Метаболизм углеводов в организме человека: Углеводный обмен — Википедия – регуляция и этапы в организме человека

Содержание

Углеводный обмен — Википедия

Углеводный обмен, или метаболизм углеводов в организмах животных и человека. Метаболизм углеводов в организме человека состоит из следующих процессов:

  1. Расщепление в пищеварительном тракте поступающих с пищей поли- и дисахаридов до моносахаридов, дальнейшее всасывание моносахаридов из кишечника в кровь.Перейти к разделу «#Переваривание и всасывание углеводов»
  2. Синтез и распад гликогена в тканяхПерейти к разделу «#Анаболизм и катаболизм гликогена» (гликогенез и гликогенолиз), прежде всего в печени.
  3. Гликолиз — распад глюкозы.Перейти к разделу «#Гликолиз» Первоначально под этим термином обозначали только анаэробное брожение, которое завершается образованием молочной кислоты (лактата) или этанола и углекислого газа. В настоящее время понятие «
    гликолиз
    » используется более широко для описания распада глюкозы, проходящего через образование глюкозо-6-фосфата, фруктозо-1,6-дифосфата и пирувата как в отсутствие, так и в присутствии кислорода. В последнем случае употребляется термин «аэробный гликолиз»,Перейти к разделу «#Аэробный гликолиз» в отличие от «анаэробного гликолиза»,Перейти к разделу «#Анаэробный гликолиз» завершающегося образованием молочной кислоты или лактата.
  4. Анаэробный путь прямого окисления глюкозы или, как его называют, пентозофосфатный путь (пентозный цикл).Перейти к разделу «#Пентозофосфатный путь»
  5. Взаимопревращение гексоз.
  6. Анаэробный метаболизм пирувата. Этот процесс выходит за рамки углеводного обмена, однако может рассматриваться как завершающая его стадия: окисление продукта гликолиза — пирувата.
  7. Глюконеогенез — образование углеводов из неуглеводных продуктовПерейти к разделу «#Глюконеогенез» (пирувата, лактата, глицерина, аминокислот, липидов, белков и т. д.).

Углеводы входят в состав живых организмов и вместе с белками, липидами и нуклеиновыми кислотами определяют специфичность их строения и функционирования. К углеводам относят соединения, обладающие разнообразными и зачастую сильно отличающимися функциями. Углеводы участвуют во многих метаболических процессах, но прежде всего они являются основными поставщиками энергии. На долю углеводов приходится примерно 75 % массы пищевого суточного рациона и более 50 % от суточного количества необходимых калорий. Однако неправильно сводить функцию углеводов только к энергетическому обеспечению процессов жизнедеятельности организма. Следует отметить и структурную роль углеводов. Так, в виде гликозаминогликанов углеводы входят в состав межклеточного матрикса. Большое число белков (ферменты, белки-транспортёры, белки-рецепторы, гормоны) — гликопротеины, углеводная составляющая которых повышает их специфичность. Например, различия в строении олигосахаридных фрагментов клеточной оболочки эритроцитов обеспечивают групповую принадлежность крови. Из углеводов в процессе метаболизма образуется большое число органических соединений, которые служат исходными субстратами для синтеза липидов, аминокислот, нуклеотидов. Производные углеводов — глюкурониды — участвуют в детоксикации ксенобиотиков и инактивации веществ эндогенного происхождения

[1]. Углеводы могут быть синтезированы в организме с использованием других метаболитов: некоторых аминокислот, глицерина, молочной кислоты. Углеводы нельзя считать незаменимыми компонентами пищи. Однако если исключить углеводы из диеты, то следствием может быть гипогликемия, для компенсации которой будут расходоваться белки и липиды. Таким образом, углеводы — обязательные пищевые компоненты, потому что помимо их основной энергетической функции (клеточные «дрова») углеводы участвуют во многих метаболических клеточных процессах[2].

  • Углеводы, потребляемые с пищей
  • Перейти к разделу «#Глюконеогенез»

    Лактоза или молочный сахар, впервые была обнаружена в коровьем молоке, откуда и получила своё название.

  • Перейти к разделу «#Глюконеогенез»

    Мальтоза или солодовый сахар, входит в состав семян зерновых культур (ячменя, ржи, пшеницы итд.).

  • Перейти к разделу «#Глюконеогенез»

    Сахароза — один из самых потребляемых углеводов в мире.

Переваривание и всасывание углеводов[править | править код]

Пищеварение углеводов можно разделить на несколько этапов:

  • Пищеварение, происходящее в полости рта
  • Пищеварение в желудке
  • Пищеварение и всасывание в тонком кишечнике.

Эпителиальные клетки кишечника способны всасывать только моносахариды. Поэтому процесс переваривания заключается в ферментативном гидролизе гликозидных связей в углеводах, имеющее олиго- или полисахаридное строение.

Переваривание углеводов в полости рта[править | править код]

В полости рта начинается расщепление крахмала (и гликогена) под действием фермента слюны — амилазы. Известны 3 вида амилаз, которые различаются главным образом по конечным продуктам их ферментативного действия:

  • α-амилаза
  • β-амилаза
  • γ-амилаза

α-Амилаза (КФ 3.2.1.1) расщепляет в полисахаридах внутренние α-1,4-связи, поэтому её иногда называют эндоамилазой. Молекула α-амилазы содержит в своих активных центрах ионы Ca2+ необходимые для ферментативной активности. Кроме того, характерной особенностью α-амилазы животного происхождения является способность активироваться одновалентными анионами. Прежде всего Сl

—.

Перейти к разделу «#Глюконеогенез» Структура α-амилазы слюнных желез. Катион кальция показан жёлтым цветом, анион хлора — зелёным.

Слюнная α-амилаза представляет собой смесь близких электрофоретически разделяемых изоферментов. Каждый из них — одноцепочечный полипептид (мол. масса 56000 Да), к которому присоединен олигосахарид. Структура этого олигосахарида, а также число его молекул на одну молекулу белка и способ прикрепления к белку неизвестны. Удивительно, что не существует соответствующих ферментов в слюне некоторых приматов, например у бабуинов или резусов.

В ротовой полости не может происходить полное расщепление крахмала, так как действие фермента на крахмал кратковременно. Кроме того, амилаза слюны не расщепляет α- 1,6-гликозидные связи (связи в местах разветвлений), поэтому крахмал переваривается лишь частично с образованием крупных фрагментов — декстринов и небольшого количества мальтозы. Следует отметить, что амилаза слюны не гидролизует гликозидные связи в дисахаридах.

Под действием β-амилазы от крахмала отщепляется дисахарид мальтоза, то есть β-амилаза является экзоамилазой. Она обнаружена у высших растений где играет важную роль в мобилизации резервного (запасного) крахмала.

γ-Амилаза отщепляет один за другим глюкозные остатки от конца полигликозидной цепочки. Различают 2 вида γ-амилаз: кислые и нейтральные, в зависимости от того в какой области pH они проявляют максимальную активность. В органах и тканях человека и млекопитающих кислая γ-амилаза локализована в лизосомах, а нейтральная — в микросомах и гиалоплазме. Амилаза слюны является α-амилазой. Под влиянием этого фермента происходят первые фазы распада крахмала (или гликогена) с образованием декстринов (в небольшом количестве образуется и мальтоза). Затем пища смешанная со слюной попадает в желудок.

Желудочный сок не содержит ферментов расщепляющие сложные углеводы (например целлюлозу). В желудке действие α-амилазы слюны прекращается так как желудочное содержимое имеет очень кислую среду (pH 1,5 — 2,5). Однако в более глубоких слоях пищевого комка, куда не сразу проникает желудочный сок, действие амилазы некоторое время продолжается и происходит расщепление полисахаридов с образованием декстринов и мальтозы. Наиболее важная фаза распада крахмала (или гликогена) протекает в двенадцатиперстной кишке под действием α-амилазы поджелудочного сока. Здесь pH возрастает до нейтральных значений, при этих условиях α-амилаза панкреатического сока обладает почти максимальной активностью. Этот фермент завершает превращение крахмала и гликогена в мальтозу, начатое амилазой слюны.

Переваривание углеводов в кишечнике[править | править код]

Расщепление крахмала и гликогена до мальтозы в кишечнике происходит под действием 3-х ферментов:

  • панкреатической α-амилазы
  • амило-1,6-глюкозидазы
  • олиго-1,6-глюкозидазы

Образующаяся мальтоза оказывается только временным продуктом, так как она быстро гидролизуется под влиянием фермента мальтазы (α-глюкозидазы) на 2 молекулы глюкозы. Кишечный сок также содержит активную сахаразу, под действием которой образуются глюкоза и фруктоза.

Панкреатическая α-амилаза[править | править код]

В двенадцатиперстной кишке рН среды желудочного содержимого нейтрализуется, так как секрет поджелудочной железы имеет рН 7,5-8,0 и содержит гидрокарбонаты (НСО

3). С секретом поджелудочной железы в кишечник поступает панкреатическая α-амилаза. Этот фермент гидролизует α-1,4-гликозидные связи в крахмале и декстринах.

Продукты переваривания крахмала на этом этапе — дисахарид мальтоза, содержащая 2 остатка глюкозы, связанные α-1,4-связью. Из тех остатков глюкозы, которые в молекуле крахмала находятся в местах разветвления и соединены α-1,6-гликозидной связью, образуется дисахарид изомальтоза. Кроме того, образуются олигосахариды, содержащие 3-8 остатков глюкозы, связанные α-1,4- и α-1,6-связями

α-Амилаза поджелудочной железы, так же, как α-амилаза слюны, действует как эндогликозидаза. Панкреатическая α-амилаза не расщепляет α-1,6-гликозидные связи в крахмале. Этот фермент также не гидролизует β-1,4-гликозидные связи, которыми соединены остатки глюкозы в молекуле целлюлозы. Целлюлоза, таким образом, проходит через кишечник неизменённой. Тем не менее непереваренная целлюлоза выполняет важную функцию балластного вещества, придавая пище дополнительный объём и положительно влияя на процесс переваривания. Кроме того, в толстом кишечнике целлюлоза может подвергаться действию бактериальных ферментов и частично расщепляться с образованием спиртов, органических кислот и СО

2. Продукты бактериального расщепления целлюлозы важны как стимуляторы перистальтики кишечника.

Мальтоза, изомальтоза и триозосахариды, образующиеся в верхних отделах кишечника из крахмала, — промежуточные продукты. Дальнейшее их переваривание происходит под действием специфических ферментов в тонком кишечнике. Дисахариды пищи сахароза и лактоза также гидролизуются специфическими дисахаридазами в тонком кишечнике.

Особенность переваривания углеводов в тонком кишечнике заключается в том, что активность специфических олиго- и дисахаридаз в просвете кишечника низкая. Но ферменты активно действуют на поверхности эпителиальных клеток кишечника.

Тонкий кишечник изнутри имеет форму пальцеобразных выростов — ворсинок, покрытых эпителиальными клетками. Эпителиальные клетки, в свою очередь, покрыты микроворсинками, обращёнными в просвет кишечника. Эти клетки вместе с ворсинками образуют щёточную каёмку, благодаря которой увеличивается поверхность контакта гидролитических ферментов и их субстратов в содержимом кишечника. На 1 мм2 поверхности тонкой кишки у человека приходится 80-140 млн ворсинок.

Ферменты, расщепляющие гликозидные связи в дисахаридах (дисахаридазы), образуют ферментативные комплексы, локализованные на наружной поверхности цитоплазматической мембраны энтероцитов.

Сахаразо-изомальтазный комплекс[править | править код]

Этот ферментативный комплекс состоит из двух полипептидных цепей и имеет доменное строение. Сахаразо-изомальтазный комплекс прикрепляется к мембране микроворсинок кишечника с помощью гидрофобного (трансмембранного) домена, образованного N-концевой частью полипептида. Каталитический центр выступает в просвет кишечника. Связь этого пищеварительного фермента с мембраной способствует эффективному поглощению продуктов гидролиза клеткой.

