические вещества. Растворимая клетчатка связывается с желчными кислотами в тонком кишечнике, что снижает вероятность их попадания в организм; это, в свою очередь, снижает уровень холестерина в крови. Растворимая клетчатка также снижает всасывание сахара, снижает реакцию сахара после еды, нормализует уровень липидов в крови и, после ферментации в толстой кишке, производит короткоцепочечные жирные кислоты в качестве побочных продуктов с широким спектром физиологической активности (обсуждение ниже). Хотя нерастворимая клетчатка связана со снижением риска диабета, механизм, с помощью которого это происходит, неизвестен.

Еще не предложенная официально в качестве основного макроэлемента (по состоянию на 2005 г. ), пищевые волокна, тем не менее, считаются важными для диеты, и регулирующие органы многих развитых стран рекомендуют увеличить потребление клетчатки.

Хранение полисахаридов

Крахмал

Крахмал представляет собой полимер глюкозы, в котором звенья глюкопиранозы связаны альфа- связями. Он состоит из смеси амилозы (15–20%) и амилопектина (80–85%). Амилоза состоит из линейной цепи из нескольких сотен молекул глюкозы, а амилопектин представляет собой разветвленную молекулу, состоящую из нескольких тысяч единиц глюкозы (каждая цепь из 24-30 единиц глюкозы представляет собой одну единицу амилопектина). Крахмалы не растворяются в воде . Их можно переваривать, разрывая альфа- связи (гликозидные связи). И люди, и другие животные имеют амилазы, поэтому они могут переваривать крахмал. Картофель , рис , пшеница и кукуруза являются основными источниками крахмала в рационе человека. Образование крахмала — это способ хранения глюкозы в растениях .

Гликоген

Гликоген служит вторичным долгосрочным хранилищем энергии в клетках животных и грибов , причем первичные запасы энергии хранятся в жировой ткани . Гликоген вырабатывается в основном печенью и мышцами , но также может вырабатываться в результате гликогенеза в головном мозге и желудке .

Гликоген аналогичен крахмалу , полимеру глюкозы в растениях , и иногда его называют животным крахмалом , имеющим структуру, аналогичную амилопектину, но более разветвленную и компактную, чем крахмал. Гликоген представляет собой полимер, состоящий из α (1 → 4) гликозидных связей, связанных с α (1 → 6) -связанными ветвями. Гликоген находится в форме гранул в цитозоле / цитоплазме многих типов клеток и играет важную роль в цикле глюкозы . Гликоген образует запас энергии, который можно быстро мобилизовать для удовлетворения внезапной потребности в глюкозе, но он менее компактен и более доступен в качестве резерва энергии, чем триглицериды (липиды).

В гепатоцитах печени гликоген может составлять до 8 процентов (100–120 граммов для взрослого) от сырой массы вскоре после еды. Только гликоген, хранящийся в печени, может быть доступен другим органам. В мышцах гликоген содержится в низкой концентрации — от одного до двух процентов от мышечной массы. Количество гликогена, хранящегося в организме, особенно в мышцах , печени и эритроцитах, зависит от физической активности, основного обмена веществ и привычек питания, таких как периодическое голодание . Небольшое количество гликогена содержится в почках и еще меньшее количество — в некоторых глиальных клетках головного мозга и лейкоцитах . Во время беременности матка также накапливает гликоген для питания эмбриона.

Гликоген состоит из разветвленной цепи остатков глюкозы. Он хранится в печени и мышцах.

  • Это запас энергии для животных.
  • Это основная форма углеводов, хранящихся в организме животных.
  • Не растворяется в воде. При смешивании с йодом он становится коричнево-красным.
  • Он также дает глюкозу при гидролизе .
  • Схематический двумерный вид гликогена в разрезе. Основной белок гликогенина окружен ответвлениями глюкозных единиц. Вся глобулярная гранула может содержать приблизительно 30 000 единиц глюкозы.

Галактоген

Галактоген — это полисахарид галактозы, который функционирует как накопитель энергии у легочных улиток и некоторых Caenogastropoda . Этот полисахарид не воспроизводится и обнаруживается только в белковой железе репродуктивной системы самок улиток и в перивителлиновой жидкости яиц.

Галактоген служит энергетическим резервом для развития эмбрионов и вылупившихся птенцов, который позже заменяется гликогеном у молодых и взрослых особей.

Инулин

Инулин — это встречающийся в природе сложный полисахаридный углевод, состоящий из пищевых волокон , продуктов растительного происхождения, которые не могут быть полностью расщеплены пищеварительными ферментами человека.

Структурные полисахариды

Некоторые важные природные структурные полисахариды

Арабиноксиланы

Арабиноксиланы находятся как в первичных, так и в вторичных клеточных стенках растений и представляют собой сополимеры двух сахаров: арабинозы и ксилозы . Они также могут оказывать благотворное влияние на здоровье человека.

Целлюлоза

Структурные компоненты растений формируются преимущественно из целлюлозы . Древесина в основном состоит из целлюлозы и лигнина , тогда как бумага и хлопок почти полностью состоят из целлюлозы. Целлюлоза — это полимер, состоящий из повторяющихся единиц глюкозы, связанных вместе бета- связями. У людей и многих животных отсутствует фермент, разрушающий бета- связи, поэтому они не переваривают целлюлозу. Некоторые животные, такие как термиты, могут переваривать целлюлозу, потому что бактерии, обладающие этим ферментом, присутствуют в их кишечнике. Целлюлоза не растворяется в воде. Не меняет цвет при смешивании с йодом. При гидролизе дает глюкозу. Это самый распространенный в природе углевод.

Хитин

Хитин — один из многих природных полимеров . Он является структурным компонентом многих животных, например экзоскелетов . Со временем он подвергается биологическому разложению в естественной среде. Его распад может катализироваться ферментами, называемыми хитиназами , секретируемыми микроорганизмами, такими как бактерии и грибы, и производимыми некоторыми растениями. У некоторых из этих микроорганизмов есть рецепторы простых сахаров, образующихся при разложении хитина. Если хитин обнаружен, они затем производят ферменты для его переваривания, расщепляя гликозидные связи , чтобы преобразовать его в простые сахара и аммиак .

По химическому составу хитин тесно связан с хитозаном (более водорастворимое производное хитина). Он также тесно связан с целлюлозой в том смысле, что представляет собой длинную неразветвленную цепь производных глюкозы . Оба материала вносят свой вклад в структуру и прочность, защищая организм.

Пектины

Пектины представляют собой семейство сложных полисахаридов, которые содержат 1,4-связанные остатки α- D- галактозилуроновой кислоты. Они присутствуют в большинстве первичных клеточных стенок и в недревесных частях наземных растений.

Кислые полисахариды

Кислые полисахариды — это полисахариды, которые содержат карбоксильные группы , фосфатные группы и / или группы сложного эфира серной кислоты .

Бактериальные полисахариды

Патогенные бактерии обычно образуют толстый слизистый слой полисахарида. Эта «капсула» скрывает антигенные белки на поверхности бактерий, которые в противном случае спровоцировали бы иммунный ответ и тем самым привели бы к уничтожению бактерий. Капсульные полисахариды растворимы в воде, обычно кислые, и имеют молекулярную массу порядка от 100000 до 2000000 дальтон . Они линейны и состоят из регулярно повторяющихся субъединиц от одной до шести моносахаридов . Существует огромное структурное разнообразие; около двухсот различных полисахаридов продуцируются только кишечной палочкой . В качестве вакцин используются смеси капсульных полисахаридов, конъюгированных или нативных .

Бактерии и многие другие микробы, включая грибы и водоросли , часто выделяют полисахариды, чтобы помочь им прилипнуть к поверхностям и предотвратить их высыхание. Люди превратили некоторые из этих полисахаридов в полезные продукты, включая ксантановую камедь , декстран , велановую камедь , геллановую камедь , диутановую камедь и пуллулан .