Сахаразо-изомальтазный комплекс гидролизует сахарозу и изомальтозу, расщепляя α-1,2- и α-1,6-гликозидные связи. Кроме того, оба ферментных домена имеют мальтазную и мальтотриазную активности, гидролизуя α-1,4-гликозидные связи в мальтозе и мальтотриозе (трисахарид, образующийся из крахмала). На долю сахаразо-изомальтазного комплекса приходится 80 % от всей мальтазной активности кишечника. Но несмотря на присущую ему высокую мальтазную активность, этот ферментативный комплекс назван в соответствии с основной специфичностью. К тому же сахаразная субъединица — единственный фермент в кишечнике, гидролизующий сахарозу. Изомальтазная субъединица с большей скоростью гидролизует гликозидные связи в изомальтозе, чем в мальтозе и мальтотриозе.

В тощей кишке содержание сахаразо-изомальтазного ферментативного комплекса достаточно высокое, но оно снижается в проксимальной и дистальной частях кишечника.

Гликоамилазный комплекс[править | править код]

Этот ферментативный комплекс катализирует гидролиз α-1,4-связи между глюкозными остатками в олигосахаридах, действуя с восстанавливающего конца. По механизму действия этот фермент относят к экзогликозидазам. Комплекс расщепляет также связи в мальтозе, действуя как мальтаза. В гликоамилазный комплекс входят две разные каталитические субъединицы, имеющие небольшие различия в субстратной специфичности. Гликоамилазная активность комплекса наибольшая в нижних отделах тонкого кишечника.

β-Гликозидазный комплекс (лактаза)[править | править код]

Лактаза расщепляет β-1,4-гликозидные связи между глюкозой и галактозой в лактозе.

Этот ферментативный комплекс по химическому составу является гликопротеином. Лактаза, как и другие гликозидазные комплексы, связана с щёточной каёмкой и распределена неравномерно по всему тонкому кишечнику. Активность лактазы колеблется в зависимости от возраста. Так, активность лактазы у плода особенно повышена в более поздние сроки беременности и сохраняется на высоком уровне до 5-7 летнего возраста. Затем активность фермента снижается, составляя у взрослых 10 % от уровня активности, характерного для детей.

Трегалаза[править | править код]

Трегалаза (КФ 3.2.1.28) — также гликозидазный комплекс, гидролизующий связи между мономерами в трегалозе — дисахариде, содержащемся в грибах.

Совместное действие всех перечисленных ферментов завершает переваривание пищевых олиго- и полисахаридов с образованием моносахаридов, основной из которых — глюкоза. Кроме глюкозы, из углеводов пищи также образуются фруктоза и галактоза, в меньшем количестве — манноза, ксилоза, арабиноза.

Всасывание моносахаридов в кишечнике[править | править код]

Моносахариды образовавшиеся в результате переваривания, всасываются эпителиальными клетками тощей и подвздошной кишок с помощью специальных механизмов транспорта через мембраны клеток.

Транспорт моносахаридов в клетки слизистой оболочки кишечника может осуществляться разными способами: путём облегчённой диффузии и активного транспорта. В случае активного транспорта глюкоза и Na+ проходят через мембраны с люминальной стороны, связываясь с разными участками белка-переносчика. При этом Na+ поступает в клетку по градиенту концентрации, и одновременно глюкоза транспортируется против градиента концентрации (вторично-активный транспорт). Следовательно, чем больше градиент Na+, тем больше поступление глюкозы в энтероциты. Если концентрация Na+ во внеклеточной жидкости уменьшается, транспорт глюкозы снижается. Градиент концентрации Na+, являющийся движущей силой активного сим-порта, создаётся работой Nа+, К+-АТФ-азы. Перенос в клетки слизистой оболочки кишечника по механизму вторично-активного транспорта характерен также для галактозы.

При разной концентрации глюкозы в просвете кишечника «работают» различные механизмы транспорта. Благодаря активному транспорту эпителиальные клетки кишечника могут поглощать глюкозу при её очень низкой концентрации в просвете кишечника. Если же концентрация глюкозы в просвете кишечника велика, то она может транспортироваться в клетку путём облегчённой диффузии. Таким же способом может всасываться и фруктоза. Следует отметить, что скорость всасывания глюкозы и галактозы гораздо выше, чем других моносахаридов.

После всасывания моносахариды (главным образом, глюкоза) покидают клетки слизистой оболочки кишечника через мембрану, обращённую к кровеносному капилляру, с помощью облегчённой диффузии. Часть глюкозы (более половины) через капилляры кишечных ворсинок попадает в кровеносную систему и по воротной вене доставляется в печень. Остальное количество глюкозы поступает в клетки других тканей.

Транспорт глюкозы из крови в клетки[править | править код]

Потребление глюкозы клетками из кровотока происходит также путём облегчённой диффузии. Следовательно, скорость трансмембранного потока глюкозы зависит только от градиента её концентрации. Исключение составляют клетки мышц и жировой ткани, где облегчённая диффузия регулируется инсулином (гормон поджелудочной железы). В отсутствие инсулина плазматическая мембрана этих клеток непроницаема для глюкозы, так как она не содержит белки-переносчики (транспортёры) глюкозы. Транспортёры глюкозы называют также рецепторами глюкозы. Например, описан транспортёр глюкозы, выделенный из эритроцитов. Это трансмембранный белок, полипептидная цепь которого построена из 492 аминокислотных остатков и имеет доменную структуру. Полярные домены белка расположены по разные стороны мембраны, гидрофобные располагаются в мембране, пересекая её несколько раз. Транспортёр имеет участок связывания глюкозы на внешней стороне мембраны. После присоединения глюкозы конформация белка изменяется, в результате чего глюкоза оказывается связанной с белком в участке, обращённом внутрь клетки. Затем глюкоза отделяется от транспортёра, переходя внутрь клетки. Считают, что способ облегчённой диффузии по сравнению с активным транспортом предотвращает транспорт ионов вместе с глюкозой, если она транспортируется по градиенту концентрации.

Глюкозные транспортёры[править | править код]

Глюкозные транспортёры или ГЛЮТ представляют собой несколько семейств мембранных белков, обнаруженных во всех тканях организма млекопитающих. На данный момент существуют несколько десятков разновидностей ГЛЮТ, они пронумерованы в соответствии с порядком их обнаружения[3].

Структура белков семейства ГЛЮТ отличается от белков, транспортирующих глюкозу через мембрану в кишечнике и почках против градиента концентрации. Описанные 4 типа ГЛЮТ имеют сходные первичную структуру и доменную организацию (все 4 типа относятся к I классу переносчиков глюкозы). ГЛЮТ-5 имеет несколько иную структуру и относится ко II классу переносчиков глюкозы.

Распределение белков-транспортёров глюкозы (ГЛЮТ)

Типы ГЛЮТ Локализация в органах
ГЛЮТ-1 Преимущественно в мозге, плаценте, почках, толстом кишечнике.
ГЛЮТ-2 Преимущественно в печени, почках, β-клетках островков Лангерганса, эритроцитах.
ГЛЮТ-3 Во многих тканях, включая мозг, плаценту, почки.
ГЛЮТ-4(инсулинзависимый) В мышцах (скелетных и сердечной), жировой ткани. Содержится в отсутствии инсулина почти полностью в цитоплазме.
ГЛЮТ-5 В апикальном отделе энтероцитов тонкого кишечника. Является переносчиком фруктозы[4].

Все типы ГЛЮТ могут находиться как в плазматической мембране, так и в цитозольных везикулах. ГЛЮТ-4 (и в меньшей мере ГЛЮТ-1) почти полностью находятся в цитоплазме клеток. Влияние инсулина на такие клетки приводит к перемещению везикул, содержащих ГЛЮТ, к плазматической мембране, слиянию с ней и встраиванию транспортёров в мембрану. После чего возможен облегчённый транспорт глюкозы в эти клетки. После снижения концентрации инсулина в крови транспортёры глюкозы снова перемещаются в цитоплазму, и поступление глюкозы в клетку прекращается.

Перемещение глюкозы из первичной мочи в клетки почечных канальцев происходит вторично-активным транспортом, подобно тому, как это осуществляется при всасывании глюкозы из просвета кишечника в энтероциты. Благодаря этому глюкоза может поступать в клетки даже в том случае, если её концентрация в первичной моче меньше, чем в клетках. При этом глюкоза реабсорбируется из первичной мочи почти полностью (99 %).

Известны различные нарушения в работе транспортёров глюкозы. Наследственный дефект этих белков может лежать в основе инсулинонезависимого сахарного диабета В то же время причиной нарушения работы транспортёра глюкозы может быть не только дефект самого белка. Нарушения функции ГЛЮТ-4 возможны на следующих этапах:

  1. передача сигнала инсулина о перемещении этого транспортёра к мембране;
  2. перемещение транспортёра в цитоплазме;
  3. включение в состав мембраны;
  4. отшнуровывание от мембраны и т. д.

Нарушения переваривания и всасывания углеводов[править | править код]

В основе патологии переваривания и всасывания углеводов могут быть причины двух типов:

  1. дефекты ферментов, участвующих в гидролизе углеводов в кишечнике;
  2. нарушение всасывания продуктов переваривания углеводов в клетки слизистой оболочки кишечника.

В обоих случаях возникает осмотическая диарея, которую вызывают нерасщеплённые дисахариды или невсосавшиеся моносахариды. Эти невостребованные углеводы поступают в дистальные отделы кишечника, изменяя осмотическое давление содержимого кишечника. Кроме того, оставшиеся в просвете кишечника углеводы частично подвергаются ферментативному расщеплению микроорганизмами с образованием органических кислот и газов. Всё вместе приводит к притоку воды в кишечник, увеличению объёма кишечного содержимого, усилению перистальтики, спазмам и болям, а также метеоризму.

Термином «мальабсорбция» называют недостаточное всасывание переваренных продуктов углеводов. Но поскольку клинические проявления при недостаточном переваривании и всасывании сходны, то термином «мальабсорбция» называют оба вида нарушений.

Нарушение переваривания углеводов в кишечнике[править | править код]

Нарушения переваривания могут быть связаны как с недостаточной активностью отдельных дисахаридаз, так и с недостаточностью всего ферментативного комплекса, например сахаразо-изомальтазного.

Известны наследственные и приобретённые формы недостаточности активности ферментов. Симптомы врождённых форм проявляются достаточно рано, например после первых кормлений грудным молоком (при дефиците лактазы), после перехода на искусственное вскармливание или при добавлении в рацион сахара и крахмала (при дефиците ос-амилазы или специфических дисахаридаз). В случае недостаточного лечения врождённые формы патологии сопровождаются хроническим дисбактериозом и нарушениями физического развития ребёнка.

Приобретённые формы патологии могут наблюдаться при кишечных заболеваниях, например гастритах, колитах, энтеритах. Следует заметить, что в этих случаях особенно заметно снижение активности лактазы. Как уже говорилось, активность лактазы в кишечнике ниже, чем других дисахаридаз, поэтому уменьшение её активности становится заметным для организма в первую очередь.

Дефицит лактазы у взрослых людей может иметь и другую причину. Возможно снижение экспрессии гена лактазы возрастного характера. Уже упоминалось, что активность лактазы у взрослых людей в норме значительно ниже, чем у детей. Поэтому снижение активности лактазы относительно уже имеющегося низкого уровня у отдельных людей может проявляться непереносимостью молока. Носителями патологии, связанной с дефицитом лактазы, являются чаще всего лица африканского и азиатского происхождения. Средняя частота данной формы патологии в странах Европы составляет 7-12 %, в Китае — 80 %, в отдельных районах Африки — до 97 %. Подобные наблюдения распространения лактазной недостаточности связывают с исторически сложившимся рационом питания и отсутствием молочного скотоводства в упомянутых регионах. Примеры и причины нарушения переваривания дисахаридов перечислены в таблице.

Существуют редкие формы нарушения переваривания углеводов. Например, известна наследственная недостаточность трегалазы, которая проявляется диспепсией после употребления грибов, содержащих трегалозу.

В отдельных случаях мальабсорбция может быть вызвана несколькими причинами. Например, после операции на желудке возможны ухудшение смешивания пищи с пищеварительными соками, снижение их секреции, ускорение прохождения пищи через кишечник, колонизация бактериями слепой и приводящей петель.

Нарушения всасывания моносахаридов[править | править код]

Для диагностики различных нарушений переваривания используют пробы с нагрузкой определёнными углеводами. Нарушения всасывания могут быть следствием дефекта какого-либо компонента (белка или фермента), участвующего в системе транспорта моносахаридов через мембрану. Описаны патологии, связанные с дефектом натрийзависимого белка переносчика глюкозы. Недостаточность кишечных дисахаридаз можно диагностировать с помощью введения дисахарида и последующего определения концентрации глюкозы в крови. Для большей чувствительности этот тест проводят, вводя сначала дисахарид (50 г), а затем эквивалентное количество составляющих его моносахаридов (по 25 г каждого). После нагрузки концентрация глюкозы в крови увеличивается примерно на 50 % относительно нормы. При патологии отмечают незначительную гипергликемию.

Нарушения переваревания дисахаридов

Причина заболевания Клинические проявления и лабораторные данные
Наследственный дефицит лактазы Встречается относительно редко.

После приёма молока наблюдаются рвота, диарея, спазмы и боли в животе, метеоризм. Симптомы развиваются сразу после рождения.

Недостаточность лактазы вследствие снижения экспрессии гена фермента в онтогенезе Характерна для взрослых и детей старшего возраста.

Является следствием возрастного снижения количества лактазы. Симптомы непереносимости молока аналогичны наследственной форме дефицита лактозы.

Недостаточность лактазы вторичного характера Это временная, приобретённая форма. Непереносимость молока может быть следствием кишечных заболеваний, например, колитов, гастритов. Кроме того, временный дефицит лактазы может быть следствием операций на ЖКТ.
Наследственная недостаточность сахаразо-изомальтазного комплекса Проявляется, когда в рацион детей добавляют сахарозу и крахмал. Больные дети обычно неохотно едят сладкое. После нагрузки сахарозой отмечается незначительная гипергликемия. Другие сахара (глюкоза, фруктоза, лактоза) переносятся хорошо.
Приобретённая недостаточность сахаразо-изомальтазного комплекса Может возникать вследствие кишечных заболеваний. Проявляется диспепсией, провоцируемой крупами, крахмалом, а также пивом и другими напитками на основе солода.

Если тест при нагрузке моносахаридом сопровождается адекватным повышением его концентрации в крови, а нагрузка дисахаридом не даёт нормальной реакции, то это, скорее всего, указывает на дефект кишечной дисахаридазы, а не системы транспорта.

О недостаточности лактазы можно судить, определяя водород в выдыхаемом воздухе (водородный тест). Водород образуется в результате действия бактериальных ферментов на лактозу.

Многие ткани синтезируют в качестве резервной формы глюкозы гликоген. Синтез и распад гликогена обеспечивают постоянство концентрации глюкозы в крови и создают депо для её использования тканями по мере необходимости.

Гликоген — одна из самых главных форм запасания углеводов у грибов, животных и

регуляция и этапы в организме человека

Метаболизм углеводов

В правильном питании и распределении баланса нутриентов не последнюю роль играют именно углеводы. Люди, которым небезразлично собственное здоровье, знают, что сложные углеводы предпочтительнее простых. И что лучше употреблять еду для более длительного переваривания и подпитки энергией на протяжении дня. Но почему именно так? Чем различаются процессы усвоения медленных и быстрых углеводов? Почему сладости стоит употреблять только для закрытия белкового окна, а мед лучше есть исключительно на ночь? Чтобы ответить на эти вопросы, подробно рассмотрим обмен углеводов в организме человека.

Для чего нужны углеводы

Помимо поддержания оптимального веса, углеводы в организме человека выполняют огромный фронт работы, сбой в которой влечет не только возникновение ожирения, но и массу других проблем.

Основными задачами углеводов является выполнение следующих функций:

  1. Энергетическая – приблизительно 70% калорийности приходится на углеводы. Для того, чтобы реализовался процесс окисления 1 г углеводов организму требуется 4,1 ккал энергии.
  2. Строительная – принимают участие в построении клеточных компонентов.
  3. Резервная – создают депо в мышцах и печени в виде гликогена.
  4. Регуляторная – некоторые гормоны по своей природе являются гликопротеинами. Например, гормоны щитовидной железы и гипофиза – одна структурная часть таких веществ белковая, а другая – углеводная.
  5. Защитная – гетерополисахариды принимают участие в синтезе слизи, которая покрывает слизистые оболочки дыхательных путей, органов пищеварения, мочеполового тракта.
  6. Принимают участие в распознавании клеток.
  7. Входят в состав мембран эритроцитов.
  8. Являются одними из регуляторов свертываемости крови, так как являются частью протромбина и фибриногена, гепарина (источник – учебник “Биологическая химия”, Северин).

Для нас главными источниками углеводов являются те молекулы, которые мы получаем с продуктами питания: крахмал, сахароза и лактоза.

полезные углеводы

@ Evgeniya
adobe.stock.com

Этапы расщепления сахаридов

Прежде чем рассматривать особенности биохимических реакций в организме и влияние метаболизма углеводов на спортивные результаты, изучим процесс расщепления сахаридов с их дальнейшим превращением в тот самый гликоген, который так отчаянно добывают и тратят спортсмены во время подготовки к соревнованиям.

Основные этапы расщепления сахаридов в организме

Этап 1 – предварительное расщепление слюной

В отличие от белков и жиров, углеводы начинают распадаться почти сразу после попадания в полость рта. Дело в том, что большая часть продуктов, поступающих в организм, имеет в своем составе сложные крахмалистые углеводы, которые под воздействием слюны, а именно фермента амилазы, входящей в ее состав, и механического фактора расщепляются на простейшие сахариды.

Этап 2 – влияние желудочной кислоты на дальнейшее расщепление

Здесь вступает в силу желудочная кислота. Она расщепляет сложные сахариды, которые не попали под воздействие слюны. В частности, под действием ферментов лактоза расщепляется до галактозы, которая в последствии превращается в глюкозу.

Этап 3 – всасывание глюкозы в кровь

На этом этапе практически вся ферментированная быстрая глюкоза напрямую всасывается в кровь, минуя процессы ферментации в печени. Уровень энергии резко повышается, а кровь становится более насыщенной.

Этап 4 – насыщение и инсулиновая реакция

Под воздействием глюкозы кровь густеет, что затрудняет её перемещение и транспортировку кислорода. Глюкоза замещает кислород, что вызывает предохранительную реакцию – уменьшение количества углеводов в крови.

В плазму поступает инсулин и глюкагон из поджелудочной железы.

Первый открывает транспортные клетки для перемещения в них сахара, что восстанавливает утраченный баланс веществ. Глюкагон в свою очередь уменьшает синтез глюкозы из гликогена (потребление внутренних источников энергии), а инсулин “дырявит” основные клетки организма и помещает туда глюкозу в виде гликогена или липидов.

Этап 5 – метаболизм углеводов в печени

На пути к полному перевариванию углеводы сталкиваются с главным защитником организма – клетками печени. Именно в этих клетках углеводы под воздействием специальных кислот связываются в простейшие цепочки – гликоген.

Этап 6 – гликоген или жир

Печень способна переработать только определенное количество моносахаридов, находящихся в крови. Возрастающий уровень инсулина заставляет её делать это в кратчайшие сроки. В случае, если печень не успевает перевести глюкозу в гликоген, наступает липидная реакция: вся свободная глюкоза путём её связывания кислотами превращается в простые жиры. Организм делает это с целью оставить запас, однако в виду нашего постоянного питания, “забывает” переварить, и глюкозные цепочки, превращаясь в пластические жировые ткани, транспортируются под кожу.

Этап 7 – вторичное расщепление

В случае, если печень справилась с сахарной нагрузкой и смогла превратить все углеводы в гликоген, последний под воздействием гормона инсулина успевает запастись в мышцах. Далее в условиях недостатка кислорода расщепляется назад до простейшей глюкозы, не возвращаясь в общий кровоток, а сохраняясь в мышцах. Таким образом, минуя печень, гликоген поставляет энергию для конкретных мышечных сокращений, повышая при этом выносливость (источник – “Википедия”).

Именно этот процесс зачастую называют «вторым дыханием». Когда у спортсмена большие запасы гликогена и простых висцеральных жиров, превращаться в чистую энергию они будут только в отсутствии кислорода. В свою очередь спирты, содержащиеся в жирных кислотах, простимулируют дополнительное расширение сосудов, что приведет к лучшей восприимчивости клеток к кислороду в условиях его дефицита.

Важно понимать, почему углеводы разделяются на простые и сложные. Все дело в их гликемическом индексе, который определяет скорость распада. Это, в свою очередь, запускает регуляцию обмена углеводов. Чем проще углевод, тем быстрее он попадет в печень и тем выше вероятность его превращения в жир.

Примерная таблица гликемического индекса с общим составом углеводов в продукте:

НаименованиеГИКол-во углеводов
Семечки подсолнуха сухие828.8
Арахис208.8
Брокколи202.2
Грибы202.2
Салат листовой202.4
Салат-латук200.8
Помидоры204.8
Баклажаны205.2
Зеленый перец205.4

Однако даже продукты с высоким гликемическим индексом не способны нарушить обмен и функции углеводов так, как это делает гликемическая нагрузка. Она определяет, насколько сильно печень загрузится глюкозой при употреблении этого продукта. При достижении определенного порога ГН (порядка 80-100), все калории, поступающие сверх нормы, будут автоматически конвертироваться в триглицериды.

Примерная таблица гликемической нагрузки с общей калорийностью:

НаименованиеГНКалорийность
Семечки подсолнуха сухие2.5520
Арахис2.0552
Брокколи0.224
Грибы0.224
Салат листовой0.226
Салат-латук0.222
Помидоры0.424
Баклажаны0.524
Зеленый перец0.525

Инсулиновая и глюкагоновая реакция

В процессе потребление любого углевода, будь то сахар или сложный крахмал, организм запускает сразу две реакции, интенсивность которых будет зависеть от ранее рассмотренных факторов и в первую очередь, от выброса инсулина.

Важно понимать, что инсулин всегда выбрасывается в кровь импульсами. А это значит, что один сладкий пирожок для организма так же опасен, как 5 сладких пирожков. Инсулин регулирует густоту крови. Это необходимо, чтобы все клетки получали достаточное количество энергии, не работая в гипер- или гипо- режиме. Но самое главное, от густоты крови зависит скорость её движения, нагрузка на сердечную мышцу и возможность транспортировки кислорода.

Выброс инсулина – это естественная реакция. Инсулин дырявит все клетки в организме, способные воспринимать дополнительную энергию, и запирает её в них. В случае, если печень справилась с нагрузкой, в клетки помещается гликоген, если печень не справилась, то в те же клетки попадают жирные кислоты.

Таким образом, регуляция углеводного обмена происходит исключительно благодаря выбросам инсулина. Если его недостаточно (не хронически, а одноразово), у человека может возникнуть сахарное похмелье – состояние, при котором организм требует дополнительной жидкости для увеличения объемов крови, и разжижения её всеми доступными средствами.

Вторым важным фактором на этом этапе обмена углеводов выступает глюкагон. Этот гормон определяет, нужно ли печени работать с внутренними источниками или с внешними.

Под воздействием глюкагона печень выпускает готовый гликоген (не распавшийся), который был получен из внутренних клеток, и начинает собирать из глюкозы новый гликоген.

Именно внутренний гликоген инсулин и распределяет по клеткам в первое время (источник – учебник “Спортивная биохимия”, Михайлов).

Инсулиновая и глюкагоновая реакция во время углеводного обмена

Последующее распределение энергии

Последующее распределение энергии углеводов происходит в зависимости от типа сложения, и тренированности организма:

  1. У нетренированного человека с медленным обменом веществ. Гликогеновые клетки при снижении уровня глюкагона возвращаются в печень, где перерабатываются в триглицериды.
  2. У спортсмена. Гликогеновые клетки под воздействием инсулина массово запираются в мышцах, давая запас энергии для следующих упражнений.
  3. У неспортсмена с быстрым обменом веществ. Гликоген возвращается в печень, транспортируясь назад до уровня глюкозы, после чего насыщает кровь до пограничного уровня. Этим он провоцирует состояние истощения, так как несмотря на достаточное питание энергетическими ресурсами, клетки не имеют соответствующего количества кислорода.