Большинство этих полисахаридов проявляют полезные вязкоупругие свойства при очень низких концентрациях растворения в воде. Это делает различные жидкости, используемые в повседневной жизни, такие как некоторые продукты питания, лосьоны, чистящие средства и краски, вязкими в неподвижном состоянии, но гораздо более текучими, когда применяется даже небольшой сдвиг при перемешивании или встряхивании, наливании, протирании или чистке щеткой. Это свойство называется псевдопластичностью или истончением при сдвиге ; изучение таких вопросов называется реологией .

Водные растворы полисахарида сами по себе имеют любопытное поведение при перемешивании: после прекращения перемешивания раствор сначала продолжает вращаться из-за импульса, затем замедляется до остановки из-за вязкости и ненадолго меняет направление перед остановкой. Эта отдача происходит из-за упругого действия полисахаридных цепей, ранее растянутых в растворе, возвращающихся в свое расслабленное состояние.

Полисахариды клеточной поверхности играют разнообразные роли в экологии и физиологии бактерий . Они служат барьером между клеточной стенкой и окружающей средой, опосредуют взаимодействия хозяин-патоген. Полисахариды также играют важную роль в образовании биопленок и структурировании сложных форм жизни у бактерий, таких как Myxococcus xanthus .

Эти полисахариды синтезируются из активированных нуклеотидами предшественников (называемых нуклеотидными сахарами ), и в большинстве случаев все ферменты, необходимые для биосинтеза, сборки и транспорта готового полимера, кодируются генами, организованными в специальные кластеры в геноме организма . Липополисахарид является одним из наиболее важных полисахаридов клеточной поверхности, поскольку он играет ключевую структурную роль в целостности внешней мембраны, а также является важным медиатором взаимодействий между хозяином и патогеном.

Были идентифицированы ферменты, которые образуют A-полосу (гомополимерный) и B-полосу (гетерополимерный) O-антигены, и определены метаболические пути . Альгинат экзополисахарида представляет собой линейный сополимер остатков β-1,4-связанной D- маннуроновой кислоты и L- гулуроновой кислоты и отвечает за мукоидный фенотип поздней стадии муковисцидоза. В PEL и PSL локусы два недавно обнаружили генные кластеры , которые также кодируют экзополисахариды обнаружено, что важно для образования биопленки. Рамнолипид — это биоповерхностно-активное вещество , производство которого строго регулируется на уровне транскрипции , но точная роль, которую он играет при заболевании, в настоящее время недостаточно изучена. Белок гликозилирование , в частности пилина и флагеллина , стал объектом исследований нескольких групп от около 2007, и было показано, что важно для адгезии и инвазии при бактериальной инфекции.

Тесты химической идентификации полисахаридов

Окраска периодической кислотой-Шиффа (PAS)

Полисахариды с незащищенными вицинальными диолами или аминосахарами (где некоторые гидроксильные группы заменены аминами ) дают положительное периодическое кислотное окрашивание Шиффа (PAS). Список полисахаридов, окрашивающих ПАВ, велик. Хотя муцины эпителиального происхождения окрашиваются PAS, муцины соединительнотканного происхождения имеют так много кислотных замен, что в них не остается достаточно групп гликоля или амино-спирта для взаимодействия с PAS.

Смотрите также

Рекомендации

внешняя ссылка

Полисахариды. Крахмал и целлюлоза | Советы тут

Сегодня урок по химии 45 — Полисахариды. Крахмал и целлюлоза. Как изучить? Советы и рекомендации простые — прежде, чем приступить к изучению урока, повторите предыдущие уроки по химии 43-44.

Полисахаридыэто высокомолекулярные несахароподобные углеводы, содержащие от десяти до сотен тысяч остатков моносахаридов (обычно гексоз), связанных гликозидными связями. Важнейшими представителями являются крахмал, гликоген, целлюлоза (клетчатка). Это природные высокомолекулярные соединения (ВМС), мономером которых является глюкоза. Их общая формула (С6Н10О5)n, где n достигает величины сотен и тысяч. Крахмал образуется в растениях при фотосинтезе и откладывается в корнях, клубнях  и семенах. Внешний вид крахмала хорошо известен: это белое вещество, состоящее из мелких зерен. Он нерастворим в холодной воде, набухает и постепенно растворяется в горячей. Образующиеся вязкие растворы при охлаждении превращаются в студневидную массу – клейстер.

Крахмал состоит из двух фракций: амилозы и амилопектина. Обе фракции образуются из  α-Д-глюкозы и отличаются строением цепи, числом остатков глюкозы. Остатки моносахаридов соединены кислородными мостиками. При образовании цепей гликозидный гидроксил одной молекулы взаимодействует со спиртовым гидроксилом другой молекулы. С раствором йода крахмал дает характерное синее окрашивание (качественная реакция), исчезающее при нагревании и вновь появляющееся при охлаждении.

Амилоза представляет собой линейный  полисахарид, построенный из нескольких тысяч остатков глюкозы, соединенных  α-глюкозидной связью. Строение амилозы схематически выражается следующей формулой:

По данным рентгеноструктурного анализа, молекула амилозы свернута в спираль. Внутри спиралевой молекулы остается канал диаметром около 0,5 нм, в котором могут располагаться подходящие по размеру молекулы, образуя особого типа комплексы – так называемые соединения включения. Одним из них является соединение амилозы с йодом синего цвета.

Имея одинаковый химический состав, амилоза и амилопектин различаются пространственным строением. Молекулы амилозы построены линейно (нитеобразно), а молекулы амилопектина – разветвлено.

Наибольшее значение крахмал имеет в качестве пищевого продукта: в виде хлеба, картофеля, круп, являясь главным источником углеводов  в нашем рационе питания. Значительные количества крахмала употребляются для проклеивания (шлихтования) тканей, склеивания бумаги и картона, производства канцелярского декстринового клея. В аналитической химии крахмал служит индикатором в йодометрическом методе титрования.

Целлюлоза представляет собой полисахарид, построенный из глюкозных звеньев. Ее строение напоминает строение амилозы, т.е. она тоже состоит из остатков глюкозы, но связаны они между собой β-гликозидными  связями, а не α-гликозидными, как в амилозе.

Молекулярная масса целлюлозы очень велика – порядка 500 тыс.,  она может достигать и нескольких миллионов, т.е. в приведенной формуле n равно десяткам тысяч. Клетчатка —  главный «строительный материал» растений, из которого состоят стенки растительных клеток. Целлюлоза не плавится и не переходит в парообразное состояние: при нагревании примерно до 350 °С она разлагается – обугливается. Она нерастворима в воде и большинстве других неорганических и органических растворителей. Нерастворимость целлюлозы объясняют тем, что ее волокна представляют собой как бы «пучки» расположенных параллельно нитевидных молекул, связанные множеством водородных связей, которые образуются в результате взаимодействия гидроксильных групп. Внутрь подобного «пучка» растворитель проникнуть не может, а следовательно, не происходит и отрыва молекул друг от друга. Целлюлоза растворима в растворе гидроксида меди в концентрированном водном аммиаке (реактив Швейцера). Концентрированные кислоты и концентрированный раствор хлорида цинка также растворяет целлюлозу, но при этом происходит ее частичный распад (гидролиз), сопровождающийся уменьшением  молекулярной массы. Химические свойства целлюлозы определяются, прежде всего, присутствием  гидроксильных групп. Действуя металлическим натрием, можно получить тринатрийалкоголят  целлюлозы [C6H7O2(ONa)3]n.   Под действием  концентрированных  водных растворов щелочей происходит мерсеризация – частичное образование алкоголятов целлюлозы, приводящее к набуханию волокна и повышению его восприимчивости к красителям.  В результате окисления в макромолекуле целлюлозы появляется некоторое число карбонильных и карбоксильных групп. Под влиянием сильных окислителей происходит распад макромолекул. Гидроксильные  группы целлюлозы способны алкилироваться и ацилироваться, давая простые и сложные эфиры. Целлюлоза используется человеком с очень давних пор. Сначала применяли древесину как горючий и строительный материал; затем хлопковые, льняные и др. волокна стали использоваться  как текстильное сырье. Первые промышленные способы переработки целлюлозы возникли в связи с развитием бумажной промышленности. Бумага – это тонкий слой клетчатки, спрессованных и проклеенных для создания механической прочности, а также гладкой поверхности для предотвращения растекания чернил. Целлюлоза применяется не только как сырье в бумажном производстве, но идет еще на дальнейшую химическую переработку. Наибольшее значение имеют  простые и сложные эфиры целлюлозы. Так, при действии на целлюлозу смесью серной и азотной кислот получают нитраты целлюлозы. Все они горючи и взрывчаты. Максимальное число остатков азотной кислоты, которые можно ввести в клетчатку, равно 3 на каждое звено глюкозы:

[C6H7O2(OH)3]n + 3nHNO3 → [C6H7O2(ONO2)3]n + 3nH2O

При действии на целлюлозу смеси уксусного ангидрида, уксусной к-ты и серной к-ты образуется триацетат целлюлозы:

[C6H7O2(OH)3]n   →  [C6H7O2(OCOCH3)3]n

Из ацетатов целлюлозы готовят лаки, негорючую кинопленку, а также ацетатное волокно. Нашли техническое применение и простые эфиры целлюлозы. Так, обрабатывают целлюлозу сначала щелочью, а затем хлористым метилом (под давлением), получают метилцеллюлозу:

[C6H7O2(OH)3]n + 2NaOH  +  2CH3Cl → [C6H7O2(OH)(OCH3)2]n + 2NaCl  + 2H2O

При метилировании целлюлоза приобретает некоторую растворимость в воде; применяется главным образом как загуститель в текстильной, косметической и пищевой промышленности. Аналогично получают этилцеллюлозу, которую используют для производства прочных морозостойких пленок. Искусственные волокна на основе целлюлозы ныне занимают видное место в общем балансе текстильного сырья.

Это был урок по химии 45 — Полисахариды. Крахмал и целлюлоза.

Share this post for your friends:

Friend me:

Навигация по записям

5.1: Крахмал и целлюлоза — Химия LibreTexts

Полисахариды — это самые распространенные в природе углеводы, которые выполняют различные функции, такие как хранение энергии или как компоненты стенок растительных клеток. Полисахариды — это очень большие полимеры, состоящие из десятков и тысяч моносахаридов, соединенных гликозидными связями. Три наиболее распространенных полисахарида — это крахмал, гликоген и целлюлоза. Эти три упоминаются как гомополимеры , потому что каждый дает только один тип моносахарида (глюкозы) после полного гидролиза. Гетерополимеры могут содержать сахарные кислоты, аминосахары или неуглеводные вещества в дополнение к моносахаридам. Гетерополимеры широко распространены в природе (камеди, пектины и другие вещества), но не будут обсуждаться далее в этом учебнике. Полисахариды являются невосстанавливающими углеводами, не имеют сладкого вкуса и не подвергаются мутаротации.

Крахмал

Крахмал является наиболее важным источником углеводов в рационе человека и составляет более 50% потребляемых нами углеводов.Он встречается в растениях в виде гранул, и их особенно много в семенах (особенно в зернах злаков) и клубнях, где они служат формой хранения углеводов. Распад крахмала до глюкозы питает растение в периоды пониженной фотосинтетической активности. Мы часто думаем о картофеле как о «крахмалистой» пище, однако другие растения содержат гораздо больший процент крахмала (картофель 15%, пшеница 55%, кукуруза 65% и рис 75%). Товарный крахмал представляет собой белый порошок.

Крахмал представляет собой смесь двух полимеров: амилозы и амилопектина. Природные крахмалы состоят примерно на 10–30% из амилазы и на 70–90% из амилопектина. Амилоза представляет собой линейный полисахарид, полностью состоящий из единиц D-глюкозы, соединенных α-1,4-гликозидными связями, которые мы видели в мальтозе (часть (а) на рисунке 5.1.1). Экспериментальные данные показывают, что амилоза не является прямой цепочкой глюкозных единиц, а вместо этого свернута, как пружина, с шестью мономерами глюкозы на виток (часть (b) рисунка 5.1.1). При таком свертывании амилоза в ядре имеет достаточно места для размещения молекулы йода.Характерный сине-фиолетовый цвет, который появляется при обработке крахмала йодом, обусловлен образованием комплекса амилоза-йод. Этот цветовой тест достаточно чувствителен, чтобы обнаруживать даже незначительные количества крахмала в растворе.

Рисунок 5.1.1: Амилоза. (а) Амилоза представляет собой линейную цепь из единиц α-D-глюкозы, соединенных вместе α-1,4-гликозидными связями. (б) Из-за водородных связей амилоза приобретает спиралевидную структуру, содержащую шесть единиц глюкозы на оборот.

Амилопектин представляет собой полисахарид с разветвленной цепью, состоящий из единиц глюкозы, связанных главным образом α-1,4-гликозидными связями, но иногда с α-1,6-гликозидными связями, которые ответственны за разветвление. Молекула амилопектина может содержать многие тысячи единиц глюкозы с точками ветвления, встречающимися примерно через каждые 25–30 единиц (рис. 5.1.2). Спиральная структура амилопектина нарушается из-за разветвления цепи, поэтому вместо темно-сине-фиолетовой окраски амилозы с йодом амилопектин дает менее интенсивный красновато-коричневый цвет.

Рисунок 5.1.2 : Представление ветвления амилопектина и гликогена. И амилопектин, и гликоген содержат точки ветвления, которые связаны через α-1,6-связи. Эти точки ветвления чаще встречаются в гликогене.

Декстрины представляют собой полисахариды глюкозы промежуточного размера. Блеск и жесткость, придаемые одежде крахмалом, обусловлены присутствием декстринов, образующихся при глажке одежды. Из-за их характерной липкости при намокании декстрины используются в качестве клея на марках, конвертах и ​​этикетках; как связующие вещества для удерживания пилюль и таблеток вместе; и как пасты.Декстрины перевариваются легче, чем крахмал, и поэтому широко используются при коммерческом приготовлении детского питания.

Полный гидролиз крахмала дает последовательные стадии глюкозы:

крахмал → декстрины → мальтоза → глюкоза

В организме человека несколько ферментов, известных под общим названием амилазы, последовательно расщепляют крахмал до пригодных для использования единиц глюкозы.

Гликоген

Гликоген — это углевод, являющийся энергетическим резервом животных.Практически все клетки млекопитающих содержат некоторые запасенные углеводы в форме гликогена, но особенно много их в печени (4–8% от веса ткани) и в клетках скелетных мышц (0,5–1,0%). Как и крахмал в растениях, гликоген находится в виде гранул в клетках печени и мышц. При голодании животные потребляют эти запасы гликогена в течение первого дня без еды для получения глюкозы, необходимой для поддержания метаболического баланса.

Примечание

Около 70% общего гликогена в организме хранится в мышечных клетках.Хотя процентное содержание гликогена (по весу) выше в печени, гораздо большая масса скелетных мышц хранит большее общее количество гликогена.

Гликоген структурно очень похож на амилопектин, хотя гликоген более разветвлен (8–12 единиц глюкозы между ветвями), а ветви короче. При обработке йодом гликоген дает красновато-коричневый цвет. Гликоген может быть расщеплен на его субъединицы D-глюкозы путем кислотного гидролиза или с помощью тех же ферментов, которые катализируют расщепление крахмала.У животных фермент фосфорилаза катализирует распад гликогена до фосфатных эфиров глюкозы.