Итог

Энергетический обмен – процесс, в котором участвуют углеводы. Важно понимать, что даже в отсутствии прямых сахаров, организм все равно будет расщеплять ткани до простейшей глюкозы, что приведет к уменьшению мышечной ткани или жировой прослойки (в зависимости от типа стрессовой ситуации).

Оцените материалЕвгения Снопко

Эксперт проекта. диагностика, лечение, первичная, вторичная профилактика заболеваний почек, суставов, сердечно-сосудистой системы; дифференциальная диагностика заболеваний различных органов и систем; рекомендации по диетическому питанию, физическим нагрузкам, лечебной физкультуре, подбор индивидуальной схемы питания.

Редакция cross.expert

Обмен веществ — Википедия

Метаболи́зм, или обме́н веще́ств — набор химических реакций, которые возникают в живом организме для поддержания жизни. Эти процессы позволяют организмам расти и размножаться, сохранять свои структуры и отвечать на воздействия окружающей среды.

Метаболизм обычно делят на 2 стадии: катаболизм и анаболизм. В ходе катаболизма сложные органические вещества деградируют до более простых, обычно выделяя энергию. А в процессах анаболизма — из более простых синтезируются более сложные вещества и это сопровождается затратами энергии.

Серии химических реакций обмена веществ называют метаболическими путями. В них, при участии ферментов, одни биологически значимые молекулы последовательно превращаются в другие.

Ферменты играют важную роль в метаболических процессах, потому что:

  • действуют как биологические катализаторы и снижают энергию активации химической реакции;
  • позволяют регулировать метаболические пути в ответ на изменения среды клетки или сигналы от других клеток.

Особенности метаболизма влияют на то, будет ли пригодна определённая молекула для использования организмом в качестве источника энергии. Так, например, некоторые прокариоты используют сероводород в качестве источника энергии, однако этот газ ядовит для животных[1]. Скорость обмена веществ также влияет на количество пищи, необходимой для организма.

Основные метаболические пути и их компоненты одинаковы для многих видов, что свидетельствует о единстве происхождения всех живых существ[2]. Например, некоторые карбоновые кислоты, являющиеся интермедиатами цикла трикарбоновых кислот, присутствуют во всех организмах, начиная от бактерий и заканчивая многоклеточными организмами эукариот[3]. Сходства в обмене веществ, вероятно, связаны с высокой эффективностью метаболических путей, а также с их ранним появлением в истории эволюции[4][5].

Органические вещества, входящие в состав всех живых существ (животных, растений, грибов и микроорганизмов), представлены в основном аминокислотами, углеводами, липидами (часто называемые жирами) и нуклеиновыми кислотами. Так как эти молекулы имеют важное значение для жизни, метаболические реакции сосредоточены на создании этих молекул при строительстве клеток и тканей или разрушении их с целью использования в качестве источника энергии. Многие важные биохимические реакции объединяются вместе для синтеза ДНК и белков.

Аминокислоты и белки[править | править код]

Белки являются биополимерами и состоят из остатков аминокислот, соединённых пептидными связями. Некоторые белки являются ферментами и катализируют химические реакции. Другие белки выполняют структурную или механическую функцию (например образуют цитоскелет).[6] Белки также играют важную роль в передаче сигнала в клетках, иммунных реакциях, агрегации клеток, активном транспорте через мембраны и регуляции клеточного цикла.[7]

Липиды[править | править код]

Липиды входят в состав биологических мембран, например плазматических мембран, являются компонентами коферментов и источниками энергии.[7] Липиды являются гидрофобными или амфифильными биологическими молекулами, растворимыми в органических растворителях, таких как бензол или хлороформ.[8]Жиры — большая группа соединений, в состав которых входят жирные кислоты и глицерин. Молекула трёхатомного спирта глицерина, образующая три сложные эфирные связи с тремя молекулами жирных кислот, называется триглицеридом.[9] Наряду с остатками жирных кислот, в состав сложных липидов может входить, например, сфингозин (сфинголипиды), гидрофильные группы фосфатов (в фосфолипидах). Стероиды, например холестерол, представляют собой ещё один большой класс липидов.[10]

Углеводы[править | править код]

Сахара могут существовать в кольцевой или линейной форме в виде альдегидов или кетонов, имеют несколько гидроксильных групп. Углеводы являются наиболее распространёнными биологическими молекулами. Углеводы выполняют следующие функции: хранение и транспортировка энергии (крахмал, гликоген), структурная (целлюлоза растений, хитин у грибов и животных).[7] Наиболее распространёнными мономерами сахаров являются гексозы — глюкоза, фруктоза и галактоза. Моносахариды входят в состав более сложных линейных или разветвлённых полисахаридов.[11]

Нуклеотиды[править | править код]

Полимерные молекулы ДНК и РНК представляют собой длинные неразветвлённые цепочки нуклеотидов. Нуклеиновые кислоты выполняют функцию хранения и реализации генетической информации, которые осуществляются в ходе процессов репликации, транскрипции, трансляции и биосинтеза белка.[7] Информация, закодированная в нуклеиновых кислотах, защищается от изменений системами репарации и мультиплицируется при помощи репликации ДНК.

Некоторые вирусы имеют РНК-содержащий геном. Например, вирус иммунодефицита человека использует обратную транскрипцию для создания матрицы ДНК из собственного РНК-содержащего генома.[12] Некоторые молекулы РНК обладают каталитическими свойствами (рибозимы) и входят в состав сплайсосом и рибосом.

Нуклеозиды — продукты присоединения азотистых оснований к сахару рибозе. Примерами азотистых оснований являются гетероциклические азотсодержащие соединения — производные пуринов и пиримидинов. Некоторые нуклеотиды также выступают в качестве коферментов в реакциях переноса функциональных групп.[13]

Коферменты[править | править код]

Метаболизм включает широкий спектр химических реакций, большинство из которых относится к нескольким основным типам реакций переноса функциональных групп.[14] Для переноса функциональных групп между ферментами, катализирующими химические реакции, используются коферменты.[13] Каждый класс химических реакций переноса функциональных групп катализируется отдельными ферментами и их кофакторами.[15]

Аденозинтрифосфат (АТФ) — один из центральных коферментов, универсальный источник энергии клеток. Этот нуклеотид используется для передачи химической энергии, запасённой в макроэргических связях, между различными химическими реакциями. В клетках существует небольшое количество АТФ, который постоянно регенерируется из AДФ и AМФ. Организм человека за сутки расходует массу АТФ, равную массе собственного тела.[15] АТФ выступает в качестве связующего звена между катаболизмом и анаболизмом: при катаболических реакциях образуется АТФ, при анаболических — энергия потребляется. АТФ также выступает донором фосфатной группы в реакциях фосфорилирования.

Витамины — низкомолекулярные органические вещества, необходимые в небольших количествах, причём, например, у человека большинство витаминов не синтезируется, а получается с пищей или через микрофлору ЖКТ. В организме человека большинство витаминов являются кофакторами ферментов. Большинство витаминов приобретает биологическую активность в изменённом виде, например, все водорастворимые витамины в клетках фосфорилируются или соединяются с нуклеотидами.[16]Никотинамидадениндинуклеотид (NADH) является производным витамина B3 (ниацина) и представляет собой важный кофермент — акцептора водорода. Сотни различных ферментов дегидрогеназ отнимают электроны из молекул субстратов и переносят их на молекулы NAD+, восстанавливая его до NADH. Окисленная форма кофермента является субстратом для различных редуктаз в клетке.[17] NAD в клетке существует в двух связанных формах — NADH и NADPH. NAD+/NADH больше важен для протекания катаболических реакций, а NADP+/NADPH чаще используется в анаболических реакциях.

Структура гемоглобина. Белковые субъединицы окрашены красным и синим, а железосодержащий гем — зелёным. Из PDB 1GZX

Неорганические вещества и кофакторы[править | править код]

Неорганические элементы играют важнейшую роль в обмене веществ. Около 99 % массы млекопитающего состоит из углерода, азота, кальция, натрия, магния, хлора, калия, водорода, фосфора, кислорода и серы.[18] Биологически значимые органические соединения (белки, жиры, углеводы и нуклеиновые кислоты) содержат большое количество углерода, водорода, кислорода, азота и фосфора.[18]

Многие неорганические соединения являются ионными электролитами. Наиболее важны для организма ионы натрия, калия, кальция, магния, хлоридов, фосфатов и гидрокарбонатов. Баланс этих ионов внутри клетки и во внеклеточной среде определяет осмотическое давление и pH.[19] Концентрации ионов также играют важную роль для функционирования нервных и мышечных клеток. Потенциал действия в возбудимых тканях возникает при обмене ионами между внеклеточной жидкостью и цитоплазмой.[20] Электролиты входят и выходят из клетки через ионные каналы в плазматической мембране. Например, в ходе мышечного сокращения в плазматической мембране, цитоплазме и Т-трубочках перемещаются ионы кальция, натрия и калия.[21]

Переходные металлы в организме являются микроэлементами, наиболее распространены цинк и железо.[22][23] Эти металлы используются некоторыми белками (например ферментами в качестве кофакторов) и имеют важное значение для регуляции активности ферментов и транспортных белков.[24] Кофакторы ферментов обычно прочно связаны со специфическим белком, однако могут модифицироваться в процессе катализа, при этом после окончания катализа всегда возвращаются к своему первоначальному состоянию (не расходуются). Металлы-микроэлементы усваиваются организмом при помощи специальных транспортных белков и не встречаются в организме в свободном состоянии, так как связаны со специфическими белками-переносчиками (например ферритином или металлотионеинами).[25][26]

Классификация организмов по типу метаболизма[править | править код]

Все живые организмы можно разделить на восемь основных групп в зависимости от используемого: источника энергии, источника углерода и донора электронов (окисляемого субстрата)[27].

  1. В качестве источника энергии живые организмы могут использовать: энергию света (фото-) или энергию химических связей (хемо-). Дополнительно для описания паразитических организмов, использующих энергетические ресурсы хозяйской клетки, применяют термин паратроф.
  2. В качестве донора электронов (восстановителя) живые организмы могут использовать: неорганические вещества (лито-) или органические вещества (органо-).
  3. В качестве источника углерода живые организмы используют: углекислый газ (авто-) или органические вещества (гетеро-). Иногда термины авто- и гетеротроф используют в отношении других элементов, которые входят в состав биологических молекул в восстановленной форме (например азота, серы). В таком случае «автотрофными по азоту» организмами являются виды, использующие в качестве источника азота окисленные неорганические соединения (например растения; могут осуществлять восстановление нитратов). А «гетеротрофными по азоту» являются организмы, не способные осуществлять восстановление окисленных форм азота и использующие в качестве его источника органические соединения (например животные, для которых источником азота служат аминокислоты).

Название типа метаболизма формируется путём сложения соответствующих корней и добавлением в конце корня -троф-. В таблице представлены возможные типы метаболизма с примерами[28]:

Источник
энергии
Донор электронов Источник углерода Тип метаболизма Примеры
Солнечный свет
Фото-
Органические вещества
-органо-
Органические вещества
-гетеротроф
Фотоорганогетеротрофы Пурпурные несерные бактерии, Галобактерии, Некоторые цианобактерии.
Неорганический углерод**
-автотроф
Фотоорганоавтотрофы Редкий тип метаболизма, связанный с окислением неусваиваемых веществ. Характерен для некоторых пурпурных бактерий.
Неорганические вещества
-лито-*
Органические вещества
-гетеротроф
Фотолитогетеротрофы Некоторые цианобактерии, пурпурные и зелёные бактерии, также гелиобактерии.
Неорганический углерод**
-автотроф
Фотолитоавтотрофы Высшие растения, Водоросли, Цианобактерии, Пурпурные серные бактерии, Зелёные бактерии.
Энергия
химических
связей
Хемо-
Органические вещества
-органо-
Органические вещества
-гетеротроф
Хемоорганогетеротрофы Животные, Грибы, Большинство микроорганизмов редуцентов.
Неорганический углерод**
-автотроф
Хемоорганоавтотрофы Окисление трудноусваиваемых веществ, например факультативные метилотрофы, окисляющие муравьиную кислоту.
Неорганические вещества
-лито-*
Органические вещества
-гетеротроф
Хемолитогетеротрофы Метанобразующие археи, Водородные бактерии.
Неорганический углерод**
-автотроф
Хемолитоавтотрофы Железобактерии, Водородные бактерии, Нитрифицирующие бактерии, Серобактерии.
  • Некоторые авторы используют -гидро-, когда в качестве донора электронов выступает вода.
      • CO2, CO, HCHO, CH3OH, CH4 HCOO и «неорганическая» метильная группа -СH3, присоединённая через атом кислорода, азота или серы к другим метильным группам (от одной до трёх) или к многоуглеродному скелету[29]

Классификация была разработана группой авторов (А. Львов, К. ван Ниль, F. J. Ryan, Э. Тейтем) и утверждена на 11-м симпозиуме в лаборатории Колд-Спринг-Харбор и изначально служила для описания типов питания микроорганизмов. Однако в настоящее время применяется и для описания метаболизма других организмов[30].

Из таблицы очевидно, что метаболические возможности прокариот значительно разнообразнее по сравнению с эукариотами, которые характеризуются фотолитоавтотрофным и хемоорганогетеротрофным типом метаболизма.

Следует отметить, что некоторые виды микроорганизмов могут в зависимости от условий среды (освещение, доступность органических веществ и т. д.) и физиологического состояния осуществлять метаболизм разного типа. Такое сочетание нескольких типов метаболизма описывается как миксотрофия.

При применении данной классификации к многоклеточным организмам важно понимать, что в рамках одного организма могут быть клетки, отличающиеся типом обмена веществ. Так клетки надземных, фотосинтезирующих органов многоклеточных растений характеризуются фотолитоавтотрофным типом метаболизма, в то время как клетки подземных органов описываются как хемоорганогетеротрофные. Так же как и в случае с микроорганизмами, при изменении условий среды, стадии развития и физиологического состояния тип метаболизма клеток многоклеточного организма может изменяться. Так, например, в темноте и на стадии прорастания семени клетки высших растений осуществляют метаболизм хемоорганогетеротрофного типа.

Катаболизмом называют метаболические процессы, при которых расщепляются относительно крупные органические молекулы сахаров, жиров, аминокислот. В ходе катаболизма образуются более простые органические молекулы, необходимые для реакций анаболизма (биосинтеза). Часто именно в ходе реакций катаболизма организм мобилизует энергию, переводя энергию химических связей органических молекул, полученных в процессе переваривания пищи, в доступные формы: в виде АТФ, восстановленных коферментов и трансмембранного электрохимического потенциала. Термин катаболизм не является синонимом «энергетического обмена»: у многих организмов (например у фототрофов) основные процессы запасания энергии не связаны напрямую с расщеплением органических молекул. Классификация организмов по типу метаболизма может быть основана на источнике получения энергии, что отражено в предыдущем разделе. Энергию химических связей используют хемотрофы, а фототрофы потребляют энергию солнечного света. Однако все эти различные формы обмена веществ зависят от окислительно-восстановительных реакций, которые связаны с передачей электронов от восстановленных доноров молекул, таких как органические молекулы, вода, аммиак, сероводород, на акцепторные молекулы, такие как кислород, нитраты или сульфат.[31] У животных эти реакции сопряжены с расщеплением сложных органических молекул до более простых, таких как двуокись углерода и воду. В фотосинтезирующих организмах — растениях и цианобактериях — реакции переноса электрона не высвобождают энергию, но они используются как способ запасания энергии, поглощаемой из солнечного света.[32]

Катаболизм у животных может быть разделён на три основных этапа. Во-первых, крупные органические молекулы, такие как белки, полисахариды и липиды, расщепляются до более мелких компонентов вне клеток. Далее эти небольшие молекулы попадают в клетки и превращается в ещё более мелкие молекулы, например ацетил-КоА. В свою очередь, ацетильная группа кофермента А окисляется до воды и углекислого газа в цикле Кребса и дыхательной цепи, высвобождая при этом энергию, которая запасается в форме АТР.

Пищеварение[править | править код]

Такие макромолекулы, как крахмал, целлюлоза или белки, должны расщепляться до более мелких единиц прежде, чем они могут быть использованы клетками. Несколько классов ферментов принимают участие в деградации: протеазы, которые расщепляют белки до пептидов и аминокислот, гликозидазы, которые расщепляют полисахариды до олиго- и моносахаридов.

Микроорганизмы выделяют гидролитические ферменты в пространство вокруг себя,[33][34] чем отличаются от животных, которые выделяют такие ферменты только из специализированных железистых клеток.[35] Аминокислоты и моносахариды, образующиеся в результате активности внеклеточных ферментов, затем поступают в клетки с помощью активного транспорта.[36][37]

Получение энергии[править | править код]

В ходе катаболизма углеводов сложные сахара расщепляются до моносахаридов, которые усваиваются клетками.[38] Попав внутрь, сахара (например глюкоза и фруктоза) в процессе гликолиза превращаются в пируват, при этом вырабатывается некоторое количество АТФ.[39] Пировиноградная кислота (пируват) является промежуточным продуктом в нескольких метаболических путях. Основной путь метаболизма пирувата — превращение в ацетил-КоА и далее поступление в цикл трикарбоновых кислот. При этом в цикле Кребса в форме АТР запасается часть энергии, а также восстанавливаются молекулы NADH и FAD. В процессе гликолиза и цикла трикарбоновых кислот образуется диоксид углерода, который является побочным продуктом жизнедеятельности. В анаэробных условиях в результате гликолиза из пирувата при участии фермента лактатдегидрогеназы образуется лактат и происходит окисление NADH до NAD+, который повторно используется в реакциях гликолиза. Существует также альтернативный путь метаболизма моносахаридов — пентозофосфатный путь, в ходе реакций которого энергия запасается в форме восстановленного кофермента NADPH и образуются пентозы, например рибоза, необходимая для синтеза нуклеиновых кислот.

Жиры на первом этапе катаболизма гидролизуются в свободные жирные кислоты и глицерин. Жирные кислоты расщепляются в процессе бета-окисления с образованием ацетил-КоА, который в свою очередь далее катаболизируется в цикле Кребса, либо идёт на синтез новых жирных кислот. Жирные кислоты выделяют больше энергии, чем углеводы, так как жиры содержат удельно больше атомов водорода в своей структуре.

Аминокислоты либо используются для синтеза белков и других биомолекул, либо окисляются до мочевины, диоксида углерода и служат источником энергии.[40] Окислительный путь катаболизма аминокислот начинается с удаления аминогруппы ферментами трансаминазами. Аминогруппы утилизируются в цикле мочевины; аминокислоты, лишённые аминогрупп, называют кетокислотами. Некоторые кетокислоты — промежуточные продукты цикла Кребса. Например, при дезаминировании глутамата образуется альфа-кетоглутаровая кислота.[41] Гликогенные аминокислоты также могут быть преобразованы в глюкозу в реакциях глюконеогенеза.[42]

Окислительное фосфорилирование[править | править код]

При окислительном фосфорилировании электроны, удалённые из пищевых молекул в метаболических путях (например в цикле Кребса), переносятся на кислород, а выделяющаяся энергия используется для синтеза АТФ. У эукариот данный процесс осуществляется при участии ряда белков, закреплённых в мембранах митохондрий, называемых дыхательной цепью переноса электронов. У прокариот эти белки присутствуют во внутренней мембране клеточной стенки.[43] Белки цепи переноса электронов используют энергию, полученную при передаче электронов от восстановленных молекул (например NADH) на кислород, для перекачки протонов через мембрану.[44]

При перекачке протонов создаётся разница концентраций ионов водорода и возникает электрохимический градиент.[45] Эта сила возвращает протоны обратно в митохондрии через основание АТФ-синтазы. Поток протонов заставляет вращаться кольцо из c-субъединиц фермента, в результате чего активный центр синтазы изменяет форму и фосфорилирует аденозиндифосфат, превращая его в АТФ.[15]

Энергия из неорганических соединений[править | править код]

Хемолитотрофами называют прокариот, имеющих особый тип обмена веществ, при котором энергия образуется в результате окисления неорганических соединений. Хемолитотрофы могут окислять молекулярный водород,[46] соединения серы (например сульфиды, сероводород и неорганические тиосульфаты),[1]оксид железа(II)[47] или аммиак.[48] При этом энергия от окисления этих соединений образуется с помощью акцепторов электронов, таких как кислород или нитриты.[49] Процессы получения энергии из неорганических веществ играют важную роль в таких биогеохимических циклах, как ацетогенез, нитрификация и денитрификация.[50][51]

Энергия из солнечного света[править | править код]

Энергия солнечного света поглощается растениями, цианобактериями, пурпурными бактериями, зелёными серными бактериями и некоторыми простейшими. Этот процесс часто сочетается с превращением диоксида углерода в органические соединения, как часть процесса фотосинтеза (см. ниже). Системы захвата энергии и фиксации углерода у некоторых прокариот могут работать раздельно (например у пурпурных и зелёных серных бактерий).[52][53]

У многих организмов поглощение солнечной энергии в принципе аналогично окислительному фосфорилированию, так как при этом энергия запасается в форме градиента концентрации протонов и движущая сила протонов приводит к синтезу АТФ.[15] Электроны, необходимые для этой цепи переноса, поступают от светособирающих белков, называемых центрами фотосинтетических реакций (примером являются родопсины). В зависимости от вида фотосинтетических пигментов классифицируют два типа центров реакций; в настоящее время большинство фотосинтезирующих бактерий имеют только один тип, в то время как растения и цианобактерии два.[54]

У растений, водорослей и цианобактерий фотосистема II использует энергию света для удаления электронов из воды, при этом молекулярный кислород выделяется как побочный продукт реакции. Электроны затем поступают в комплекс цитохрома b6f, который использует энергию для перекачки протонов через тилакоидную мембрану в хлоропластах.[7] Под действием электрохимического градиента протоны движутся обратно через мембрану и запускают АТР-синтазу. Электроны затем проходят через фотосистему I и могут быть использованы для восстановления кофермента NADP+, для использования в цикле Кальвина или рециркуляции для образования дополнительных молекул АТР.[55]

Анаболизм — совокупность метаболических процессов биосинтеза сложных молекул с затратой энергии. Сложные молекулы, входящие в состав клеточных структур, синтезируются последовательно из более простых предшественников. Анаболизм включает три основных этапа, каждый из которых катализируется специализированным ферментом. На первом этапе синтезируются молекулы-предшественники, например аминокислоты, моносахариды, терпеноиды и нуклеотиды. На втором этапе предшественники с затратой энергии АТФ преобразуются в активированные формы. На третьем этапе активированные мономеры объединяются в более сложные молекулы, например белки, полисахариды, липиды и нуклеиновые кислоты.

Не все живые организмы могут синтезировать все биологически активные молекулы. Автотрофы (например растения) могут синтезировать сложные органические молекулы из таких простых неорганических низкомолекулярных веществ, как углекислый газ и вода. Гетеротрофам необходим источник более сложных веществ, таких как моносахариды и аминокислоты, для создания более сложных молекул. Организмы классифицируют по их основным источникам энергии: фотоавтотрофы и фотогетеротрофы получают энергию из солнечного света, в то время как хемоавтотрофы и хемогетеротрофы получают энергию из неорганических реакций окисления.