Целлюлоза

Целлюлоза, волокнистый углевод, содержащийся во всех растениях, является структурным компонентом стенок растительных клеток. Поскольку земля покрыта растительностью, целлюлоза является самым распространенным из всех углеводов, на нее приходится более 50% всего углерода, содержащегося в царстве растений. Волокна хлопка и фильтровальная бумага почти полностью состоят из целлюлозы (около 95%), древесина составляет около 50% целлюлозы, а сухой вес листьев составляет около 10–20% целлюлозы.Наибольшее распространение целлюлоза используется в производстве бумаги и бумажных изделий. Хотя использование нецеллюлозных синтетических волокон увеличивается, вискоза (из целлюлозы) и хлопок по-прежнему составляют более 70% текстильного производства.

Подобно амилозе, целлюлоза представляет собой линейный полимер глюкозы. Однако он отличается тем, что единицы глюкозы соединены β-1,4-гликозидными связями, образуя более протяженную структуру, чем амилоза (часть (а) на рисунке 5.1.3). Эта чрезвычайная линейность позволяет образовывать большие водородные связи между группами ОН в соседних цепях, заставляя их плотно упаковываться в волокна (часть (b) на рисунке 5.1.3). В результате целлюлоза слабо взаимодействует с водой или любым другим растворителем. Например, хлопок и дерево полностью нерастворимы в воде и обладают значительной механической прочностью. Поскольку целлюлоза не имеет спиральной структуры, она не связывается с йодом с образованием окрашенного продукта.

Рисунок 5.1.3 : Целлюлоза. (а) В структуре целлюлозы имеется обширная водородная связь. (b) На этой электронной микрофотографии клеточной стенки водоросли стенка состоит из последовательных слоев целлюлозных волокон, расположенных параллельно.

Целлюлоза дает D-глюкозу после полного кислотного гидролиза, но люди не могут метаболизировать целлюлозу как источник глюкозы. В наших пищеварительных соках отсутствуют ферменты, которые могут гидролизовать β-гликозидные связи, содержащиеся в целлюлозе, поэтому, хотя мы можем есть картофель, мы не можем есть траву. Однако некоторые микроорганизмы могут переваривать целлюлозу, потому что они вырабатывают фермент целлюлазу, который катализирует гидролиз целлюлозы. Присутствие этих микроорганизмов в пищеварительном тракте травоядных животных (таких как коровы, лошади и овцы) позволяет этим животным разлагать целлюлозу из растительного материала до глюкозы для получения энергии. Термиты также содержат микроорганизмы, выделяющие целлюлазу, и поэтому могут питаться древесной пищей. Этот пример еще раз демонстрирует крайнюю стереоспецифичность биохимических процессов.

16.7: Полисахариды — Chemistry LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  1. Крахмал
  2. Гликоген
  3. Целлюлоза
  4. Резюме
  5. Упражнения на обзор концепции
  6. Ответы
  7. Упражнения
  8. Ответы

Цели обучения

  • Для сравнения и сопоставления структур и использования крахмала, гликогена и целлюлозы.

Полисахариды — это самые распространенные в природе углеводы, которые выполняют множество функций, таких как накопление энергии или как компоненты стенок растительных клеток. Полисахариды — это очень большие полимеры, состоящие из десятков и тысяч моносахаридов, соединенных гликозидными связями. Три наиболее распространенных полисахарида — это крахмал, гликоген и целлюлоза. Эти три упоминаются как гомополимеры , потому что каждый дает только один тип моносахарида (глюкозы) после полного гидролиза. Гетерополимеры могут содержать сахарные кислоты, аминосахары или неуглеводные вещества в дополнение к моносахаридам. Гетерополимеры широко распространены в природе (камеди, пектины и другие вещества), но не будут обсуждаться далее в этом учебнике. Полисахариды являются невосстанавливающими углеводами, не имеют сладкого вкуса и не подвергаются мутаротации.

  • Крахмал

    Крахмал является наиболее важным источником углеводов в рационе человека и составляет более 50% потребляемых нами углеводов.Он встречается в растениях в виде гранул, и их особенно много в семенах (особенно в зернах злаков) и клубнях, где они служат формой хранения углеводов. Распад крахмала до глюкозы питает растение в периоды пониженной фотосинтетической активности. Мы часто думаем о картофеле как о «крахмалистой» пище, однако другие растения содержат гораздо больший процент крахмала (картофель 15%, пшеница 55%, кукуруза 65% и рис 75%). Товарный крахмал представляет собой белый порошок.

    Крахмал представляет собой смесь двух полимеров: амилозы и амилопектина.Натуральные крахмалы состоят примерно на 10–30% из амилозы и на 70–90% из амилопектина. Амилоза — это линейный полисахарид, полностью состоящий из единиц D-глюкозы, соединенных α-1,4-гликозидными связями, которые мы видели в мальтозе (часть (а) на рисунке \ (\ PageIndex {1} \)). Экспериментальные данные показывают, что амилоза не является прямой цепочкой единиц глюкозы, а вместо этого свернута, как пружина, с шестью мономерами глюкозы на оборот (часть (b) рисунка \ (\ PageIndex {1} \)). При таком свертывании амилоза в ядре имеет достаточно места для размещения молекулы йода.Характерный сине-фиолетовый цвет, который появляется при обработке крахмала йодом, обусловлен образованием комплекса амилоза-йод. Этот цветовой тест достаточно чувствителен, чтобы обнаруживать даже незначительные количества крахмала в растворе.

    Рисунок \ (\ PageIndex {1} \): амилоза. (а) Амилоза представляет собой линейную цепь из единиц α-D-глюкозы, соединенных вместе α-1,4-гликозидными связями. (б) Из-за водородных связей амилоза приобретает спиралевидную структуру, содержащую шесть единиц глюкозы на оборот.

    Амилопектин представляет собой полисахарид с разветвленной цепью, состоящий из единиц глюкозы, связанных главным образом α-1,4-гликозидными связями, но иногда с α-1,6-гликозидными связями, которые ответственны за разветвление.Молекула амилопектина может содержать многие тысячи единиц глюкозы с точками ветвления, встречающимися примерно через каждые 25–30 единиц (рисунок \ (\ PageIndex {2} \)). Спиральная структура амилопектина нарушается из-за разветвления цепи, поэтому вместо темно-сине-фиолетовой окраски амилозы с йодом амилопектин дает менее интенсивный красновато-коричневый цвет.

    Рисунок \ (\ PageIndex {2} \): представление ветвления амилопектина и гликогена. И амилопектин, и гликоген содержат точки ветвления, которые связаны через α-1,6-связи.Эти точки ветвления чаще встречаются в гликогене.

    Декстрины представляют собой полисахариды глюкозы промежуточного размера. Блеск и жесткость, придаемые одежде крахмалом, обусловлены присутствием декстринов, образующихся при глажке одежды. Из-за их характерной липкости при намокании декстрины используются в качестве клея на марках, конвертах и ​​этикетках; как связующие вещества для удерживания пилюль и таблеток вместе; и как пасты. Декстрины перевариваются легче, чем крахмал, и поэтому широко используются при коммерческом приготовлении детского питания.

    Полный гидролиз крахмала дает последовательные стадии глюкозы:

    крахмал → декстрины → мальтоза → глюкоза

    В организме человека несколько ферментов, известных под общим названием амилазы, последовательно расщепляют крахмал до пригодных для использования единиц глюкозы.

  • Гликоген

    Гликоген — это углевод, являющийся энергетическим резервом животных. Практически все клетки млекопитающих содержат некоторое количество хранимых углеводов в форме гликогена, но особенно много его в печени (4-8% от веса ткани) и в клетках скелетных мышц (0.5% –1,0%). Как и крахмал в растениях, гликоген находится в виде гранул в клетках печени и мышц. При голодании животные потребляют эти запасы гликогена в течение первого дня без еды для получения глюкозы, необходимой для поддержания метаболического баланса.

    Гликоген структурно очень похож на амилопектин, хотя гликоген более разветвлен (8–12 единиц глюкозы между ветвями), а ветви короче. При обработке йодом гликоген дает красновато-коричневый цвет. Гликоген может быть расщеплен на его субъединицы D-глюкозы путем кислотного гидролиза или с помощью тех же ферментов, которые катализируют расщепление крахмала.У животных фермент фосфорилаза катализирует распад гликогена до фосфатных эфиров глюкозы.