Связывание углерода[править | править код]

Растительные клетки содержат хлоропласты (зелёного цвета), в тилакоидах которых происходят процессы фотосинтеза. Plagiomnium affine из семейства Mniaceae отдела Настоящие мхи (Bryophyta)

Фотосинтезом называют процесс биосинтеза сахаров из углекислого газа, при котором необходимая энергия поглощается из солнечного света. У растений, цианобактерий и водорослей при кислородном фотосинтезе происходит фотолиз воды, при этом как побочный продукт выделяется кислород. Для преобразования CO2 в 3-фосфоглицерат используется энергия АТФ и НАДФ, запасённая в фотосистемах. Реакция связывания углерода осуществляется с помощью фермента рибулозобисфосфаткарбоксилазы и является частью цикла Кальвина.[56] У растений классифицируют три типа фотосинтеза — по пути трёхуглеродых молекул, по пути четырёхуглеродых молекул (С4), и CAM фотосинтез. Три типа фотосинтеза отличаются по пути связывания углекислого газа и его вхождения в цикл Кальвина; у C3 растений связывание CO2 происходит непосредственно в цикле Кальвина, а при С4 и CAM CO2 предварительно включается в состав других соединений. Разные формы фотосинтеза являются приспособлениями к интенсивному потоку солнечных лучей и к сухим условиям.[57]

У фотосинтезирующих прокариот механизмы связывания углерода более разнообразны. Углекислый газ может быть фиксирован в цикле Кальвина, в обратном цикле Кребса[58] или в реакциях карбоксилирования ацетил-КоА.[59][60] Прокариоты — хемоавтотрофы также связывают CO2 через цикл Кальвина, но для протекания реакции используют энергию из неорганических соединений.[61]

Углеводы и гликаны[править | править код]

В процессе анаболизма сахаров простые органические кислоты могут быть преобразованы в моносахариды, например в глюкозу, и затем использованы для синтеза полисахаридов, таких как крахмал. Образование глюкозы из соединений, таких как пируват, лактат, глицерин, 3-фосфоглицерат и аминокислот, называют глюконеогенезом. В процессе глюконеогенеза пируват превращается в глюкозо-6-фосфат через ряд промежуточных соединений, многие из которых образуются и при гликолизе.[39] Однако глюконеогенез не просто является гликолизом в обратном направлении, так как несколько химических реакций катализируют специальные ферменты, что даёт возможность независимо регулировать процессы образования и распада глюкозы.[62][63]

Многие организмы запасают питательные вещества в форме липидов и жиров, однако позвоночные не имеют ферментов, катализирующих превращение ацетил-КоА (продукта метаболизма жирных кислот) в пируват (субстрат глюконеогенеза).[64] После длительного голодания позвоночные начинают синтезировать кетоновые тела из жирных кислот, которые могут заменять глюкозу в таких тканях, как головной мозг.[65] У растений и бактерий данная метаболическая проблема решается использованием глиоксилатного цикла, который обходит этап декарбоксилирования в цикле лимонной кислоты и позволяет превращать ацетил-КоА в оксалоацетат и далее использовать для синтеза глюкозы.[64][66]

Полисахариды выполняют структурные и метаболические функции, а также могут быть соединены с липидами (гликолипиды) и белками (гликопротеиды) при помощи ферментов олигосахаридтрансфераз.[67][68]

Жирные кислоты, изопреноиды и стероиды[править | править код]

Жирные кислоты образуются синтазами жирных кислот из ацетил-КоА. Углеродный скелет жирных кислот удлиняется в цикле реакций, в которых сначала присоединяется ацетильная группа, далее карбонильная группа восстанавливается до гидроксильной, затем происходит дегидратация и последующее восстановление. Ферменты биосинтеза жирных кислот классифицируют на две группы: у животных и грибов все реакции синтеза жирных кислот осуществляются одним многофункциональным белком I типа,[69] в пластидах растений и у бактерий каждый этап катализируют отдельные ферменты II типа.[70][71]

Терпены и терпеноиды являются представителями самого многочисленного класса растительных натуральных продуктов.[72] Представители данной группы веществ являются производными изопрена и образуются из активированных предшественников изопентилпирофосфата и диметилаллилпирофосфата, которые, в свою очередь, образуются в разных реакциях обмена веществ.[73] У животных и архей изопентилпирофосфат и диметилаллилпирофосфат синтезируются из ацетил-КоА в мевалонатном пути,[74] в то время как у растений и бактерий субстратами не-мевалонатного пути являются пируват и глицеральдегид-3-фосфат.[73][75] В реакциях биосинтеза стероидов молекулы изопрена объединяются и образуют сквалены, которые далее формируют циклические структуры с образованием ланостерола.[76] Лано

Углеводный обмен в организме человека: регулируем процессы

Наше тело — сложнейший механизм и лаборатория одновременно. Все процессы в нём уникально точны и взвешены. Вот например: углеводный обмен в организме человека. Какова его регуляция и как его можно улучшить?

Всем привет, с вами Светлана Морозова. Каждый из нас хочет быть здоровым и красивым, давайте посмотрим, что нужно знать, чтоб быть ближе к желаемому.

Что происходит

Углеводный обмен в организме человека (У.о.) — это взаимосвязанный ряд процессов изменения углеводов в теле любой живой особи.

И начинается он с первой секунды, как только пища попала в ротовую полость. Она пережёвывается и смачивается слюной, а содержащийся в слюне фермент амилаза начинает расщепление крахмала. Поэтому очень важно тщательно пережёвывать пищу и не торопиться за обедом.

тщательно пережёвывать пищутщательно пережёвывать пищу

Основное расщепление углеводов происходит в кишечнике — в его тонком отделе. Там сложные соединения (полисахариды) расщепляются до простых (моносахариды) и доставляются кровотоком к нуждающимся органам и тканям.

Часть моносахаридов (глюкоза) откладывается в печеночных клетках запасом гликогена. Скорость проникновения глюкозы зависит от проницаемости клеточных оболочек. Например, клетки печени её очень легко воспринимают, а у мышц во время работы, проницаемость клеточных мембран увеличивается. Но когда мышцы остаются в покое глюкоза проникает в них с трудом, с затратой дополнительной энергии.

Гликоген в мышцах, как и в печени, является своеобразным неприкосновенным запасом на случай голода или усиленной работы. При работе мышц, с помощью фермента фосфорилазы, запасы гликогена расщепляются и освобождают энергию для мышечного сокращения.

работа мышцработа мышц

Процесс этот может происходить при недостаточном количестве кислорода (анаэробно), тогда он называется гликолиз. При этой реакции одна молекула глюкозы расщепляется на две молекулы АТФ и две молекулы молочной кислоты (которая может накапливаться в мышцах, а при большом её скоплении — вызывать болезненные ощущения). При хорошем снабжении кислородом молочная кислота не образуется, конечные продукты реакции, помимо АТФ становятся Н2О и СО2.

Конечно, если рассматривать эти реакции с точки зрения профессиональной медицины, всё гораздо сложнее, но мы не будем заглубляться и приводить здесь сложнейшие биохимические схемы.

Кто этим управляет

гормоны гормоны

Кратко можно сказать, что регулирует все процессы У.о. гормоны и ЦНС.

Вырабатываемый в поджелудочной железе, инсулин действует на накопление в печени и мышцах гликогена. Глюкагон, его антагонист, производимый в той же железе, напротив, вызывает расщепление гликогена до глюкозы. Этому же помогает и адреналин (гормон мозгового вещества надпочечников), а также кортизон, гидрокортизон (гормоны коры надпочечников). В углеводном обмене участвует и соматотропный гормон (выделяемый гипофизом) и гормоны щитовидной железы.

Управляет всем — центральная нервная система.

С возрастом уровень глюкозы в крови немного меняется. Так, например, у детей до 14 лет это 3,5 — 5,6 ммоль/л, у взрослых — 3,2 — 5,5, а у людей старше 60 лет — 4,6 — 6,4.

Для чего нужен углеводный обмен в организме человека?

Углеводы составляют больше половины всей нашей пищи. При нагрузках, как физических, так и умственных, потребность в них возрастает. Это крайне необходимые для живого организма. Они:

  • являются главным источником энергии для нервной системы и мозга;
  • питают все мышцы тела и самое главное — сердечную;
  • участвуют в белковом и жировом обмене, синтезе гормонов и ферментов, а также других необходимых веществ;
  • непериваримые полисахариды (пищевые волокна) активизируют перистальтику кишечника и способствуют правильной его работе;
  • входят в состав слизей и тем защищают ткани организма.

Кто-то может спросить: а как же обходятся без углеводов целые народы, причём, столетиями и даже тысячелетиями? Например, кочевники, которые всю жизнь проводят среди неплодородных степей, где невозможно вырастить никакие злаки. Или народы Севера, на котором кроме ягеля, ничего не растёт. Эти люди, из поколения в поколение, питаются только продуктами животноводства, да ещё рыбой.

кочевникикочевники

Не беспокойтесь! При необходимости углеводы прекрасно фабрикуются из белков и жиров. И это восполняет все потребности организма.

Однако избыток углеводов в пище приводит к тому, что в процессе метаболизма они откладываются в жир.

Нарушения

Более всего У.о. зависит от гормональной регуляции. Сахарный диабет является, к сожалению, самым распространённым заболеванием У.о.

Происходит он от недостаточной выработки инсулина. Для него характерно повышение уровня сахара в крови (гипергликемия) и выделение его с мочой (глюкозурия).

глюкоза в кровиглюкоза в крови

Вызывается это состояние недостатком выработки инсулина: глюкоза, вместо того, чтобы откладываться в виде гликогена в печени и мышцах, продолжает «плавать» в крови и избыток её выделяется с мочой. Клетки и органы её недополучают. А поскольку запасов её в организме совсем не делается, через короткое время в крови становится её слишком мало и может наступить диабетическая кома.

По сообщению ВОЗ примерно 90% всех случаев диабета — это диабет 2 типа. Он развивается при гиподинамии и избыточном весе. При нём инсулин может вырабатываться в достаточном количестве, но организм не может правильно его использовать.

Основные симптомы заболевания таковы:

  • частое и обильное мочевыделение, даже по ночам;
  • сильная жажда;
  • постоянное чувство голода, несмотря на полноценное питание;
  • необъяснимое похудение (характерно для диабета 1 типа).

Среди других признаков, которые проявляются не всегда, можно назвать нарушение зрения, заболевания кожи, зуд, мышечная слабость и др.

Что же делать?

запрет на сахарзапрет на сахар

Прежде всего нормализовать свой образ жизни и соблюдать его придётся до конца своих дней! Это:

Диета при диабете исключает сахар и содержащие его продукты, его заменяют ксилитом или сорбитом.

Больным рекомендуется рыба и мясо (нежирные), творог, сыр, яйца, овощи зеленого цвета, грибы, хлеб — только из муки грубого помола. Кушать нужно небольшими порциями через каждые 2-3 часа.

И обязательно исправить свой малоподвижный образ жизни: заняться ежедневной гимнастикой, пешими прогулками, плаваньем, альпийской ходьбой, бегом, упражнениями на тренажёрах (благо, сейчас они почти в каждом дворе!), посильными видами спорта.

физическая активностьфизическая активность

Бывали случаи, когда на начальных стадиях этого заболевания вышеприведённых мер было достаточно, чтобы остановить его нарушение. Лечения медикаментами уже не требовалось.

Лечение инсулином вам назначит только врач. Этот препарат вводится с помощью инъекций, увы, таблетки от сахарного диабета ещё не изобрели, хотя есть таблетированные сахароснижающие средства и их широко рекламируют на различных презентациях.

Внимание бодибилдерам!

Чтобы испытать тяжёлые последствия нарушения У.о. не обязательно иметь хронические заболевания. Бывает, что работающие мышцы потратили всю глюкозу, тогда она начинает поступать в кровь из печени. Если запасы закончились и в ней, печень начинает синтезировать гликоген из белков и жиров.

тяжёлый изматывающий спорттяжёлый изматывающий спорт

При очень тяжёлой изматывающей работе весь гликоген может израсходов

Углеводный обмен в организме человека: особенности, описание и значение

Углеводный обмен в организме человека — процесс тонкий, но имеющий важное значение. Без глюкозы организм слабеет, а в центральной нервной системе снижение ее уровня вызывает галлюцинации, головокружения и потери сознания. Нарушение углеводного обмена в организме человека проявляется почти сразу, а длительные сбои уровня глюкозы в крови вызывают опасные патологии. В связи с этим уметь регулировать концентрацию углеводов необходимо каждому человеку.