    Около 70% общего гликогена в организме хранится в мышечных клетках. Хотя процентное содержание гликогена (по весу) выше в печени, гораздо большая масса скелетных мышц хранит большее общее количество гликогена.

    Целлюлоза

    Целлюлоза, волокнистый углевод, содержащийся во всех растениях, является структурным компонентом стенок растительных клеток.Поскольку земля покрыта растительностью, целлюлоза является самым распространенным из всех углеводов, на нее приходится более 50% всего углерода, содержащегося в царстве растений. Волокна хлопка и фильтровальная бумага почти полностью состоят из целлюлозы (около 95%), древесина составляет около 50% целлюлозы, а сухой вес листьев составляет около 10–20% целлюлозы. Наибольшее распространение целлюлоза используется в производстве бумаги и бумажных изделий. Хотя использование нецеллюлозных синтетических волокон увеличивается, вискоза (из целлюлозы) и хлопок по-прежнему составляют более 70% текстильного производства.

    Подобно амилозе, целлюлоза представляет собой линейный полимер глюкозы. Однако он отличается тем, что единицы глюкозы соединены β-1,4-гликозидными связями, образуя более протяженную структуру, чем амилоза (часть (а) рисунка \ (\ PageIndex {3} \)). Эта крайняя линейность позволяет образовывать много водородных связей между группами ОН в соседних цепях, заставляя их плотно упаковываться в волокна (часть (b) на рисунке \ (\ PageIndex {3} \)). В результате целлюлоза слабо взаимодействует с водой или любым другим растворителем.Например, хлопок и дерево полностью нерастворимы в воде и обладают значительной механической прочностью. Поскольку целлюлоза не имеет спиральной структуры, она не связывается с йодом с образованием окрашенного продукта.

    Рисунок \ (\ PageIndex {3} \): Целлюлоза. (а) В структуре целлюлозы имеется обширная водородная связь. (b) На этой электронной микрофотографии клеточной стенки водоросли стенка состоит из последовательных слоев целлюлозных волокон, расположенных параллельно.

    Целлюлоза дает D-глюкозу после полного кислотного гидролиза, но люди не могут метаболизировать целлюлозу как источник глюкозы.В наших пищеварительных соках отсутствуют ферменты, которые могут гидролизовать β-гликозидные связи, содержащиеся в целлюлозе, поэтому, хотя мы можем есть картофель, мы не можем есть траву. Однако некоторые микроорганизмы могут переваривать целлюлозу, потому что они вырабатывают фермент целлюлазу, который катализирует гидролиз целлюлозы. Присутствие этих микроорганизмов в пищеварительном тракте травоядных животных (таких как коровы, лошади и овцы) позволяет этим животным разлагать целлюлозу из растительного материала до глюкозы для получения энергии. Термиты также содержат микроорганизмы, выделяющие целлюлазу, и поэтому могут питаться древесной пищей.Этот пример еще раз демонстрирует крайнюю стереоспецифичность биохимических процессов.

    Карьера: сертифицированный преподаватель диабета

    Сертифицированные инструкторы по диабету представляют самые разные медицинские специальности, такие как медсестры и диетологи, и специализируются на обучении и лечении пациентов с диабетом. Инструктор по диабету будет работать с пациентами, чтобы контролировать их диабет. Это включает в себя обучение пациента контролировать уровень сахара в крови, правильно выбирать пищу, разрабатывать и поддерживать программу упражнений и, при необходимости, принимать лекарства.

    Сертифицированный инструктор по диабету в Морском медицинском центре Портсмута (слева) и зарегистрированный диетолог в медицинском центре (в центре) предоставляют информацию о питании больной диабетом и ее матери в учебном лагере для диабетиков.

    Диабетические педагоги также работают с персоналом больниц или домов престарелых, чтобы улучшить уход за больными диабетом. Педагоги должны быть готовы тратить время на посещение собраний и чтение текущей литературы, чтобы поддерживать свои знания о лекарствах от диабета, питании и устройствах для мониторинга крови, чтобы они могли передавать эту информацию своим пациентам.

    Сводка

    Крахмал — это форма хранения энергии в растениях. Он содержит два полимера, состоящие из звеньев глюкозы: амилозу (линейную) и амилопектин (разветвленную). Гликоген — это форма хранения энергии у животных. Это разветвленный полимер, состоящий из единиц глюкозы. Он более разветвлен, чем амилопектин. Целлюлоза — это структурный полимер глюкозных единиц, содержащихся в растениях. Это линейный полимер с глюкозными звеньями, связанными через β-1,4-гликозидные связи.

    Упражнения по обзору концепции

    1. Каким целям служат крахмал и целлюлоза в растениях?

    2. Какой цели служит гликоген у животных?

    ответы

    1. Крахмал — это форма хранения глюкозы (энергии) в растениях, в то время как целлюлоза является структурным компонентом клеточной стенки растений.

    2. Гликоген — это форма хранения глюкозы (энергии) у животных.

    Упражнения

    1. Какой моносахарид получается в результате гидролиза каждого углевода?

      1. крахмал
      2. целлюлоза
      3. гликоген
    2. Для каждого углевода, указанного в упражнении 1, укажите, содержится ли он в растениях или млекопитающих.

    3. Опишите сходства и различия между амилозой и целлюлозой.

    4. Опишите сходства и различия между амилопектином и гликогеном.

    ответы

    1. Амилоза и целлюлоза являются линейными полимерами звеньев глюкозы, но гликозидные связи между звеньями глюкозы различаются.Связи в амилозе представляют собой α-1,4-гликозидные связи, тогда как связи в целлюлозе представляют собой β-1,4-гликозидные связи.

  • Крахмал против полисахарида — в чем разница?

    Крахмал

    Крахмал или амилум — это полимерный углевод, состоящий из большого количества единиц глюкозы, соединенных гликозидными связями. Этот полисахарид вырабатывается большинством зеленых растений в качестве накопителя энергии. Это наиболее распространенный углевод в рационе человека и в больших количествах содержится в основных продуктах питания, таких как картофель, пшеница, кукуруза (кукуруза), рис и маниока.

    Чистый крахмал — это белый порошок без вкуса и запаха, не растворимый в холодной воде или спирте. Он состоит из двух типов молекул: линейной и спиральной амилозы и разветвленного амилопектина. В зависимости от растения крахмал обычно содержит от 20 до 25% амилозы и от 75 до 80% амилопектина по весу. Гликоген, запас глюкозы у животных, представляет собой более разветвленную версию амилопектина.

    В промышленности крахмал превращается в сахар, например, путем соложения, и ферментируется для производства этанола при производстве пива, виски и биотоплива.Он обрабатывается для производства многих сахаров, используемых в обработанных пищевых продуктах. При смешивании большинства крахмалов в теплой воде получается паста, такая как пшеничная паста, которую можно использовать в качестве загустителя, загустителя или склеивающего агента. Наибольшее промышленное использование крахмала в непищевых целях — это клей в процессе изготовления бумаги. Перед глажкой можно нанести крахмал на части некоторых предметов одежды, чтобы придать им жесткость.

    Полисахарид

    Полисахариды () представляют собой полимерные молекулы углеводов, состоящие из длинных цепей моносахаридных единиц, связанных вместе гликозидными связями, и при гидролизе образующие составляющие моносахариды или олигосахариды.Их структура варьируется от линейной до сильно разветвленной. Примеры включают запасные полисахариды, такие как крахмал и гликоген, и структурные полисахариды, такие как целлюлоза и хитин.

    Полисахариды часто довольно неоднородны, содержат незначительные модификации повторяющейся единицы. В зависимости от структуры эти макромолекулы могут иметь свойства, отличные от своих моносахаридных строительных блоков. Они могут быть аморфными или даже нерастворимыми в воде. Когда все моносахариды в полисахариде относятся к одному типу, полисахарид называется гомополисахаридом или гомогликаном, но когда присутствует более одного типа моносахаридов, они называются гетерополисахаридами или гетерогликанами.Природные сахариды, как правило, представляют собой простые углеводы, называемые моносахаридами с общей формулой (Ch3O) n, где n равно трем или более. Примерами моносахаридов являются глюкоза, фруктоза и глицеральдегид. Между тем, полисахариды имеют общую формулу Cx (h3O) y, где x обычно представляет собой большое число от 200 до 2500. Когда повторяющиеся звенья в основной цепи полимера представляют собой шестиуглеродные моносахариды, как это часто бывает, общая формула упрощается. до (C6h20O5) n, где обычно 40≤n≤3000.

    Как правило, полисахариды содержат более десяти моносахаридных единиц, тогда как олигосахариды содержат от трех до десяти моносахаридных единиц; но точное отсечение может несколько варьироваться в зависимости от соглашения. Полисахариды — важный класс биологических полимеров. Их функция в живых организмах обычно связана со структурой или хранением. Крахмал (полимер глюкозы) используется в растениях в качестве запасного полисахарида, находясь в форме как амилозы, так и разветвленного амилопектина.У животных структурно подобный полимер глюкозы представляет собой более плотно разветвленный гликоген, иногда называемый «животным крахмалом». Свойства гликогена позволяют ему быстрее метаболизироваться, что соответствует активному образу жизни движущихся животных.

    Целлюлоза и хитин являются примерами структурных полисахаридов. Целлюлоза используется в клеточных стенках растений и других организмов и считается самой распространенной органической молекулой на Земле. Он имеет множество применений, таких как значительная роль в бумажной и текстильной промышленности, и используется в качестве сырья для производства вискозы (посредством процесса вискозы), ацетата целлюлозы, целлулоида и нитроцеллюлозы.Хитин имеет аналогичную структуру, но имеет азотсодержащие боковые ответвления, увеличивающие его прочность. Он обнаружен в экзоскелете членистоногих и в клеточных стенках некоторых грибов. Он также имеет множество применений, в том числе хирургические нити. Полисахариды также включают каллозу или ламинарин, хризоламинарин, ксилан, арабиноксилан, маннан, фукоидан и галактоманнан.

    Определение, примеры, функции и структура

    Определение полисахарида

    Полисахарид — это большая молекула, состоящая из множества более мелких моносахаридов . Моносахариды — это простые сахара, такие как глюкоза. Специальные ферменты связывают эти маленькие мономеры вместе, создавая крупные полимеры сахаров или полисахариды. Полисахарид также называют гликаном . Полисахарид может быть гомополисахаридом , в котором все моносахариды одинаковы, или гетерополисахаридом , в котором моносахариды различаются. В зависимости от того, какие моносахариды связаны и какие атомы углерода в моносахаридах соединяются, полисахариды принимают различные формы.Молекула с прямой цепью моносахаридов называется линейным полисахаридом, а цепь с ответвлениями и витками называется разветвленным полисахаридом.

    Функции полисахарида

    В зависимости от своей структуры полисахариды могут выполнять самые разные функции в природе. Некоторые полисахариды используются для хранения энергии, некоторые — для отправки клеточных сообщений, а другие — для поддержки клеток и тканей.

    Хранение энергии

    Многие полисахариды используются для хранения энергии в организмах. В то время как ферменты, которые производят энергию, работают только с моносахаридами, хранящимися в полисахариде, полисахариды обычно складываются вместе и могут содержать много моносахаридов в плотной области. Кроме того, поскольку боковые цепи моносахаридов образуют максимально возможное количество водородных связей между собой, вода не может проникать в молекулы, делая их гидрофобными . Это свойство позволяет молекулам оставаться вместе и не растворяться в цитозоле. Это снижает концентрацию сахара в клетке, и тогда можно принимать больше сахара.Полисахариды не только накапливают энергию, но и позволяют изменять градиент концентрации, что может влиять на поглощение клетками питательных веществ и воды.

    Клеточная связь

    Многие полисахариды становятся гликоконъюгатами , когда они становятся ковалентно связанными с белками или липидами. Гликолипиды и гликопротеины могут использоваться для передачи сигналов между клетками и внутри них. Белки, направляющиеся в определенную органеллу, могут быть «помечены» определенными полисахаридами, которые помогают клетке перемещаться к определенной органелле. Полисахариды можно идентифицировать с помощью специальных белков, которые затем помогают связать белок, везикулу или другое вещество с микротрубочкой. Система микротрубочек и связанных белков в клетках может доставить любое вещество в назначенное место после того, как оно будет помечено определенными полисахаридами. Кроме того, у многоклеточных организмов есть иммунная система, управляемая распознаванием гликопротеинов на поверхности клеток. Клетки отдельных организмов будут производить определенные полисахариды, чтобы украсить свои клетки.Когда иммунная система распознает другие полисахариды и различные гликопротеины, она начинает действовать и разрушает вторгшиеся клетки.

    Поддержка сотовой связи

    Безусловно, одна из важнейших ролей полисахаридов — это поддержка. Все растения на Земле частично поддерживаются полисахаридом целлюлозы . Другие организмы, такие как насекомые и грибы, используют хитин для поддержки внеклеточного матрикса вокруг своих клеток. Полисахарид можно смешивать с любым количеством других компонентов для создания более жестких, менее жестких тканей или даже материалов с особыми свойствами.Между хитином и целлюлозой, полисахаридами, состоящими из моносахаридов глюкозы, живые организмы ежегодно создают сотни миллиардов тонн. Все, от дерева на деревьях до раковин морских существ, производится с помощью полисахаридов в той или иной форме. Просто перестроив структуру, полисахариды могут превратиться из запасных молекул в гораздо более сильные волокнистые молекулы. Кольцевая структура большинства моносахаридов способствует этому процессу, как показано ниже.

    Структура полисахарида

    Все полисахариды образуются с помощью одного и того же основного процесса: моносахариды связаны через гликозидных связей .В полисахариде отдельные моносахариды известны как остатков . Ниже представлены лишь некоторые из множества моносахаридов, созданных в природе. В зависимости от полисахарида любую их комбинацию можно комбинировать последовательно.

    Структура соединяемых молекул определяет структуру и свойства получаемого полисахарида. Сложное взаимодействие между их гидроксильными группами (ОН), другими боковыми группами, конфигурациями молекул и задействованными ферментами влияет на получаемый в результате полисахарид.Полисахарид, используемый для хранения энергии, обеспечит легкий доступ к моносахаридам, сохраняя при этом компактную структуру. Полисахарид, используемый для поддержки, обычно представляет собой длинную цепь моносахаридов, которая действует как волокно. Многие волокна вместе образуют водородные связи между волокнами, которые укрепляют общую структуру материала, как показано на изображении ниже.

    Гликозидные связи между моносахаридами состоят из молекулы кислорода, соединяющей два углеродных кольца.Связь образуется, когда гидроксильная группа теряется у углерода одной молекулы, в то время как водород теряется гидроксильной группой другого моносахарида. Углерод первой молекулы заменит кислород второй молекулы своим собственным, и образуется гликозидная связь. Поскольку две молекулы водорода и одна кислород выбрасываются, в результате реакции также образовалась молекула воды. Этот тип реакции называется реакцией дегидратации , поскольку вода удаляется из реагентов.

    Примеры полисахаридов

    Целлюлоза и хитин

    Целлюлоза и хитин являются структурными полисахаридами, которые состоят из многих тысяч мономеров глюкозы, объединенных в длинные волокна. Единственное различие между двумя полисахаридами — это боковые цепи, прикрепленные к углеродным кольцам моносахаридов. В хитине моносахариды глюкозы были модифицированы группой, содержащей больше углерода, азота и кислорода. Боковая цепь создает диполь, который увеличивает водородные связи.В то время как целлюлоза может создавать твердые структуры, такие как дерево, хитин может создавать даже более твердые структуры, такие как ракушечник, известняк и даже мрамор при сжатии.