Как усваиваются углеводы

углеводный обмен в организме человека нарушение

Углеводный обмен в организме человека заключается в его преобразовании в энергию, необходимую для жизни. Это происходит в несколько этапов:

  1. На первом этапе углеводы, попавшие в организм человека, начинают расщепляться на простые сахариды. Происходит это уже во рту под воздействием слюны.
  2. В желудке на нераспавшиеся во рту сложные сахариды начинает воздействовать желудочный сок. Он расщепляет даже лактозу до состояния галатозы, которая впоследствии преобразуется в необходимую глюкозу.
  3. В кровь глюкоза всасывается через стенки тонкого кишечника. Часть ее, даже минуя этап накопления в печени, сразу преображается в энергию для жизни.
  4. Далее процессы переходят на клеточный уровень. Глюкоза заменяет собой молекулы кислорода в крови. Это становится сигналом для поджелудочной железы о начале выработки и выброса в кровь инсулина – вещества, необходимого для доставки гликогена, в который преобразовалась глюкоза, внутрь клеток. То есть гормон помогает организму усваивать глюкозу на молекулярном уровне.
  5. Гликоген синтезируется в печени, именно она перерабатывает углеводы в необходимое вещество и даже способна делать небольшой запас гликогена.
  6. Если глюкозы слишком много, печень превращает их в простые жиры, связав их в цепочку нужными кислотами. Такие цепочки при первой необходимости расходуются организмом для превращения в энергию. Если они остаются невостребованными, то переводятся под кожу в виде жировых тканей.
  7. Доставленный инсулином в клетки мышечных тканей гликоген при необходимости, а именно при дефиците кислорода, означающего физическую нагрузку, вырабатывает энергию для мышц.
углеводный обмен в организме человека кратко

Регулировка обмена углеводов

Кратко об углеводном обмене в организме человека можно сообщить следующее. Все механизмы расщепления, синтеза и усвоения углеводов, глюкозы и гликогена регулируются различными ферментами и гормонами. Это соматотропный, стероидный гормон и самое главное – инсулин. Именно он помогает гликогену преодолеть клеточную оболочку и проникнуть внутрь клетки.

Нельзя не упомянуть об адреналине, регулирующем весь каскад фосфоролиза. В регулировании химических процессов по усвоению углеводов принимают участие ацетил-КоА, жирные кислоты, ферменты и другие вещества. Нехватка или переизбыток того или иного элемента обязательно вызовет сбой во всей системе усвоения и переработки углеводов.

Нарушения углеводного обмена

как восстановить углеводный обмен в организме человека

Трудно переоценить важность углеводного обмена в организме человека, ведь без энергии нет и жизни. И любое нарушение процесса усвоения углеводов, а значит и уровня глюкозы в организме приводит к опасным для жизни состояниям. Два основных отклонения: гипогликемия — уровень глюкозы критически низкий, и гипергликемия – концентрация углевода в крови превышена. И то и другое крайне опасно, например, пониженный уровень глюкозы сразу же отрицательно сказывается на функциях мозга.

Причины отклонений

Причины отклонений в регулировке уровня глюкозы имеют различные предпосылки:

  1. Наследственное заболевание – галактоземия. Симптомы патологии: дефицит веса, заболевание печени с пожелтением кожного покрова, задержка психического и физического развития, нарушение зрения. Данная болезнь часто приводит к смерти еще на первом году жизни. Это красноречиво говорит о значении углеводного обмена в организме человека.
  2. Другой пример генетического заболевания – фруктозная непереносимость. У больного при этом нарушается работа почек и печени.
  3. Синдром мальабсорбации. Характеризуется заболевание невозможностью усваивать моносахариды через слизистую оболочку тонкого кишечника. Приводит к нарушению почечной и печеночной функции, проявляется диарея, метеоризм. К счастью, болезнь поддается лечению путем приема больным ряда необходимых ферментов, снижающих характерную при данной патологии лактозную непереносимость.
  4. Болезнь Сандахоффа характеризуется нарушением выработки фермента А и В.
  5. Болезнь Тея-Сакса развивается в результате нарушения выработки в организме AN-ацетилгексозаминидазы.
  6. Самое известное заболевание – диабет. При этом недуге глюкоза не попадает в клетки, так как поджелудочная железа перестала выделять инсулин. Тот самый гормон, без которого невозможно проникновение глюкозы в клетки.
как восстановить углеводный обмен в организме человека

Большинство болезней, сопровождаемых нарушением уровня глюкозы в организме, являются неизлечимыми. В лучшем случае врачам удается стабилизировать состояние больных путем введения в их организмы недостающих ферментов или гормонов.

Нарушения углеводного обмена у детей

Особенности метаболизма и питания новорожденных приводит к тому, что в их организмах гликолиз протекает на 30 % интенсивнее, чем у взрослого человека. Поэтому важно определить причины появления нарушений углеводного обмена у малыша. Ведь первые дни человека наполнены событиями, требующими массы энергии: рождение, стресс, возросшая физическая активность, потребление пищи, дыхание кислородом. Нормализуется уровень гликогена только через несколько дней.

Помимо наследственных заболеваний, связанных с обменом веществ, которые могут проявиться с первых дней жизни, ребенок подвержен самым разным состояниям, способным привести к глютеновой болезни. Например, расстройство желудка или тонкого кишечника.

Для того чтобы не допустить развития глютеновой болезни, уровень глюкозы в крови малыша подвергается изучению еще в период внутриутробного развития. Именно поэтому будущая мать должна во время беременности сдавать все назначаемые врачом анализы и проходить инструментальные обследования.

Восстановление углеводного обмена

что такое углеводный обмен в организме человека

Как восстановить углеводный обмен в организме человека? Все зависит от того, в какую сторону сместился уровень глюкозы.

Если у человека наблюдается гипергликемия, то ему назначают диету по снижению в рационе жиров и углеводов. А при гипогликемии, то есть низком уровне глюкозы, наоборот, предписывается употреблять большее количество углеводов и белков.

Следует понимать, что восстановить углеводный обмен в организме человека довольно трудно. Одной диеты обычно не хватает, часто больной должен пройти курс лечения медицинскими препаратами: гормонами, ферментами и так далее. Например, при сахарном диабете больной должен до конца жизни получать инъекции гормона инсулина. Причем дозировка и схема приема препарата назначаются индивидуально в зависимости от состояния пациента. Ведь в целом лечение направлено на устранение причины нарушения углеводного обмена в организме человека, а не только на его временную нормализацию.

Специальная диета и гликемический индекс

нарушение углеводного обмена причины появления

Что такое углеводный обмен в организме человека, знают те, кто вынужден жить с хроническим неизлечимым заболеванием, характеризующимся нарушением уровня глюкозы в крови. Такие люди на собственном опыте узнали, что такое гликемический индекс. Эта единица определяет, сколько глюкозы в том или ином продукте.

Кроме ГИ любой врач или больной диабетик знают наизусть, в каком продукте и сколько содержится углеводов. На основе всей этой информации составляется особый план питания.

Вот, например, несколько позиций из рациона таких людей (на 100 г):

  1. Сухие семечки подсолнечника — 15 ГИ, 3,4 г углеводов, 570 ккал.
  2. Земляной орех – 20 ГИ, 9,9 г углеводов, 552 ккал.
  3. Брокколи – 15 ГИ, 6,6 г углеводов, 34 ккал.
  4. Белый гриб — 10 ГИ, 1,1 г углеводов, 34 ккал.
  5. Листья салата- 10 ГИ, 2 г углеводов, 16 ккал.
  6. Латук — 10 ГИ, 2,9 г углеводов, 15 ккал.
  7. Томаты — 10 ГИ, 4,2 г углеводов, 19,9 ккал.
  8. Баклажан — 10 ГИ, 5,9 г углеводов, 25 ккал.
  9. Перец болгарский -10 ГИ, 6,7 г углеводов, 29 ккал.

В данном списке приведены продукты с низким ГИ. При диабете человек может смело есть пищу с ингредиентами, в которых ГИ не превышает 40, максимум 50. Остальное находится под строжайшим запретом.

Что будет, если самостоятельно регулировать углеводный обмен

Есть еще один аспект, о котором нельзя забывать в процессе регулирования углеводного обмена. Организм обязательно должен получать предназначенную для жизни энергию. И если пища не попадает в организм вовремя, то он начнет расщеплять жировые клетки, а затем клетки мышц. То есть наступит физическое истощение организма.

Увлечение монодиетами, вегитарианством, фруторианством и другими экспериментальными методиками питания, призванными регулировать обмен веществ, приводит не просто к плохому самочувствию, но к нарушению жизненно важных функций в организме и разрушению внутренних органов и структур. Разрабатывать рацион и назначать препараты может только специалист. Любое самолечение приводит к ухудшению состояния или даже смерти.

Заключение

углеводный обмен в организме человека значение

Углеводный обмен играет важнейшую роль в организме, при его нарушении происходят сбои в работе многих систем и органов. Важно поддерживать в норме количество поступающих в организм углеводов.

Углеводный обмен в организме человека: регулируем и улучшаем…

Сказ про углеводный обмен в организме человека, про причины сбоя в организме, про то, как можно улучшить обмен углеводами и лечится ли этот сбой таблетками. Я все рассказал в этой статье. Поехали!

— Ты, Иван-царевич, на меня не смотри. Я — Волк. Мне положено одним мясом питаться. Для человека важны и травки всякие, и фрукты-овощи. Без них не будет у тебя ни сил, ни здоровья…

Привет, друзья! О том, насколько важен углеводный обмен в организме человека, сказано немало, но нет ничего более забываемого, чем прописные истины. Поэтому, не расписывая сложную биохимию, я кратко поведаю то основное, что ни в коем случае нельзя выбрасывать из головы. Итак, читайте мою презентацию и запоминайте!

Полезное многообразие

моносахариды дисахариды полисахаридымоносахариды дисахариды полисахариды

В других статьях я уже сообщал о том, что все источники углеводов подразделяются на моно- , ди- , три- , олиго- и полисахариды. Всасываться из кишечного тракта могут только простые, сложные должны сперва расщепиться на составные части.

Чистый моносахарид — это глюкоза. Именно она ответственна за уровень сахара в нашей крови, накопление гликогена в качестве «топлива» в мышцах и печени. Она даёт силу мускулам, обеспечивает мозговую деятельность, образует энергетические молекулы АТФ, которые расходуются на синтез белков, ферментов, пищеварительные процессы, обновление клеток и выведение продуктов распада.

Диеты при различных заболеваниях порой включают полный отказ от углеводов, но такие воздействия могут быть только кратковременными, до достижения терапевтического эффекта. Зато можно регулировать процесс похудения путём уменьшения углеводов в пище, ибо много запасов — так же нехорошо, как и мало.

Углеводный обмен в организме человека: цепочка превращений

амилазаамилаза

Углеводный обмен в организме человека (УО) начинается, когда ты кладёшь в рот углеводистую пищу и начинаешь её пережёвывать. Во рту присутствует полезный фермент — амилаза. Он кладёт начало расщеплению крахмала.

Пища поступает в желудок, потом в двенадцатиперстную кишку, где начинается интенсивный процесс расщепления, и наконец — в тонкий кишечник, где этот процесс продолжается и готовые моносахариды всасываются в кровь.

Большая часть оседает в печени, преобразуясь в гликоген — наш главный энергетический запас. В печёночные клетки глюкоза проникает без труда. Накапливают гликоген и мышцы, но в меньшей степени. Чтобы проникнуть через клеточные оболочки внутрь миозитов, нужно потратить часть энергии. Да и места там маловато.

Зато мышечные нагрузки помогают проникновению. Получается интересный эффект: мышечный гликоген при физической активности быстро израбатывается, но одновременно с этим новому пополнению проще просочиться сквозь клеточные мембраны, и накопиться в виде гликогена.

Этот механизм отчасти объясняет выработку физической выносливости нашей мускулатуры в процессе занятий спортом. Пока мы не тренируем мускулы — они не в состоянии накапливать много энергии «про запас».

физической выносливостифизической выносливости

Расходуется гликоген в анаэробном или аэробном распаде. В первом случае из него фабрикуются АТФ (1 молекула глюкозы даёт 2 молекулы аденозинтрифосфорной кислоты), которые расщепляются на воду и углекислый газ с выделением энергии. Во втором — образуется молочная кислота, избыток которой отправляется в печень, где из него может снова образовываться АТФ в цикле Кори.

Эти биохимические реакции достаточно сложны, но суть у них примерно одинаковая — обеспечить нас силами для жизнедеятельности.

Некоторые промежуточные продукты процесса идут на синтез необходимых для организма веществ и соединений. Избыток углеводов стимулирует выработку инсулина поджелудочной железой и результатом этого процесса — отложение жира.

Углеводный обмен в организме человека: дирижёр и его палочка

дирижер головной мозгдирижер головной мозг

Обеспечивает правильность углеводного обмена в организме — головной мозг, при помощи гормональной регуляции. Гипоталамус указывает островкам поджелудочной железы вырабатывать инсулин, коре надпочечников — фабриковать глюкокортикоиды. Действие инсулина на обмен — он единственный снижает сахар в крови. Все остальные гормоны — только повышают.

Всем известный адреналин стимулирует скорость расщепления гликогена до глюкозы в печени. Схема реферативна: выброс адреналина происходит в момент опасности или возбуждения, при необходимости срочных действий, иногда запредельной физической активности (погоня за добычей, драка с противником, бегство). В таком состоянии мышцы испытывают острую потребность в АТФ — и получают энергетические молекулы из запасов в печёночных клетках.

ВЕБИНАР пятница записатьсяВЕБИНАР пятница записатьсяДрузья! Я, Андрей Ерошкин, проведу для вас мега интересные вебинары, записывайтесь и смотрите!

Темы предстоящих вебинаров:

  • Как похудеть без силы воли и чтобы вес не вернулся снова?
  • Как снова стать здоровым без таблеток, естественным способом?
  • Откуда берутся камни в почках и что делать, чтобы они не появлялись снова?
  • Как перестать ходить по гинекологам, родить здорового ребёнка и не состариться в 40 лет?

ЗАПИСАТЬСЯ НА ВЕБИНАР

Про нарушение белкового обмена (БО), я писал тут.

Сказ про то, почему нельзя выбирать одно и игнорировать другое

глюкоза строениеглюкоза строениеИтак мы выяснили, что самый главный моносахарид — это глюкоза. Именно она обеспечивает наше тело энергетическим запасом. Тогда почему нельзя питаться только ею, и плюнуть на все остальные углеводы? На это есть несколько причин.
  1. В чистом виде она сразу же всасывается в кровь, вызывая резкий скачок сахара. Гипоталамус даёт сигнал: «Снизить до нормы!» Поджелудочная железа выбрасывает порцию инсулина, он возвращает баланс, отправляя излишки в печень и мышцы в виде гликогена. И так снова и снова. Очень быстро клетки железы износятся и перестанут нормально функционировать, что приведёт к диабету и другим тяжёлым осложнениям, исправить которые уже будет невозможно.
  1. Хищник имеет самый короткий пищеварительный тракт, и нужные для энергетической подпитки углеводы синтезирует из тех же остатков белковых молекул. Он к этому привычен. Наш человеческий ЖКТ устроен несколько по-другому. Мы должны получать углеводистую пищу, в объёме около половины всех питательных веществ, в том числе и ради пищевых волокон, которые помогают перистальтике и дают пищу полезным бактериям в толстом отделе. Иначе запор и гнилостные процессы с образованием ядовитых отходов нам обеспечены.
пищевых волоконпищевых волокон
  1. Мозг — это орган, который не может накапливать энергетический запас, как мышцы или печень. Для его работы необходимо постоянное поступление глюкозы из крови, и больше половины всего запаса гликогена печени уходит именно ему. По этой причине, при значительных умственных нагрузках (научная деятельность, сдача экзаменов и пр.) может тянуть «на сладкое». Это нормальный, физиологичный процесс.
  1. Для синтеза белков в организме нужна не только глюкоза. Остатки молекул полисахаридов дают нужные фрагменты для образования нужных нам «строительных элементов».
  1. Вместе с растительной пищей к нам приходят витамины и прочие полезные вещества, которые можно получить и из животной пищи, но без пищевых волокон. А мы уже выяснили, что они нашему кишечнику очень необходимы.

Есть и другие, не менее важные причины, почему нам нужны все сахара, а не только моносахариды.

Углеводный обмен в организме человека и его болезни

симптомы кишечной инфекциисимптомы кишечной инфекции

Одними из известных нарушений углеводного обмена являются наследственные непереносимости тех или иных сахаров (глюкогенозы). Так непереносимостть лактозы у детей развивается из-за отсутствия или недостаточности фермента — лактазы. Развиваются симптомы кишечной инфекции. Перепутав диагноз, можно нанести непоправимый вред малышу, накармливая его антибиотиками. При подобном нарушении лечение состоит в добавлении соответствующего фермента в молоко перед употреблением.

Существуют и другие сбои переваривании отдельных сахаров из-за недостаточности соответствующих ферментов, в тонком или толстом отделе кишечника. Улучшить положение можно, но таблеток от нарушений не существует. Как правило, эти хвори лечатся исключением тех или иных сахаров из питания.

ожирения по абдоминальному типуожирения по абдоминальному типу

Другим известным нарушением является диабет, который может быть как врождённый, так и приобретённый в результате неправильного пищевого поведения, ожирения по абдоминальному типу (форма яблока), и других заболеваний, поражающих поджелудочную железу. Поскольку инсулин — единственный фактор, который снижает сахар крови, его недостаточность вызывает гипергликемию, которая приводит к сахарному мочеизнурению — большое количество глюкозы выводится из организма через почки.

При резком снижении сахара в крови страдает прежде всего головной мозг. Возникают судороги, больной теряет сознание и впадает в гипогликемическую кому, из которой его можно вывести, если сделать внутривенное вливание глюкозы.

Нарушения УО приводят к связанному с ним нарушению жирового обмена, повышением образования триглицеридов в печени, низкоплотных липопротеинов в крови — и как результат, нефропатия, катаракта, кислородное голодание тканей.

правильным соотношением углеводов, жира и белкаправильным соотношением углеводов, жира и белка

Как нормализовать углеводный обмен в организме человека? Баланс в организме достигается правильным соотношением углеводов, жира и белка. Если речь не идёт о наследственных болячках и хворях, мы сами, вполне сознательно, несём ответственность за все нарушения обмена. Вещества, о которых шла речь, в основном поступают с пищей.

Отличная новость!

 

коробка финал11коробка финал11

Спешу тебя порадовать! Мой «Курс Активного Похудения» уже доступен для тебя в любой точке планеты, где есть интернет. В нем, я раскрыл основной секрет похудения на любое количество килограмм. Без диет и без голодовок. Сброшенные килограммы больше не вернутся. Качай курс, худей и радуйся своим новым размерам в магазинах одежды!

 

На сегодня все.
Спасибо, что дочитали мой пост до конца. Делитесь этой статьей со своими друзьями. Подписывайтесь на мой блог.
И погнали дальше!

Углеводный обмен в организме человека

Углеводы или глюциды, также как и жиры и белки, являются основными органическими соединениями нашего тела. Поэтому, если вы хотите изучить вопрос углеводного обмена в организме человека, рекомендуем сначала ознакомиться с химией органических соединений. Если же вы хотите знать, что такое углеводный обмен, и как он происходит в организме человека, не внедряясь в подробности, то наша статья для вас. Мы постараемся в более простой форме рассказать об углеводном обмене в нашем организме.

Что такое углеводы?

Углеводы это обширная группа веществ, которая в основном состоит из водорода, кислорода и углерода. Некоторые сложные углеводы также имеют в своем составе серу и азот.

Все живые организме на нашей планете состоят из углеводов. Растения состоят из них практически на 80 %, животные и человек содержат в себе намного меньше углеводов. Углеводы, главным образом, содержаться в печени (5-10%), мышцах (1-3%), головном мозге (меньше 0,2%).

Углеводы нам нужны в качестве источника энергии. При окислении всего 1 грамма углеводов, мы получаем 4,1 ккал энергии. Кроме того, некоторые сложные углеводы являются запасными питательными веществами, а клетчатка, хитин и гиалуроновая кислота придают тканям прочность. Углеводы также являются одним из строительных материалов более сложных молекул, таких как сложные белки, нуклеиновая кислота, гликолипиды и т.д. Без участия углеводов невозможно окисление белков и жиров.

Виды углеводов

В зависимости от того, насколько углевод способен разлагаться на более простые углеводы с помощью гидролиза (т.е. расщепление с участием воды), их классифицируют на моносахариды, олигосахариды и полисахариды. Моносахариды не гидролизуются и считаются простыми углеводами, состоящими из 1 частицы сахара. Это, например, глюкоза или фруктоза. Олигосахариды гидролизуются с образованием небольшого числа моносахаридов, а полисахариды гидролизуются на множество (сотни, тысячи) моносахаридов.

Глюкоза не переваривается и в неизменном виде всасывается в кровь из кишечника.

Из класса олигосахаридов выделяют дисахариды – это, например, тростниковый или свекличный сахар (сахароза), молочный сахар (лактоза).

К полисахаридам относятся углеводы, которые состоят из множества моносахаридов. Это, например, крахмал, гликоген, клетчатка. В отличие от моно и дисахаридов, которые усваиваются в кишечнике практически сразу, полисахариды перевариваются продолжительное время, поэтому их называют тяжелыми или сложными. Их расщепление занимает продолжительное время, что позволяет поддерживать уровень сахара в крови в стабильном положении, без инсулиновых скачков, которые вызывают простые углеводы.

Основное переваривание углеводов происходит в соке тонких кишок.

Запас углеводов в виде гликогена в мышцах совсем маленький – около 0,1% от веса самой мышцы. А так как мышцы не могут работать без углеводов, они нуждаются в регулярной их доставке через кровь. В крови углеводы находятся в виде глюкозы, содержание которой составляет от 0,07 до 0,1%. Основные запасы углеводов в виде гликогена содержатся в печени. У человека весом в 70 кг где-то 200 гр(!) углеводов в печени. И когда мышцы «съедают» всю глюкозу из крови, в нее снова поступает глюкоза из печени (предварительно гликоген в печени расщепляется на глюкозу). Запасы в печени не вечные, поэтому необходимо восполнять ее с пищей. Если с пищей не поступают углеводы, то печень образует гликоген из жиров и белков.

Когда человек занимается физической работой, мышцы истощают все запасы глюкозы и возникает состояние, которое называется гипогликемией – в результате нарушается работа и самих мышц и еще нервных клеток. Именно поэтому важно соблюдать правильный рацион питания, в особенно питания до и после тренировки.

Регуляция углеводного обмена в организме

Как следует из вышесказанного, весь углеводный обмен сводится к уровню сахар в крови. Уровень сахара в крови зависит от того, сколько глюкозы поступает в кровь и сколько глюкозы удаляется из нее. От этого соотношения зависит весь углеводный обмен. Сахар в кровь поступает из печени и кишечника. Печень расщепляет гликоген до глюкозы только в том случае, если уровень сахара в крови падает. Эти процессы регулируются гормонами.

Уменьшение уровня сахара в крови сопровождается выделение гормона адреналина – он активизирует ферменты печени, которые отвечают за поступление глюкозы в кровь.

Углеводный обмен регулируется также двумя гормонами поджелудочной железы – инсулином и глюкагоном. Инсулин отвечает за транспорт глюкозы из крови в ткани. А глюкагон отвечает за расщепление глюкагона в печени на глюкозу. Т.е. глюкагон повышает уровень сахара в крови, а инсулин снижает. Их действие взаимосвязано.

Разумеется, если уровень сахара в крови завышен, а печень и мышцы насыщены гликогеном, то «ненужный» материал инсулин отправляет в жировое депо – т.е. откладывает глюкозу в виде жира.

Отправить ответ

avatar
  Подписаться  
Уведомление о