    Оба полисахарида образуют длинные линейные цепи. Эти цепочки образуют длинные волокна, которые откладываются за пределами клеточной мембраны. Определенные белки и другие факторы помогают волокнам вплетаться в сложную форму, которая удерживается на месте водородными связями между боковыми цепями. Таким образом, простые молекулы глюкозы, которые когда-то использовались для хранения энергии, могут быть преобразованы в молекулы со структурной жесткостью.Единственная разница между структурными полисахаридами и запасными полисахаридами — это используемые моносахариды. При изменении конфигурации молекул глюкозы вместо структурного полисахарида молекула будет разветвляться и хранить гораздо больше связей в меньшем пространстве. Единственная разница между целлюлозой и крахмалом — это конфигурация используемой глюкозы.

    Гликоген и крахмал

    Вероятно, самые важные запасные полисахариды на планете, гликоген и крахмал, производятся животными и растениями соответственно.Эти полисахариды образуются из центральной начальной точки и спиралевидно направляются наружу из-за их сложной структуры ветвления. С помощью различных белков, которые прикрепляются к отдельным полисахаридам, большие разветвленные молекулы образуют гранул или кластеров. Это можно увидеть на изображении ниже молекул гликогена и связанных с ним белков, которые видны посередине.

    Когда молекула гликогена или крахмала расщепляется, ответственные ферменты начинаются на концах, наиболее удаленных от центра.Это важно, поскольку вы заметите, что из-за обширного ветвления есть только 2 начальные точки, но много концов. Это означает, что моносахариды можно быстро извлечь из полисахарида и использовать для получения энергии. Единственная разница между крахмалом и гликогеном — это количество ответвлений на молекулу. Это вызвано тем, что разные части моносахаридов образуют связи, и разные ферменты действуют на молекулы. В гликогене ветвь встречается примерно через каждые 12 остатков, в то время как в крахмале ветвь встречается только через каждые 30 остатков.

    • Моносахарид — Наименьшая единица молекул сахара или мономер сахара.
    • Мономер — единый объект, который может быть объединен в более крупный объект или полимер.
    • Полимер — Включает белки, полисахариды и многие другие молекулы, состоящие из более мелких единиц, объединенных вместе.
    • Полипептид — полимер мономеров аминокислот, также называемый белком.

    Тест

    1.Если вы какое-то время не чистили зубы, вы можете заметить, что начинает накапливаться желтый налет. Часть налета состоит из декстранов или полисахаридов, которые бактерии используют для хранения энергии. Откуда бактерии берут моносахариды для создания этих полисахаридов?
    A. Они синтезируют их из солнечного света.
    B. Они создают их из своего генетического кода.
    C. Они собирают их из остатков пищи, которые вы едите.

    Ответ на вопрос № 1

    C правильный.Каждый раз, когда вы принимаете немного, кусочки пищи застревают между зубами. В большинстве пищевых продуктов присутствуют моносахариды, которые могут питать бактерии и позволяют им накапливать энергию в декстранах и создавать зубной налет. Однако пищеварительный процесс начинается в слюне, и, пока пища остается во рту, она продолжает выделять моносахариды, которые способствуют росту бактерий. Вот почему так важно регулярно чистить зубы щеткой и нитью.

    2. Растения производят как крахмальную амилозу, так и структурную полимерную целлюлозу из единиц глюкозы.Большинство животных не могут переваривать целлюлозу. Даже жвачные животные, такие как крупный рогатый скот, не могут переваривать целлюлозу и полагаются на симбиотические внутренние организмы, чтобы разорвать связи целлюлозы. Однако все млекопитающие производят амилазу, фермент, который может расщеплять амилозу. Почему амилаза не может разорвать связи целлюлозы?
    A. Целлюлоза и амилоза структурно различаются, и амилаза не распознает целлюлозу.
    B. Гликозидные связи целлюлозы более прочны.
    С. Внеклеточный матрикс, созданный целлюлозой, не может быть разрушен.

    Ответ на вопрос № 2

    правильный. Хотя глюкоза используется для создания обеих молекул, используются разные конфигурации. В амилозе это приводит к образованию плотного разветвленного рисунка со многими открытыми точками, которые могут перевариваться амилазой. Амилаза специфически распознает амилозу и не может прикрепляться к целлюлозным связям или разрывать их. Отчасти это вызвано тем, что связи целлюлозы более прочны, а не гликозидные связи.Целлюлоза имеет ряд других связей, которые не наблюдаются в амилозе, которые находятся между боковыми цепями. Это также помогает ему сохранять форму, но его невозможно сломать. Коровы проводят много часов, пережевывая комок растительных волокон, медленно разрушая связи между молекулами целлюлозы.

    3. Гиалуронан — это молекула, обнаруженная в суставах позвоночных, которая обеспечивает поддержку, создавая желеобразную матрицу для амортизации костей. Гиалуронан создается из нескольких различных моносахаридов, связанных вместе в длинные цепи.Что из перечисленного описывает гиалуронан?
    1. Гомополисахарид
    2. Гетерополисахарид
    3. Полимер
    4. Мономер

    A. Все они
    B. 1, 3
    C. 2, 3

    Ответ на вопрос № 3

    C правильный. Гиалуронан — это полисахарид, состоящий из различных типов моносахаридов, что делает его гетерополисахаридом. Он также широко известен как полимер или молекула, состоящая из мономеров.В этом случае моносахариды являются мономерами.

    Определение полисахаридов, список, функции, примеры пищевых продуктов

    Определение и структура полисахаридов

    Полисахариды [греческий поли = много; sacchar = сахар] представляют собой сложные углеводы, состоящие из 10 — нескольких тысяч моносахаридов, расположенных в цепочки. Наиболее распространенными моносахаридами, входящими в состав полисахаридов, являются глюкоза, фруктоза, галактоза и манноза.

    Рисунок 1. Пример полисахарида: крахмал
    , состоящий из молекул глюкозы

    Три основных полисахарида

    Три основных полисахарида, связанных с питанием человека, включают:

    1. Крахмал ─ источник энергии, получаемый из растений
    2. Целлюлоза ─ структурный полисахарид растений; при употреблении действует как пищевые волокна
    3. Гликоген ─ форма хранения глюкозы в печени и мышцах человека

    Типы полисахаридов, усвоение, функции и преимущества

    Усвояемые полисахариды, , такие как крахмал, перевариваются (расщепляются) во рту и тонком кишечнике в несколько этапов, в результате чего образуется глюкоза, которая всасывается.Они источник энергии; они обеспечивают около 4 калорий (килокалорий) на грамм. Они также предоставляют атомы углерода для синтеза жиров, белков и других веществ в вашем теле.

    Неперевариваемые полисахариды или пищевые волокна, такие как целлюлоза, способствуют прохождению пищи через кишечник и, таким образом, помогают поддерживать регулярность кишечника. Некоторые неперевариваемые полисахариды, такие как инулин, также могут способствовать росту полезных кишечных бактерий.

    Ни один из полисахаридов не является незаменимым питательным веществом; вам не нужно их употреблять, чтобы быть здоровым.

    Некрахмальные полисахариды

    Источники полисахаридов растительного и животного происхождения

    Продукты растительного происхождения являются наиболее распространенным источником полисахаридов:

    • Крахмал содержится в зерновых культурах (пшеница, овес, рожь, ячмень, гречка, рис и др.), Картофеле и бобовых (фасоль, горох, чечевица).
    • Клетчатка в основном содержится в цельнозерновых (цельнозерновой хлеб, коричневый рис и т. Д.), Бобовых, овощах и фруктах.

    Продукты животного происхождения — плохой источник полисахаридов:

    • Небольшое количество гликогена содержится в моллюсках и печени животных.
    • Неусвояемые волокна хитина и его производное хитозан находятся в панцирях ракообразных (крабов, креветок).

    Полисахариды как пищевые добавки

    Полисахариды природного или искусственного происхождения, добавляемые в коммерческие пищевые продукты в качестве загустителей или волокон, включают различные типы крахмалов, декстрин, полидекстрозу, инулин и камеди.

    Хранение и структурные полисахариды

    Накопительные полисахариды — это форма хранения энергии, например целлюлоза в растениях и гликоген в животных и людях.

    Структурные полисахариды придают структуру растениям; примеры включают целлюлозу в растениях и хитин в панцирях ракообразных.

    Связанные питательные вещества

    Что такое полисахариды?

    ЧТО ТАКОЕ САХАРИДЫ?

    Сахариды более известны как углеводы (буквально гидраты углерода). Относительно сложные углеводы известны как полисахариды.Самыми простыми углеводами являются моносахариды, которые представляют собой небольшие альдегиды с прямой цепью и кетоны с добавлением многих гидроксильных групп, обычно по одной на каждом атоме углерода, за исключением функциональной группы. Примеры моносахаридов включают глюкозу (декстрозу), фруктозу (левулозу) и галактозу. Моносахариды — это строительные блоки дисахаридов (таких как сахароза и лактоза) и полисахаридов (таких как целлюлоза и крахмал).

    ЧТО ТАКОЕ ДИСАХАРИДЫ?

    Дисахарид образуется, когда два моносахарида (простые сахара) подвергаются реакции конденсации, которая включает отщепление небольшой молекулы, такой как вода, только из функциональных групп.Как и моносахариды, дисахариды растворимы в воде. Три распространенных моносахарида — это сахароза, лактоза и мальтоза.

    «Дисахарид» — одна из четырех химических групп углеводов (моносахарид, дисахарид, олигосахарид и полисахарид).

    ЧТО ТАКОЕ ОЛИГОСАХАРИДЫ?

    Олигосахарид — это сахаридный полимер, содержащий небольшое количество (обычно от трех до девяти простых сахаров (моносахаридов). Олигосахариды могут выполнять множество функций; например, они обычно находятся на плазматической мембране клеток животных, где они могут играть роль в Распознавание от клетки к клетке.

    ЧТО ТАКОЕ ПОЛИСАХАРИДЫ?

    Полисахариды представляют собой полимерные углеводные структуры, состоит из повторяющихся единиц либо моносахаридов (например, глюкозы, фруктозы, галактозы) или дисахариды (например, сахароза, лактоза) соединены гликозидными связями. Их структура варьируется от линейной до сильно разветвленной. Примеры включают запасные полисахариды, такие как крахмал и гликоген, и структурные полисахариды, такие как целлюлоза и хитин.Полисахариды содержат более десяти моносахаридных единиц. Определения того, насколько большим должен быть углевод, чтобы попасть в категории полисахаридов или олигосахаридов, варьируются в зависимости от личного мнения.

    Амилоза представляет собой линейный полимер глюкозы, в основном связанный с альфа (1 → 4) связями (см. Выше). Он может состоять из нескольких тысяч единиц глюкозы. Это один из двух компонентов крахмала, другой — амилопектин. Амилопектин представляет собой разветвленный полимер молекулы глюкозы (см. Ниже).


    Полимер с разветвленной амилозой

    Полисахариды имеют общую формулу C x (H 2 O) y , где x обычно является большим числом от 200 до 2500. Учитывая, что повторяющиеся звенья в основной цепи полимера часто являются шестиуглеродные моносахариды, общая формула также может быть представлена ​​как (C 6 H 10 O 5 ) n , где 40≤n≤3000.

    ЧТО ТАКОЕ ЦЕЛЛЮЛОЗА?

    Целлюлоза представляет собой пример структурного полисахарида . Он используется в клеточных стенках растений и других организмов и считается самой распространенной органической молекулой на Земле. Целлюлоза образуется, когда молекулы бета-глюкозы соединяются с образованием полимера, подобно тому, как амилоза образуется в виде полимера из альфа-глюкозы.

    У людей, в отличие от коров, в кишечнике нет необходимых бактерий, которые вырабатывают ферменты (целлюлазы), которые могут разрушать связи 1-4 бета-глюкозы.Таким образом, мы не можем расщепить целлюлозу на составляющие молекулы глюкозы, как это делаем с крахмалом. Несмотря на то, что эти сложные углеводы не усваиваются, они содержат важные пищевые элементы для человека — так называемые пищевые волокна. Пищевые волокна, помимо прочего, улучшают пищеварение. Основное действие пищевых волокон — это изменение характера содержимого желудочно-кишечного тракта и изменение того, как усваиваются другие питательные вещества и химические вещества. Растворимая клетчатка связывается с желчными кислотами в тонком кишечнике, что снижает вероятность их попадания в организм; это, в свою очередь, снижает уровень холестерина в крови.Растворимая клетчатка также ослабляет всасывание сахара, снижает реакцию сахара после еды, нормализует уровень липидов в крови и после ферментации в толстой кишке производит в качестве побочных продуктов короткоцепочечные жирные кислоты. Узнайте больше о разнице между молекулами альфа и бета -D-глюкозы. Примечание: целлюлоза не разветвляется — это полимер с прямой цепью. Кроме того, из-за водородных связей между молекулами он может образовывать очень жесткие волокна.


    ПОЧЕМУ ЦЕЛЛЮЛОЗА ЖЕСТКАЯ, А АМИЛОЗ НЕ ЖЕСТКИЙ?

    В целлюлозе единицы глюкозы связаны β (1 → 4) гликозидными связями.Из-за бета-связи в целлюлозе существует некоторая внутримолекулярная водородная связь, которая, по-видимому, поддерживает выравнивание соседних единиц глюкозы вдоль одной и той же линии.

    Целлюлоза не разветвляется и представляет собой полимер с прямой цепью. Однако из-за водородных связей между молекулами он может образовывать очень жесткие волокна (см. 3D-структуру целлюлозы). Поскольку каждая молекула целлюлозы плоская, они могут накладываться друг на друга. Когда они укладываются в клеточные стенки целлюлозы растений, они образуют фибриллы.

    Крахмал и клетчатка — это полисахариды, которые по-разному влияют на уровень глюкозы в крови

    Глава 6 Переваривание углеводов приводит к повышению уровня сахара в крови и инсулиновой реакции.

    полисахариды сложные углеводы, образованные из длинных цепочек простых сахаров.Крахмал и клетчатка — это разные типы полисахаридов с важным отличием. У человека есть ферменты, которые позволяют ему переваривать крахмал, но клетчатка не переваривается и проходит через пищеварительную систему в кишечная микробиота , который может его переварить.

    Крахмал производится растениями и накапливается для получения энергии в их корнях и семенах (например, в картофеле, пшенице, рисе, кукурузе, маниоке). Крахмалы состоят из амилозы и амилопектина, которые представляют собой цепочки простых сахаров, связанных вместе так называемыми альфа-связи что ферменты в организме человека легко разрушаются.После расщепления на глюкозу он может быстро всасываться в кровоток и, таким образом, приводит к более высокому инсулиновому ответу.

    Волокно является частью растительной пищи, которую пищеварительная система человека не может переваривать из-за недостатка необходимых ферментов. Клетчатка содержится во всех растительных продуктах. Клетчатка состоит из нескольких компонентов, включая целлюлозу, резистентный крахмал, резистентные декстрины, инулин, лигнины, хитины и пектины. Целлюлоза — структурный компонент растений, очень богатый источник углеводов.Волокно связано бета-облигации которые организм не может расщепить, и большая их часть проходит через тонкий кишечник, не перевариваясь. Клетчатка влияет на всасывание других питательных веществ в желудочно-кишечном тракте. Клетчатка может снизить уровень холестерина за счет связывания желчи (особенно овса). Важно отметить, что клетчатка замедляет всасывание сахара в кровоток, предотвращая скачки инсулина. Волокно обрабатывается кишечные бактерии через процесс, называемый ферментацией, и превратился в короткую цепочку жирные кислоты , а не глюкоза.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *