Метаболизм углеводов в организме человека: МЕТАБОЛИЗМ УГЛЕВОДОВ. «БИОЛОГИЧЕСКАЯ ХИМИЯ», Березов Т.Т., Коровкин Б.Ф.

Содержание

Обмен углеводов в организме человека

    В здоровом организме взрослого человека наблюдается состояние водного равновесия или водного баланса. Оно заключается в том, что количество воды, потребляемое человеком, равно количеству воды, выводимой из организма. Водный обмен является важной составной частью общего обмена веществ живых организмов, в том числе и человека. Водный обмен включает процессы всасывания воды, которая поступает в желудок при питье и с пищевыми продуктами, распределение ее в организме, выделения через почки, мочевыводящие пути, легкие, кожу и кишечник. Следует отметить, что вода также образуется в организме вследствие окисления жиров, углеводов и белков, принятых с пищей. Такую воду называют метаболической. Слово метаболизм происходит от греческого, что означает перемена, превращение. В медицине и биологической науке метаболизмом называют процессы превращения веществ и энергии, лежащие в основе жизнедеятельности организмов. Белки, жиры и углеводы окисляются в организме с образованием воды НгО и углекислого газа (диоксида углерода) СОг.
При окислении 100 г жиров образуется 107 г воды, а при окислении 100 г углеводов — 55,5 г воды. Некоторые организмы обходятся лишь метаболической водой и не потребляют ее извне. Примером является ковровая моль. Не нуждаются в воде в природных условиях тушканчики, которые водятся в Европе и Азии, и американская кенгуровая крыса. Многие знают, что в условиях исключительно жаркого и сухого климата верблюд обладает феноменальной способностью долгое время обходиться без пищи и воды. Например, при массе 450 кг за восьмидневный переход по пустыне верблюд может потерять 100 кг в массе, а потом восстановить их без последствий для организма. Установлено, что его организм использует воду, содержащуюся в жидкостях тканей и связок, а не крови, как это происхо- [c.8]
    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды.
С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении.
Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. 
[c.204]

    Углеводный обмен в организме человека и животных регулируется нервной системой и гормонально (инсулин, адреналин, глюкагон). Инсулин способствует окислению глюкозы, биосинтезу гликогена и превращению углеводов в фосфорные эфиры. Адреналин и глюкагон активируют процессы распада гликогена, что повышает количество глюкозы в крови. Нарушение углеводного обмена может привести к тяжелым [c.208]

    Метаболизм (обмен) углеводов в организме человека состоит в основном из следующих процессов  

[c.319]

    В зависимости от объекта исследования биохимию условно подразделяют на биохимию человека и животных, биохимию растений и биохимию микроорганизмов. Несмотря на биохимическое единство всего живого, существуют и коренные различия как химического состава, так и обмена веществ в животных и растительных организмах. Обмен веществ, или метаболизм,—это совокупность всех химических реакций, протекающих в организме и направленных на сохранение и самовоспроизведение живых систем. Известно, что растения строят сложные органические вещества (углеводы, жиры, белки) из таких простых, как вода, углекислый газ и минеральные вещества, причем энергия, необходимая для этой синтетической деятельности, образуется за счет поглощения солнечных лучей в процессе фотосинтеза. Животные организмы, напротив, нуждаются в пище, состоящей не только из воды и минеральных компонентов, но содержащей сложные вещества органической природы белки, жиры, углеводы.

У животных проявления жизнедеятельности и синтез веществ, входящих в состав тела, обеспечиваются за счет химической энергии, освобождающейся при распаде (окислении) сложных органических соединений. [c.15]

    Обмен углеводов в организме человека [c.163]

    Кофермент А играет большую роль в обмене жире и углеводов, в частности в переносе ацильных остатков (ацетильной группы) он входит в состав фермента цикла лимонной кислоты, фермента расщепления и синтеза жирных кислот он участвует также в ряде биохимических процессов у разнообразных живых организмов от микробов до человека. Все это объясняет значение и широкое распространение пантотеновой кислоты в природе. [c.77]

    Адреналин играет в организме животных и человека роль гормона, регулирующего важные жизненные процессы (обмен углеводов, сердечную деятельность). По своему строению он в общем сходен с эфедрином, но у него имеются гидроксильные группы также и в ядре. 

[c. 393]

    К бытовым относятся воды от кухонь и туалетных комнат, бань и прачечных, предприятий общественного питания и лечебных учреждений, воды от мытья помещений. Они поступают от жилых и общественных зданий и от бытовых помещений промышленных предприятий. По природе загрязнений они могут быть фекальные, загрязненные в основном физиологическими выделениями людей, и хозяйственные, загрязненные всякого рода хозяйственными отбросами. Основную часть органических загрязнений бытовых сточных вод составляют белковые вещества, жиры, углеводы и продукты их разложения. Неорганическую часть загрязнений составляют соли, присущие питьевой воде и образующиеся в процессе обменных реакций в организме человека. В частности, к продуктам обмена веществ относятся 48 

[c.48]

    Как было указано, обмен веществ в организме человека протекает не хаотично он интегрирован и тонко настроен. Все превращения органических веществ, процессы анаболизма и катаболизма тесно связаны друг с другом. В частности, процессы синтеза и распада взаимосвязаны, координированы и регулируются нейрогормональными механизмами, придающими химическим процессам нужное направление. В организме человека, как и в живой природе вообще, не существует самостоятельного обмена белков, жиров, углеводов и нуклеиновых кислот. Все превращения объединены в целостный процесс метаболизма, подчиняющийся диалектическим закономерностям взаимозависимости и взаимообусловленности, допускающий также взаимопревращения между отдельными классами органических веществ. Подобные взаимопревращения диктуются физиологическими потребностями организма, а также целесообразностью замены одних классов органических веществ другими в условиях блокирования какого-либо процесса при патологии. 

[c.545]

    У человека и высщих животных имеется ряд специальных органов (эндокринных желез или, как их раньше называли, желез внутренней секреции ), которые вырабатывают и направляют в кровь или лимфу особые вещества, являющиеся внутренними химическими регуляторами многочисленных биологических процессов, происходящих в организме.

У человека различные гормоны вырабатываются щитовидной железой (тироксин и родственные йодированные аминокислоты), па-ращитовидными железами (особый гормон, регулирующий обмен кальция и фосфора), надпочечниками (адреналин, стероидные гормоны, регулирующие либо обмен углеводов, либо содержание неорганических ионов в крови), поджелудочной железой (инсулин, глюкагон), гипофизом (большое число пептидных и белковых гормонов, регулирующих ряд функций), семенниками и яичниками (половые гормоны) некоторые гормоны образуются в кишечнике и желудке. [c.81]

    Имеются данные, позволяющие утверждать, что в организме животных и человека марганец влияет на обмен углеводов и усиливает эффективность действия витаминов С и В. При кормлении скота сеном, убранным с полей, удобренных марганцем, было отмечено увеличение удоя и удлинение лактационного периода. У животных, получающих пищу с недостаточным содержанием марганца, задерживаются процессы роста и формирования костей. Особенно тяжело недостаток марганца сказывается на организме птиц у них развиваются явления так называемого перозиса — болезни, связанной с поражением костного скелета.

[c.361]

    Энергетическая функция углеводов как незаменимых факторов питания заключается в том, что углеводы являются главным источником, который снабжает организм человека энергией для совершения внутренней и внешней работы. Примерно 50 —60 % всей потребности организма в энергии удовлетворяется за счет углеводов 1 г усвояемых организмом человека углеводов в результате биологического окисления дает -16,9 кДж энергии. Ведущая роль в энергетическом обмене организма принадлежит глюкозе. [c.231]

    Роль отдельных органических кислот в организме человека неодинакова [3, 7]. Уксусная кислота и основные органические кислоты овощей и фруктов — яблочная и лимонная, могут служить источником энергии, как и углеводы. Кроме того, лимонная кислота и в несколько меньщей степени яблочная оказывают благоприятное влияние на обмен липидов, что проявляется в снижении уровня холестерина и общих липидов в крови и тканях внутренних органов. 

[c.17]

    Имеются данные, позволяющие утверждать, что в организме животных и человека марганец влияет на обмен углеводов и усиливает эффективность действия витаминов С и В, а также активирует некоторые ферменты.[c.14]

    Адреналин играет в организме животных и человека роль гормона, регулирующего важные жизненные процессы (обмен углеводов, сердечную деятельность). По строению он сходен с эфедрином, но у него имеются гидроксильные группы также и в ядре. Природный адреналин представляет собой левовращающий изомер. Интересно, что его правовращающий антипод в 15 раз слабее по своему физиологическому действию. 

[c.359]

    Молекулы водорастворимых витаминов содержат гидрофильные группы (-МНз СООН и др.), которые способствуют их хорошему растворению в воде. В связи с этим они легко всасываются в кровь из кишечника, а их избыток быстро выводится с мочой, поэтому не возникает состояние гипервитаминозов. В организме человека витамины этой группы не накапливаются, отсутствие их в пище приводит к быстрому развитию гиповитаминозов или авитаминозов, поэтому они должны систематически поступать в определенных количествах (табл. 10). Водорастворимые витамины отличаются термолабильностью и устойчивостью в кислой среде. Многие из них как кофакторы входят в состав различных ферментов, регулирующих обмен веществ. Так, например, в регуляции аэробного окисления углеводов принимают участие пять витаминов группы В и витамин С (рис. 44). [c.114]

    Основными питательными веществами, за счет которых организм человека обеспечивается энергией для осуществления биосинтетических процессов, являются углеводы и жиры (табл. 10.3). Меньшую роль в энергетическом обмене играют белки, однако при преимущественно белковом питании и при голодании их роль значительно возрастает. [c.319]

    Углеводный обмен — сложная система биосинтеза и распада углеводов в живых организмах, неотъемлемая часть обмена веществ. Начальный этап углеводного обмена автотрофных организмов — биосинтез моносахаридов (у растений — в результате фотосинтеза, у микроорганизмов — хемосинтеза), и их превращение в полисахариды. В организм человека и животных углеводы попадают с пищей. Под действием ферментов слюны сложные углеводы (например, крахмал, гликоген) частично распадаются на декстрины и мальтозу, в небольших количествах на глюкозу. Превращение их в желудке тормозится понижением pH среды до 1,5—1,8. Углеводы перевариванэтся в основном в двенадцатиперстной кишке и тонком кишечнике под действием ферментов поджелудочной железы и кишечного сока. Под действием а-амилазы поджелудочной железы крахмал и декстрины превращаются До мальтозы, которая под действием мальтазы расщепляется до двух молекул глюкозы. р-Галактозидаза (лактаза) кишечного сока расщепляет лактозу на глюкозу и галактозу, а под действием р-фруктозидазы (сахаразы) образуется глюкоза и фруктоза. [c.208]

    Кортикостерон—кристаллическое соединение с =182° С. Оптически активен ([а]о=+223°). В норме в надпочечниках человека в течение суток образуется 0,84—4,0 мг кортикостерона. При недостаточном поступлении кортикостерона в кровь, а следовательно, в ткани организма наступают нарушения в обмене углеводов, белков, липидов и минеральных элементов сокращаются запасы гликогена в мышцах и печени, падает содержание глюкозы в крови, усиливается распад белков до аминокислот, растет содержание остаточного азота в крови, усиливаются липолитические процессы, нарушаются нормальная экскреция и обратное всасывание Ка» » и в канальцах почек, падает кровяное давление. Все это приводит к сердечной недостаточности, развитию отеков, мышечной слабости, развитию пигментации покровов (бронзовая болезнь) и другим патологическим явлениям. При избытке кортикостерона резко усиливаются анаболические процессы, что тоже приводит к ряду отклонений от нормы. [c.444]

    Образуется в организме животных и человека в процессе распада углеводов, белков и жиров. Играет важную роль в обмене веществ. [c.171]

    Превращения углеводов, жиров и белков, их распад и синтез в организме теснейшим образом связаны друг с другом. Нельзя представить себе изолированно превращение отдельных органических, а также и неорганических веществ в организме. Только как исключение можно наблюдать преимущественный синтез углеводов (у зеленых растений на свету), распад углеводов с образованием этилового спирта и углекислого газа (в дрожжевых клетках при спиртовом брожении) и молочной кислоты (при работе мышц), синтез жиров (при откорме животных), синтез белков (при усиленном росте). Но даже и в этих случаях обмен веществ не сводится к превра[це-пиям т0JПзK0 одной какой-либо группы веществ. Обмен веществ между любым живым организмом п окружающей его средой является чрезвычайно слюж-ным процессом, в который вовлекаются химические составные части организма и вещества, поступающие в пего извне (пищевые вещества, включая кпс лород и воду). Обмен веществ у человека и животных регулируется централыюй нервной системой. При изучении превращений углеводов, жиров и белков приводились данные о регуляторной деятельности центральной нервной системы. Было бы ошибочным полагать суп.1,ествование в центральной нервной системе отдельных механизмов, регулирующих превращения отдельных групп веществ. Процесс обмена веществ между организмом и внешней средой, лежащей в основе проявления жизни,— единый биологический процесс и если его расчленяют на процессы превращения отдельных веществ, то это делают только с целью более глубокого его познания и изучения. [c.459]

    Основная биологическая роль щитовидной железы заключается в связывании иода в гормон тироксин, регулирующий обмен жиров, углеводов и белков в организме. Поступающий в тело животного неорганический иод аккумулируется преимущественно в щитовидной железе, где его концентрация в тысячи раз больше, чем в других органах. В ряде работ, основные из которых выполнены Майковым, радиоактивный иод был применен для изучения деятельности щитовидной железы, происходящих в ней химических процессов и дальнейшей судьбы иода в организме. Были также изучены патологические нарушения функции щитовидной железы и терапевтическое действие ряда лекарственных веществ. В ранних работах применяли преимущественно более легко получаемый короткоживущий J который позже был заменен изотопом с полупериодом 8,14 дней, получаемым в достаточных количествах при помощи урановых реакторов. Исследования на живых организмах могут вестись без затруднения, так как жесткое 8-излучение обоих изотопов легко проходит сквозь ткани и регистрируется счетчиком, расположенным вблизи соответствующего участка шеи человека или опытного животного. [c.508]

    Кортикостероиды — гормоны обмена веществ, вырабатываемые корой надпочечников животных н человека относятся по строению к стероидным гормонам. Регулируют обмен углеводов, жиров и белков, минеральный обмен (ионы Na+ и К+, вода). Применяются в виде природных н синтетических форм как лечебный препарат при их недостаточности в организме, а так же как противовоспалительные и противоаллергиче-ские средства. [c.559]

    В норме в надпочечниках человека в течение суток образуется 0,84—4,0 мг кортикостерона. При недостаточном его поступлении в кровь и при ее посредстве в тканях организма нарушается обмен углеводов, белков, липидов уменьшаются запасы гликогена в мышцах и печени, падает содержание глюкозы в крови, усиливается распад белков до аминокнЁлот, растет содержание остаточного азота в крови, усиливаются липолитические процессы, падает кровяное давление. Это приводит к сердечной недостаточности, развитию отеков, мышечной слабости, развитию пигментации покровов (бронзовая или аддисонова болезнь) и друтям патологическим явлениям. При избытке кортикостерона резко усиливаются анаболические процессы, что также приводит к ряду патологических изменений.[c.278]

    Кроме того, всю воду делят на две фракции фракцию, способную к обмену, и фракцию, связанную в коллоидных системах с молекулами органических веществ. Известно, что на каждый грамм гликогена и белка, откладывающихся в тканях, задерживается соответственно 1,5 и 3 мл связанной воды. В результате катаболизма в организме человека ежедневно образуется 300-350 мл воды. При окислении 100 г жира образуется 107 мл воды, 100 г белка — 41 мл и 100 г углеводов — 55 мл. Потеря 10% воды приводит к состоянию дегидратации, а 20% — к смерти. Преобладающие ионы внутриклеточной жидкости — К «, НРО42-, 804 — (310 мосмоль/л), межклеточ- [c.419]

    Витамин Вг широко распространен во всех животных и растительных тканях. Особенно богаты витамином Вг дрожжи, мясные продукты (печень, мышцы, почки, мозг), рыбные продукты, яйца, молоко Авитаминоз Вг легко излечивается путем елчсдневного введения в организм человека 5—I0 мг рибофлавина. В норме потребность организма человека в витамине Вг составляет 2—4 мг в сутки. Потребность сельскохозяйственных животных в витамине Вг зависит прежде всего от состава корма, от количества белков, углеводов и жиров в рационе. Недостаток белка в пище вызывает сниженгхе содержания в организме флавинов. В свою очередь при недостаточности витамина Вг нарушается использование аминокислот в обмене веществ, благодаря чему снижается синтез белка. [c.173]

    Углеводное питание занимает важное место в жизни человека. Превращаясь в молочную кислоту, углеводы дают клетке необходимую энергию (1 г углеводов дает 16,74 кДж). Углеводы выполняют детоксирующую (барьерную) функцию, заключающуюся в образовании глюку-роновой кислоты, которая, соединяясь с ксенобиотиками и их метаболитами, дает нетоксичные и легко выводимые из организма вещества. Углеводы снижают накопление в организме кетоновых тел, входят в состав нуклеиновых кислот, регулируют жировой обмен, уменьшают количество потребляемого белка. [c.3]

    В главах 12—15 освещаются вопросы обмена жизненно необходимых соединений, аминокислот, белков, углеводов, липидов, воды и минеральных веществ. В главе 12рассмотрен обмен белков и аминокислот, занимающий особое место в процессах метаболизма, что связано с уникальными биологическими функциями белков и специфической ролью аминокислот как основных источников азота для организмов человека и животных. Обмен углеводов обсуждается в главе 13. Известно, что углеводы занимают первое место среди веществ, служащих в качестве источника энергии для организма, а кроме того, они выполняют ряд других важных биологических функций. Обмен липидов описан в главе 14, особое внимание уделяется ряду специфических особенностей их метаболизма, связанных с химическим строением. Глава 15 посвящена рассмотрению процессов водно-минерального обмена и транспорта биологически активных соединений через клеточные мембраны, благодаря этим процессам поддерживается постоянство состава внутри- и внеклеточных жидкостей организма. [c.310]

    Пантотеновая кислота участвует в обмене углеводов в животном организме она обусловливает распад пировиноградной кислоты до более простых соединений. Эти данные дают основание рассматривать пантотеновую кислоту, как необходимый фактор углеводного обмена. Согласно новейшим исследованиям пантотеновая кислота принимает участие в синтезе триптофана и в комбинации с рибофлавином подавляет активность сульфамидных препаратов. Новейшие исследования показывают, что пантотеновая кислота является коферментом ацетилазы, имеющей важное значение в расщеплении углеводов. Потребность в ней человека не установлена, мало также накоплено данных по использованию ее в клинике. При введении пантотеновой кислоты в организм человека избыток ее выделяется с мочой Пантотеновая кислота нетоксична повидимому, в нашем организме есть некоторые ее запасы, вполне удовлетворяющие в ней нашу потребность, вследствие чего избыток ее не используется организмом. [c.145]

    К бытовым относятся воды от кухонь и туалетных комнат, бань и прачечных, предприятий общественного питания и лечебных учреждений, воды от мытья помещений. Они поступают от жилых и общественных зданий и от бытовых помещений промышленных предприятий. По природе загрязнений они мо1ут быть фекальные, загрязненные, в основном физиологическими выделениями людей, и хозяйственные, загрязненные всякого рода хозяйственными отбросами. Основную часть органических загрязнений бытовых сточных вод составляют белковые вещества, жиры, углеводы и продукты их разложения Неорганическую часть загрязнений составляют соли, присущие питьевой воде и образующиеся в процессе обменных реакций в организме человека. В частности, к продуктам обмена веществ относятся фосфаты и аммонийные соли — продукт гидролиза мочевины. К неорганическим примесям сточных вод относятся также песок и глинистые частицы, попадающие в бытовые воды от мытья овощей и фруктов, уборки помещений и т.д. Загр онения органической природы составляют 45—58% обшей массы загрязнений бытовых сточных вод. [c.102]

    Производственные штаммы молочнокислых бактерий La toba illus fermenti и L. plantarum) обладают высокой антагонистической активностью в отношении возбудителей дизентерии, патогенных энтеробактерий и условно-патогенных микроорганизмов (гемолитического стафилококка, протея и др. ). Антагонистическая активность, по-видимому, в большой степени связана с действием молочной кислоты, накапливающейся при сбраживании бактериями лактозы и других углеводов. Молочная кислота участвует в кальциевом обмене, переводя кальций пищи в усваиваемый макроорганизмом лактат кальция, способствуя профилактике рахита у детей. Молочнокислые бактерии участвуют в образовании витаминов и аминокислот, в том числе тац. называемых незаменимых, т. е. не синтезируемых организмом человека. [c.585]

    Виндаус выделил витамин Bi в чистом виде [6] и в 1932 г. установил его эмпирическую формулу С12Н ig0N4S l2-HjO. Витамин Bj имеет важное значение для животного организма. Он входит в состав фермента карбокси-лазы, катализирующего реакции декарбоксилирования пировиноградной кислоты и других а-кетокислот. При недостатке тиамина в организме происходит накопление пировиноградной кислоты — продукта обмена углеводов, что нарушает нормальную функцию нервной системы и вызывает заболевание полиневритом (бери-бери). Тиамин излечивает эту болезнь. Кроме того, дифосфат тиамина входит в состав многих других ферментов в качестве кофермента, связанного с апоферментом — белком. Сюда относятся и ферменты, катализирующие реакции обмена углеводов типа альдоль-ных конденсаций и др. Витамин Bj связан также с функцией органов кроветворения, участвует в обмене воды, углеводов, жиров и минеральннх солей [7, 8, 9, 101. Витамином В богаты дрожжи (пивные и пекарские) и злаки, не очищенные от отрубей. Ржаной, а также пшеничный цельный хлеб, крупы (в особенности гречневая) являются для человека основным источником витамина Bj. [c.64]

    СТГ обладает широким спектром биологического действия. Он влияет на все клетки организма, определяя интенсивность обмена углеводов, белков, липидов и минеральных веществ. Он усиливает биосинтез белка, ДНК, РНК и гликогена и в то же время способствует мобилизации жиров из депо и распаду высших жирных кислот и глюкозы в тканях. Помимо активации процессов ассимиляции, сопровождающихся увеличением размеров тела, ростом скелета, СТГ координирует и регулирует скорость протекания обменных процессов. Кроме того, СТГ человека и приматов (но не других животных) обладает измеримой лактогенной активностью. Предполагают, что многие биологические эффекты этого гормона осуществляются через особый белковый фактор, образующийся в печени под влиянием гормона. Этот фактор был назван сульфирующим или тимидиловым, поскольку он стимулирует включение сульфата в хрящи, тимидина—в ДНК, уридина—в РНК и пролина—в коллаген. По своей природе этот фактор оказался пептидом с мол. массой 8000. Учитывая его биологическую роль, ему дали наименование соматомедин , т.е. медиатор действия СТГ в организме. [c.259]

    Теперь мы знаем, что при обмене веществ кровь играет важнейшую роль транспортного средства. Перенос газов, удаление чужеродных веществ, заживление ран, транспортировка питательных веществ, продуктов обмена, ферментов и гормонов являются главными функциями крови. Вся пища, которую человек съедает, подвергается в желудке и кишечнике химической переработке. Эти превращения осуществляются под действием особых пищеварительных соков — слюны, желудочного сока, желчи, поджелудочного и кишечного сока. Активным началом пищеварительных соков являются, главным образом, биологические катализаторы — так называемые ферменты, или энзимы. Например, ферменты пепсин, трипсин и эрепсин, а также сычужный фермент химозин, действуя на белки, расщепляют их на простейшие фрагменты — аминокислоты, из которых организм может строить свои собственные белки. Ферменты амилаиза, мальтаза, лактаза и целлюлаза участвуют в расщеплении углеводов, тогда как желчь и ферменты группы липаз способствуют перевариванию жиров. [c.317]

    Совокупность химических реакций, протекающих в живом организме, называется обменом веществ, или метаболизмом (от греческого слова т 1аЪо1е — изменение). Это реакции самых различных типов. Рассмотрим, например, что происходит с пищей, потребляемой человеком. Пища может содержать сложные углеводы, в частности крахмал которые расщепляются в процессе пищеварения на простые сахара и затем через стенки желудочно-кишечного тракта попадают в ток крови. Далее эти простые сахара в печени превращаются в гликоген (животный крахмал), имеющий ту же формулу, что и обычный растительный крахмал (СдНюОб) , где X — большое число. Гликоген и другие полисахариды — важные источники энергии в организмах животных. При окислении кислородом они образуют двуокись углерода и воду одна часть освобождаемой при этом энергии идет на производство работы, а другая — на согревание тела живого организма. [c.690]

    Основная роль щитовидной железы заключается в связывании иода в гормон тироксин, регулирующий обмен жиров, углеводов и белков в организме животного. Поступающий иод аккумулируется преимущественно в щитовидной железе, где его концентрация в тысячи раз выше, чем в других органах. Применение радиоактивного иода в работах Чайкова и др. оказало большую помощь в изучении функций щитовидной железы и ее патологических нарушений. Некоторые исследования велись путем простого прикладывания счетчика к соответствующему участку шеи подопытного животного или человека, так как жесткое радиоактивное излучение меченого иода легко проходит сквозь пе слишком толстые слои тканей. [c.328]


Обмен углеводов в организме человека

ОБМЕН УГЛЕВОДОВ
Обмен углеводов в организме человека складываются из
следующих процессов:
1. Расщепление в желудочно-кишечном тракте до
моносахаридов поступающих с пищей полисахаридов и
дисахаридов. Всасывание моносахаридов из кишечника в
кровь.
2. Синтез и распад гликогена.
3. Анаэробное и аэробное расщепление глюкозы. В
тканях существует два основных пути распада глюкозы:
анаэробный путь гликолиза, который идет без потребления
кислорода и аэробный путь прямого окисления глюкозы.
4. Пентозофосфатный путь.
5. Аэробный метаболизм пирувата, включающий
окислительное
декарбоксилирование
пирувата
и
превращение ацетил-КоА в ЦТК.
6. Глюконеогенез, т. е. образование углеводов из
неуглеводных продуктов, таких как пируват, лактат,
глицерин, аминокислоты.
ОБМЕН УГЛЕВОДОВ
Глюконеогенез
Распад(гликогенолиз)
и синтез(гликогенез)
гликогена
Гликолиз
Окислительное
декарбоксилирование
пирувата
ЦТК
Пентозофосфатный
путь
Две основные функции:
Углеводы – источник углеродов, который необходим для
синтеза ряда соединений (белков, нуклеиновых кислот,
липидов)
2. Углеводы – обеспечивают до 70% потребности
организма в энергии
1.
Другие функции:
Резервная (крахмал, гликоген)
Структурная (полисахариды образуют прочный остов в
комплексе с белками и липидами, они входят в состав
биомембран)
3. Защитная (кислые гетерополисахариды выполняют роль
биологического смазочного материала)
4. Специфическая функция – образование гликопротеидов,
гликолипидов. Гликопротеиды – маркеры в процессе
узнавания молекулами и клетками друг друга, определяют
антигенную специфичность, обусловливают различие групп
крови, выполняют рецепторную, каталитическую и другие
функции.
1.
2.

5. Переваривание углеводов в организме

Источником углеводов для организма служат
углеводы пищи — крахмал, сахароза и лактоза. Кроме
того, глюкоза может образовываться в организме из
аминокислот, глицерина.
Углеводы пищи в пищеварительном тракте
распадаются на мономеры. В переваривании
принимают участие гидролазы. Специфические
гидролазы: мальтаза, сахараза, лактаза
вырабатываются клетками кишечника и содержатся в
кишечном соке.

6. Переваривание углеводов

крахмал,
сахароза,
лактоза
-амилаза
слюны
Желудок
крахмал,
декстрины
Поджелудоч
-ная железа
-амилаза
мальтоза,
изомальтоза

7. Переваривание углеводов

Кишечник
Мальтоза
Изомальтоза
1,4
1,6
Энтероцит
мальтаза
изомальтаза
Сахароза
1,2
сахараза
Лактоза
1,2
— глюкоза
— галактоза
— фруктоза
лактаза
Продукты полного переваривания углеводов –
глюкоза, галактоза и фруктоза – через клетки кишечника
поступают в кровь. При всасывании из кишечника в кровь
моносахариды проникают через клеточные мембраны
путем облегченной диффузии и с помощью активного
транспорта. Активный транспорт обеспечивает перенос
моносахаридов против градиента концентрации, и
поэтому
может
функционировать
тогда,
когда
концентрация глюкозы или галактозы в кишечнике
невелика.
Важнейшие сахара через воротную вену проникают в
печень, где идет превращение фруктозы, галактозы и
глюкозы.
Гликолиз
Гликолиз (от греч. glykys – сладкий, lysys – распад ) –
один центральных путей катаболизма глюкозы.
В процессе гликолиза происходит расщепление
шестиуглеродной молекулы глюкозы на две
трехуглеродные молекулы пирувата.
Подготовительная стадия, которая состоит из пяти
этапов. Продуктом первой стадии гликолиза является
глицеральдегид-3-фосфат. Подготовительная стадия
гликолиза служит для того, чтобы превратить углеродные
цепочки всех метаболизируемых гексоз в один общий
продукт – глицеральдегид-3-фосфат.
Вторая стадия гликолиза, состоящая из пяти
ферментативных реакций сопровождается образованием
энергии.
Гликолиз включает превращения трех разных
типов:
1. Распад углеродного скелета глюкозы с образованием
пирувата ( путь атомов углерода ).
2. Фосфорилирование АДФ высокоэнергетическими
фосфорилированными соединениями с образованием
АТФ ( путь фосфатных групп ).
3. Перенос водородных атомов или электронов.
Ферменты, катализирующие гликолиз,
локализованы в цитозоле.
Стадии гликолиза
I. 1. Фосфорилирование глюкозы: реакция протекает
необратимо, катализируется гексокиназой и требует
затраты АТФ.
Ch3OPO3h3
Ch3OH
O
гексокиназа
глюкокиназа
O
2+
Mg
АТФ
глю
АДФ
глю-6-ф

12. Ферменты участвующие в фосфорилировании глюкозы.

Связывание гексокиназы с гексозой происходит по
типу индуцированного соответствия: молекула фермента
претерпевает конформационные изменения. Активность
гексокиназы ингибируется глю-6-фосфатом.
В печени присутствует другая форма фермента –
глюкокиназа. Глюкокиназа специфична в отношении Dглюкозы. Глюкокиназа печени действует при возрастании
концентрации глюкозы, например, после приема пищи,
богатой углеводами. В этих условиях глюкокиназа
действует на избыточную глюкозу крови и переводит ее в
глюкозо-6-фосфат для отложения в запас в виде гликогена.
В мышечной ткани глюкокиназа отсутствует.
2. Превращение глю-6-ф в фру-6-ф.
Ch3OPO3h3
O
фосфоглюкоизомераза
Ch3OPO3h3
O
OH
2+
Mg
Ch3OH
Глю-6-ф
Фру-6-ф
3. Фосфорилирование фру-6-ф во фру-1,6-фф.
Ch3OPO3h3
Ch3OPO3h3
O
OH
фосфофруктокиназа
O
OH
2+
Mg
Ch3OH
Фру-6-ф
АТФ
АДФ
Ch3OPO3h3
фру-1,6-фф
Фосфофруктокиназа, также как гексокиназа является
регуляторным ферментом. Эта стадия требует затраты АТФ.
Это необратимая реакция гликолиза.
4. Расщепление фру-1,6-фф на фосфотриозы.
O
Ch3OPO3h3
O
OH
OH
C
альдолаза
H
CH
Ch3OPO3h3
фру-1,6-фф
Ch3
OH
+
Ch3OPO3h3
глицеральдегид-3-ф
5%
C
O
Ch3OPO3h3
дигидроксиацетонфосфат
95%
В дальнейших превращениях принимает участие
глицеральдегид-3-ф, который образуется в результате изомеризации
дигидроксиацетонфосфата:
дигидроксиацетонфосфат
глицеральдегид-3-фосфат
II. На второй стадии гликолиза запасается энергия.
Из одной молекулы глю образуется две молекулы
глицеральдегид-3-фосфата, который участвует в дальнейших
превращениях
1. Окисление глицеральдегид-3-фосфата до 1,3дифосфоглицерат.
O
O
глицеральдегидфосфатдегидрогеназа
C
H
2
CH
C
О~PO
OPO3Hh3
3
2
OH
Ch3OPO3h3
глицеральдегид-3-ф
+
2НАД Фн
+
2НАДН+Н
CH
2
OH
Ch3OPO3h3
1,3-дифосфоглицерат
Коферментом глицеральдегидфосфатдегидрогеназы является
+
НАД . Механизм действия этого фермента очень сложен.
2. Образование 3-фосфоглицерата.
Субстратное фосфорилирование
2АДФ
O
2АТФ
C
Mg
О~PO
OPO3H
22
3H
2
COOH
2+
CH
OH
фосфоглицераткиназа
2
CH
OH
Ch3OPO3h3
Ch3OPO3h3
3-фосфоглицерат
3. Образование 2-фосфоглицерата.
COOH
COOH
2+
Mg
2
CH
OH
Ch3OPO3h3
фосфоглицератмутаза
h32
2 CHOPO
CHО~PO33H
Ch3
OH
2-фосфоглицерат
4. Образование фосфоенолпирувата.
COOH
COOH
2 CHOPO3h3
енолаза -Н2О
2 C
+Н2О
Ch3
О~PO
OPO
3HH
2
3
2
Ch3
OH
фосфоенолпируват
(высокоэнергетическое соединение)
5. Образование пирувата. Субстратное фосфорилирование
COOH
COOH
2 C
Ch3
О~PO
OPO3H
22
3H
2АТФ
2АДФ
2
C
O
2+
Mg
пируваткиназа
Ch4
пируват
Дальше процесс идет в зависимости от наличия или
отсутствия кислорода в клетке:
При анаэробных условиях, например в напряженно
работающих скелетных мышцах, пируват превращается в
лактат:
COOH
COOH
2
C
O
Ch4
пируват
лактатдегидрогеназа
2НАД·Н + Н+
2НАД
2 CH
OH
Ch4
лактат
В этих условиях образовавшийся при гликолизе НАДН
регенерируется за счет пирувата, который восстанавливается до
лактата.
Электроны, пришедшие сначала от глицеральдегид-3-фосфата к
+
НАД , переносятся в форме НАД·Н + Н+ на пируват.
С накоплением лактата в скелетных мышцах связано
возникновение чувства усталости. ЛДГ представлена 5 различными
изоферментами. ЛДГ сердечной мышцы характеризуется низкой Кm
для пирувата, а ЛДГ мышечной ткани имеет более высокую
величину Кm для пирувата.
Суммарная реакция
Глю
+
2АДФ
+
2Фн
2лак
+
2АТФ
При анаэробном гликолизе образуется 4 молекулы АТФ, но
выделяется только 2 молекулы, т. к. 2 молекулы АТФ затрачивается в
процессе фосфорилирования на подготовительную стадию
гликолиза.
Значение анаэробного гликолиза
Окисление глюкозы в условиях недостатка
кислорода в тканях позволяет получить энергию клеткой
при гипоксии, которая может быть вызвана физической
нагрузкой, а также нарушениями со стороны сердечно –
сосудистой и дыхательной систем. При ИБС наблюдается
анаэробный гликолиз, т. к. нарушается при дефиците
кислорода работа дыхательной цепи, а следовательно
окисление глюкозы и жирных кислот, которые являются
главнейшими источниками энергии.
При достаточном содержании кислорода в клетке
глюкоза окисляется до конечных продуктов – CO2, Н2О, и
этот процесс называется аэробным окислением.
Пути превращения пирувата
глю
COOH
2
CH
COOH
Nh3
+ Nh4
O
C
2
COOH
ЛДГ
НАД·Н + Н+
2
Окислительное
декарбоксилирование
2 Ch4
OH
Ch4
лактат
COOH
СH
3
пируват
COOH
СH
3
аланин
CH
дых. цепь — 6 АТФ
+2НАД·Н + Н+
ПДГ
O
C
SKoA
+
ЦТК – 3 НАДН+Н — 9АТФ
ФАДН2 — 2АТФ
ГТФ — 1АТФ
12АТФ
ОБМЕН УГЛЕВОДОВ
Конечным продуктом аэробного гликолиза является
пируват, а энергетический баланс складывается из 2
молекул АТФ образовавшихся в результате субстратного
фосфорилирования и остается еще 2 молекулы
восстановленного НАД·Н + Н+
, от концентрации которого зависит скорость процесса. Для
продолжения процесса необходим сброс Н+ на ферменты
дыхательной цепи, но сама молекула НАД·Н + Н+
через мембрану митохондрий проникнуть не может, для
этого используются переносчики и перенос осуществляется
с помощью 2-х механизмов:
1. Глицерофосфатный челночный механизм;
2. Малат – аспартатный челночный механизм;
Глицерофосфатный челночный механизм
Цитоплазма
OH
Ch3
2
C
Митохондрии
O
OH
Ch3
2
C
КоQ
O
Цв
Ch3OPO3h3
Ch3OPO3h3
дигидроксиацетонфосфат
АТФ
ФАДН2
2НАД·Н + Н+
2НАД
ФАД+
+
Ch3
CH
OH
CH
OH
Ца/а3
АТФ
OH
2
2
Ch3
Цс
O2
OH
Ch3OPO3h3
а-глицеролфосфат
Ch3OPO3h3
2ФАДН2
4АТФ
Малат-аспартатный челночный механизм
Цитоплазма
Митохондрии
COOH
ЩУК
COOH
глутамат
Ch3
C
глутамат
O
C
α-КГ
ЩУК
дых. цепь
O
α-КГ
COOH
COOH
НАД·Н + Н+
НАД
Ch3
аспартат
НАД·Н + Н+
аспартат
НАД
+
COOH
COOH
Ch3
Ch3
Ch3
COOH
малат
OH
Ch3
COOH
малат
OH
+
Баланс аэробного гликолиза
1. Аэробный гликолиз – субстратное
глю
2 пир
фосфорилирование
2. 2 пир
2 Ch4COSKoA – окислительное
декарбоксилирование
3. Регенерация 2НАД·Н + Н+ в челночных
механизмах
2АТФ
6АТФ
36-38
АТФ
6-4АТФ
CO2
4. ЦТК
2 Ch4COSKoA
24АТФ
h3O
Обмен фруктозы
Фруктоза
гексокиназа
АТФ АДФ
фруктокиназа
Фруктозо-6-ф
Гликолиз
идет в печени
АТФ
АДФ
Фруктозо-1-фосфат
альдолаза-1-фосфат
Глицеральдегид
глицеральдегидкиназа
Глицеральдегид-3-фосфат
Диоксиацетон-фосфат
триозофосфатоизомераза
Обмен галактозы
Галактоза
галактокиназа
АТФ
АДФ
Галактозо-1-фосфат
галактозил-1-фосфатуридилтрансфераза
УДФ — глюкоза
УДФ — галактоза
Глюкозо-1-фосфат
Гликолиз
Гликогенез
эпимераза УДФгалактозы
Метаболические функции пентозофосфатного пути
Глюкоза
2НАДФ+
2НАДФН·Н+
СО2
Синтез жирных кислот
Синтез стероидов
Восстановление глутатиона
Обезвреживание веществ
Глюкозо
-6-фосфат
Окислительная
фаза
Рибулозо-5-фосфат
Фруктозо
-6-фосфат
Глицеральдегид3-фосфат
Неокислительная
фаза
Рибозо-5-фосфат
НАДН+
АТФ
Пируват
Гликолиз
Биосинтез
нуклеотидов
Пентозофосфатный путь
Реакции окислительного этапа пентозофосфатного пути
Н
ОН
О
С
Н
С
НО
С
ОН
Н
Н
С
ОН
Н
С
Н2С
Глюкозо-6фосфатдегидрогеназа
О
НАДФ+ НАДФ + Н+
С
Н
С
ОН
НО
С
Н
Н
С
ОН
Н
С
Н2С
ОРО3Н2
О
Глюконолактонгидратаза
Н2О
ОРО3Н2
Глюконолактон-6фосфат
Глюкозо-6-фосфат
О
С
ОН
Н
С
НО
С
ОН
Н
Н
С
ОН
Н
С
ОН
Н2С
ОРО3Н2
6-Фосфоглюконат
СН2ОН
С
О
Н
С
ОН
Н
С
ОН
6-Фосфоглюконатдегидрогеназа
НАДФ+ НАДФ + Н+
СО2
Н2С
ОРО3Н2
Рибулозо- 6-фосфат
Обмен углеводов
Цикл трикарбоновых кислот
Жирные кислоты
Аминокислоты
Глюкоза
ПИРУВАТ
ее-
е-
СО2
еАцетил — КоА
Окислительное
декарбоксилирование
пирувата
Углеводы
Гликолиз
Белок
β – Окисление
Жиры
Специфические
пути катаболизма
Специфические и общие пути
катаболизма
ЦТК
Цитрат
Общий путь
катаболизма
Окисление
Ацетил — КоА
Оксалоацетат
ееее-
СО2
СО2
НАДН
ФАДН2
2Н+ + ½ О22-
ЦПЭ
еАДФ+Pi
АТФ
Н2О
Транспорт электронов
и окислительное
фосфорилирование
Суммарное уравнение реакции
окислительного декарбоксилирования
пирувата:
O
‫׀׀‬
Ch4 – C — COOH +HS — KoA + НАД+
пируватдегидрогеназа
Пируват
O
‫׀׀‬
Ch4- C – S- KoA + CO2 + НАДН + H+
Ацетил КоА
Важным конечным продуктом реакции окислительного
декарбоксилирования пирувата является НАДН, так как он
поставляет протоны и электроны в ЦПЭ и способствует синтезу 3
моль АТФ путем окислительного фосфорилирования. Основной
продукт реакции- ацетил- КоА включается далее в ЦТК.
Цитратный цикл (цикл трикарбоновых кислот)
представляет собой совокупность
8 последовательных химических реакций, в ходе
которых происходят распад ацетил-КоА на 2
молекулы СО2 и образование доноров водорода
для ЦПЭ НАДH и FADh3 . Реакции цитратного
цикла происходят в матриксе митохондрий.

37. Специфические и общие пути катаболизма

В I-й реакции под действием цитратсинтазы
происходят конденсация ацетильного остатка ацетилКоА с оксалоацетатом и образование трикарбоновой
кислоты цитрата (лимонная кислота).
О
‫׀׀‬
СН3 – С – S – КоА
О = С – СООН
Н2 С – СООН
Оксалоацетат
НS – КоА
Н2С – СООН
НО – С – СООН
Цитратсинтаза
Н2С – СООН
Цитрат
Далее цитрат в две стадии (дегидратация и
последующая
гидратация
по
двойной
связи)
превращается в изоцитрат. Промежуточным продуктом
является ненасыщенная цис – аконитовая кислота, в
связи с чем фермент, катализирующий обе стадии,
получил название аконитаза.
Н2С – СООН
‫׀‬
НО – С – СООН
‫׀‬
Н2С – СООН
Н2О
Аконитаза
Н2С – СООН
Н – С – СООН
ОН
Н2О
С – СООН
Н

39. Состав пируватдегидрогеназного комплекса

В III- й реакции под действием НАД+- зависимой
изоцитратдегидрогеназы происходят окисление и
декарбоксилирование изоцитрата с образованием αкетоглутарата. В реакции образуются НАДН и молекула
СО2.
СО2
Н2 С – СООН
Н – С – СООН
НО – С – СООН
Н
Изоцитрат
Н2 С – СООН
Изоцитратдегидрогеназа
НАД+
НАДН+Н+
СН2
О = С – СООН
α — кетоглутарат
ЦПЭ

40. Суммарное уравнение реакции окислительного декарбоксилирования пирувата:

В
IV–й
реакции
происходит
окислительное
декарбоксилирование α – кетоглутарата с выделением
еще одной молекулы СО2 и НАДН. Превращение
катализируют ферменты α – кетоглутаратдегидрогеназного комплекса, который имеет структурное сходство с
ПДК. Продукты реакции: НАДН, СО2, и сукцинил –
КоА.
СО2
Н2С – СООН
Н2 С – СООН
α — кетоглутаратдегидрогеназный
СН2
О = С – СООН
комплекс
НАД+
НАДН+Н+
α – кетоглутарат
СН2
О = С – S – КоА
Сукцинил — КоА
ЦПЭ
Вторая половина цикла – V –я реакция превращения
сукцинил – КоА в сукцинат (янтарная кислота) ,
фермент сукцинаттиокиназа.
Н2 С – СООН
‫׀‬
СН2
‫׀‬
О = С – S – КоА
Сукцинаттиокиназа
Н2 С – СООН
Н2 С – СООН
Н3РО4
ГДФ
АДФ
ГТФ
АТФ
НS — КоА
VI реакция. Сукцинат под действием ФАД –
зависимой сукцинатдегидрогеназы превращается в
фумарат.
Н2 С – СООН
‫׀‬
Н2 С – СООН
Сукцинатдегидрогеназа
НС – СООН
НС – СООН
ФАД
ФАДН2
Сукцинат
ЦПЭ
Фумарат

43. Далее цитрат в две стадии (дегидратация и последующая гидратация по двойной связи) превращается в изоцитрат. Промежуточным продуктом явля

VII реакция. К фумарату фермент фумараза
(фумаратгидратаза) присоединяет молекулу воды и
образуется малат (яблочная кислота).
Н2О
СООН
НС – СООН
НС – СООН
Фумарат
НС – ОН
Фумараза
Н2С – СООН
Малат

44. В III- й реакции под действием НАД+- зависимой изоцитратдегидрогеназы происходят окисление и декарбоксилирование изоцитрата с образованием

В заключительной VIII реакции цикла происходит
дегидрирование малата НАД+ — зависимым ферментом
малатдегидрогеназой и образование оксалоацетата.
Цикл замыкается.
СООН
СООН
О=С
НС – ОН
Малатдегидрогеназа
Н2С – СООН
Малат
НАД+
НАДН+ Н+
Н2С – СООН
Оксалоацетат

45. В IV–й реакции происходит окислительное декарбоксилирование α – кетоглутарата с выделением еще одной молекулы СО2 и НАДН. Превращение кат

Таким образом, в ОПК происходит распад 3 – углеродного
соединения пировиноградной кислоты с выделением 3
молекул СО2 . ОПК является основным источником СО2 .
В сутки в организме человека образуется до 500 л СО2 и
примерно 90% его образуется в реакциях ОПК.
Суммарное уравнение общего пути катаболизма:
СН3 – С – СООН + 3Н2О + 4НАД+ + ФАД + ГДФ +
‫׀׀‬
О
Пируват
+ Н3РО4
3СО2 + 4НАДН + Н+ + ФАДН2 + ГТФ.

46. Вторая половина цикла – V –я реакция превращения сукцинил – КоА в сукцинат (янтарная кислота) , фермент сукцинаттиокиназа.

Анаболическая функция ОПК
Пируват
Глюкоза
Ацетил КоА
Аспарат
Аспарагин
Нуклеотиды
Аланин
Жирные кислоты;
холестерол
Цитрат
Оксалоацетат
Нуклеотиды
Изоцитрат
Малат
ЦТК
α – Кетоглутарат
Глутамин
Аргинин
Пролин
Глутамат
Фумарат
Сукцинат
Сукцинат – КоА
Гем

Основные закономерности метаболических процессов в организме человека. Часть 2.

Рассматривая обмен веществ в условиях нормального функционирования организма, следует остановиться на безусловно взаимосвязанных, но в то же время достаточно специфичных составляющих метаболизма, а именно на углеводном, белковом, липидном и водно-электролитном обмене.

Очевидно, что основная роль углеводов в метаболизме определяется их энергетической функцией. Именно глюкоза крови вследствие наличия простого и быстрого пути гликолитической диссимиляции и последующего окисления в цикле трикарбоновых кислот, а также возможности максимально быстрого извлечения ее из депо гликогена, обеспечивающей экстренную мобилизацию энергетических ресурсов, является наиболее востребованным источником энергии в организме. Использование циркулирующей в плазме глюкозы разными органами неодинаково: мозг задерживает 12% глюкозы, кишечник— 9%, мышцы — 7%, почки — 5%. При этом уровень глюкозы плазмы крови является одной из важнейших гомеостатических констант организма, составляя 3, 3—5, 5 ммоль/л. Как известно снижение уровня глюкозы ниже допустимого передела имеет своим незамедлительным следствием дискоординацию деятельности ЦНС, проявляющуюся соответствующей клинической симптоматикой: головной мозг содержит небольшие резервы углеводов и нуждается в постоянном поступлении глюкозы, поскольку энергетические расходы мозга покрываются исключительно за счет углеводов. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту.

Единственной формой углеводов, которая может всасываться в кишечнике, являются моносахара. Они всасываются главным образом в тонкой кишке, током крови переносятся в печень и к тканям. Основная часть поступающей с пищей глюкозы (около 70%) окисляется в тканях до воды и углекислого газа, около 25—28% пищевой глюкозы превращается в жир и только 2—5% ее синтезируется в гликоген. Гликоген печени представляет собой основной резерв углеводов в организме, достигая по своей массе у взрослого человека 150—200 г. Синтез гликогена происходит достаточно быстро, что, наряду с быстрой мобилизацией гликогена и поступлением глюкозы в кровь в процессе гликогенолиза, является одним из механизмов поддержания гликемии в константных пределах. Помимо печени в качестве депо гликогена выступают также мышцы. Однако запас гликогена в мышечной массе по отношению к всему гликогену организма составляет всего 1 — 2%. В мышцах под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ресинтез гликогена.

При полном отсутствии углеводов в пище они образуются в организме из продуктов трансформации жиров и белков. В печени возможно новообразование углеводов как из собственных продуктов их распада (пировиноградной или молочной кислоты), так и из продуктов диссимиляции жиров и белков (кетокислот и аминокислот), что обозначается как глюконеогенез. В результате трансформации аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. Поступление в кровь свободных жирных кислот уменьшается. В случае возникновения гипогликемии процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. Гликогенез, гликогенолиз и глюконеогенез являются тесно взаимосвязанными процессами, обеспечивающими оптимальный уровень глюкозы крови сообразно степени функционального напряжения организма.

Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. Единственным гормоном, снижающим уровень гликемии, является инсулин — гормон, вырабатываемый β-клетками островков Ланхгерганса. Снижение гликемии происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый α-клетками островков Ланхгерганса, адреналин — гормон мозгового слоя надпочечников, глюкокортикоиды — гормоны коркового слоя надпочечников, соматотропный гормон гипофиза, тироксин и трийодтиронин — гормоны щитовидной железы. Данные гормоны в связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина часто объединяют понятием «контринсулярные гормоны».

Таким образом биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Обладая энергетической ценностью в 16, 7 кДж (4, 0 ккал) на 1 грамм вещества, углеводы являются основным источником энергии для всех клеток организма, при этом выполняя еще пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 500 г.

Характерной особенностью белкового обмена является его чрезвычайная разветвленность. Достаточно указать, что в обмене 20 аминокислот, входящих в состав белковых молекул, в организме животных участвуют сотни промежуточных метаболитов, тесно связанных с обменом углеводов и липидов. Число ферментов, катализирующих химические реакции азотистого обмена, также исчисляется сотнями. Собственно белки (протеины и протеиды), высокомолекулярные соединения, построенные из мономеров — аминокислот, занимают ведущее место среди органических элементов организма, составляя более 50 % сухой массы клетки. Как известно, белки в организме выполняют ряд важнейших биологических функций, а именно:

— пластическая (структурная) функция заключается в том, что белки являются главной составной частью всех клеточных и межклеточных структур тканей;

— ферментная (каталитическая, энзимная) функция состоит в обеспечении всех химических реакций, протекающих в ходе обмена веществ в организме (дыхание, пищеварение, выделение), деятельностью ферментов, являющихся по своей структуре белками;

— транспортная функция белков заключается в их способности к соединению с целым рядом метаболитов и переносе последних в связанном состоянии в межтканевой жидкости и плазме крови к области их утилизации;

— защитная функция белков проявляется реализацией иммунного ответа образованием иммуноглобулинов (антител) и системы комплемента при поступлении в организм чужеродного белка, а также способностью к непосредственному связыванию экзогенных токсинов; белки системы гемостаза обеспечивают свертывание крови и остановку кровотечения при повреждении кровеносных сосудов;

регуляторная функция, направленная на сохранение гомеостаза с поддержанием биологических констатнт организма, реализуется буферными свойствами молекулы протеинов, белковой структурой клеточных рецепторов, активируемых в свою очередь регуляторными полипептидами и гормонами, также имеющими белковую структуру;

— двигательная функция, обеспечивается взаимодействием сократительных белков мышечной ткани актина и миозина;

энергетическая роль белков состоит в обеспечении организма энергией, образующейся при диссимиляции белковых молекул; при окислении 1 г белка в среднем освобождается энергия, равная 16, 7 кДж (4, 0 ккал).

В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. В пищеварительном тракте белки ферментативно расщепляются ферментами до аминокислот и абсорбируются в тонкой кишке. Транспорт их осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30 — 50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Всасывание L-аминокислот (но не D-изомеров) — активный процесс, требующий затраты энергии. Аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь. Перенос через щеточную кайму осуществляется целым рядом переносчиков, многие из которых действуют при участии Na+-зависимых механизмов симпорта, подобно переносу глюкозы.

Из аминокислот и простейших пептидов клетки тканей синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, то есть использоваться для синтеза этих соединений. В тканях постоянно протекают процессы распада белка с последующим выделением из организма неиспользованных продуктов белкового обмена и параллельно с этим — синтез белков. Катаболизм большинства аминокислот начинается с отщепления α-аминогруппы результате реакций трансаминирования и дезаминирования. Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных — глутамат, аланин, аспартат и соответствующие им кетокислоты — αкетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат. Реакции трансаминирования играют большую роль в обмене аминокислот. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование — заключительный этап синтеза заменимых аминокислот из соответствующих α-кетокислот, если они в данный момент необходимы клеткам. В результате происходит перераспределение аминного азота в тканях организма. Трансаминирование — первая стадия дезаминирования большинства аминокислот, то есть начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. При трансаминировании общее количество аминокислот в клетке не меняется. В свою очередь дезаминирование аминокислотреакция отщепления α-аминогруппы от аминокислоты, в результате чего образуется соответствующая α-кетокислота (безазотистый остаток) и выделяется молекула аммиака. Аммиак токсичен для ЦНС, поэтому в организме человека и млекопитающих он превращается в нетоксичное хорошо растворимое соединение — мочевину. В виде мочевины, а также в виде солей аммония аммиак выводится из организма. Безазотистый остаток используется для образования аминокислот в реакциях трансаминирования.

При катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогеназы, в результате чего получаются а-кетоглутарат и аммиак. При необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты. В случае использования белков в качестве источника энергии большинство аминокислот окисляются в конечном счёте через цикл лимонной кислоты до углекислого газа и воды. Прежде, чем эти вещества вовлекаются в заключительный этап катаболизма, их углеродный скелет превращается в двухуглеродный фрагмент в форме ацетил-КоА. Именно в этой форме большая часть молекул аминокислот включается в цикл лимонной кислоты.

Белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования происходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее — белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей). Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак. Преобладание в организме в данный момент времени синтеза или распада белка отражается понятием азотистого баланса — разностью между количеством азота, содержащегося в пище человека, и его уровнем в выделениях. Азотистым равновесием называют состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека, если минимальное количество белков в пище соответствует 30-50 г/сут. Оптимальное количество поступления белка с пищей при средней физической нагрузке составляет около 100-120 г/сут. При положительном азотистом балансе количество азота в выделениях организма значительно меньше, чем содержание его в пище, то есть наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной массы, при заживлении обширных ран и при разрешении патологического процесса, связанного с выраженными системными нарушениями. Отрицательный азотистый баланс отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми, или эссенциальными. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме (заменимые аминокислоты), а 8 не синтезируются (незаменимые аминокислоты) . К незаменимым аминоксилотам относятся: валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин. Две аминокислоты — аргинин и гистидин — у взрослых образуются в достаточных количествах, однако детям для нормального роста организма необходимо дополнительное поступление этих аминокислот с пищей. Поэтому их называют частично заменимыми. Две другие аминокислоты — тирозин и цистеин — условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина. Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными (табл. 1. 1. ). Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.

Таблица 1. 1. Аминокислоты, входящие в состав белков человека.

1. Незаменимые

Валин

Лейцин

Изолейцин

Треонин

Метионин

Фенилаланин

Триптофан

Лизин

2. Частично заменимые

Гистидин

Аргинин

3. Условно заменимые

Цистеин

Тирозин

4. Заменимые

Аланин

Аспарагиновая кислота

Аспарагин

Глутаминовая кислота

Глутамин

Пролин

Глицин

Серин

Жиры (липиды) по своей химической структуре представляют собой триглицериды — сложные эфиры глицерина и жирных кислот (табл. 1. 2). Изначально эти соединения были объединены в одну химическую группу по общему признаку растворимости: они не растворяются в воде, но растворяются в органических растворителях (эфир, спирт, бензол). Жиры делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды, гликолипиды, сульфолипиды) и стероиды (холестерин). Основная масса липидов представлена в организме человека нейтральными жирами — триглицеридами олеиновой, пальмитиновой, стеариновой, линолевой и линоленовой жирных кислот.

Таблица 1. 2. Классификация липидов организма человека.

1. Гликолипиды.

Содержат углеводный компонент.

2. Жиры.

Эфиры глицерина и высших жирных кислот. Химическое название — ацилглицерины. Преобладают триацилглицерины.

3. Минорные липиды.

Свободные жирные кислоты, жирорастворимые витамины, биологически активные вещества липидной природы — простагландины и др.

4. Стероиды.

В основе строения — полициклическая структура циклопентанпергидрофенантрен-стеран.

А. Стерины (спирты).

Наиболее важен холестерин.

В. Стериды.

Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина.

5. Фосфолипипы.

Отличительная особенность — остаток фосфорной кислоты в составе молекулы.

Жиры растительного и животного происхождения имеют различный состав жирных кислот, определяющий их физические свойства и физиолого-биохимические эффекты. Жирные кислоты подразделяются на два основных класса — насыщенные и ненасыщенные. Насыщенность жира определяется количеством атомов водорода, которое содержит каждая жирная кислота (или, иначе, количеством двойных связей С=С). Жирные кислоты со средней длиной цепи (С8-С14) способны усваиваться в пищеварительном тракте без участия желчных кислот и панкреатической липазы, не депонируются в печени и подвергаются β-окислению. Животные жиры могут содержать насыщенные жирные кислоты с длиной цепи до двадцати и более атомов углерода, они имеют твердую консистенцию и высокую температуру плавления. Как известно высокое потребление насыщенных жирных кислот является важнейшим фактором риска развития диабета, ожирения, атеросклероза. К мононенасыщенным жирным кислотам относятся миристолеиновая и пальмитолеиновая кислоты (жиры рыб и морских млекопитающих), олеиновая (оливковое, сафлоровое, кунжутное, рапсовое масла). Мононенасыщенные жирные кислоты помимо их поступления с пищей в организме синтезируются из насыщенных жирных кислот и частично из углеводов. Жирные кислоты с двумя и более двойными связями между углеродными атомами называются полиненасыщенными – ПНЖК. Особое значение для организма человека имеют такие ПНЖК как линолевая, линоленовая, являющиеся структурными элементами клеточных мембран и обеспечивающие нормальное развитие и адаптацию организма человека к неблагоприятным факторам окружающей среды. ПНЖК являются предшественниками образующихся из них биорегуляторов – эйкозаноидов. Двумя основными группами ПНЖК являются кислоты семейств ω-6 и ω-3. Жирные кислоты ω-6 содержатся практически во всех растительных маслах и орехах. ω-3 жирные кислоты также содержатся в ряде масел (льняном, из семян крестоцветных, соевом). Основным пищевым источником ω-3 жирных кислот являются жирные сорта рыб и некоторые морепродукты. Из ПНЖК ω — 6 особое место занимает линолевая кислота, которая является предшественником наиболее физиологически активной кислоты этого семейства — арахидоновой. Арахидоновая кислота является преобладающим представителем ПНЖК в организме человека и служит субстратом для синтеза простагландинов и лейкотриенов.

Источниками жира в организме являются экзогенный жир, поступающий с пищей, и эндогенный жир, синтезируемый в печени из углеводов. Жир, всасывающийся из кишечника, поступает преимущественно в лимфу и в меньшем количестве — непосредственно в кровь. Большая часть жиров в организме находится в жировой ткани, меньшая часть входит в состав клеточных структур. В жировой ткани жир, находящийся в клетке в виде включений, легко выявляется при микроскопическом и гистохимическом исследованиях. Жировые вакуоли в клетках — это резервный жир, используемый для обеспечения прежде всего энергетических потребностей клетки. Больше всего запасного жира содержится в жировой ткани, а также в некоторых органах, например в печени и мышцах. Количество запасного жира зависит от характера питания, количества пищи, конституциональных особенностей, а также от величины расхода энергии при мышечной деятельности; количество же протоплазматического жира является устойчивым и постоянным. В жировой ткани нейтральный жир депонируется виде триглицеридов. Сложные липиды — фосфолипиды и гликолипиды — входят в состав всех клеток, но в большей степени в состав клеток нервной ткани. Общее количество жира в организме человека колеблется в широких пределах и в среднем составляет 10—20% от массы тела, а в случае патологического ожирения может достигать 50%. Суточная потребность взрослого человека в нейтральном жире составляет 70—80 г. У человека состав и свойства жира относительно постоянны. При употреблении пищи, содержащей даже небольшое количество жира, в теле человека жир все же откладывается в депо. При этом эндогенный жир имеет некоторые видовые особенности, однако видовая специфичность жиров выражена несравнимо меньше, чем видовая специфичность белков.

Основная биологическая роль жиров — обеспечение пластического и энергетического обмена в организме. Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран, в значительной мере определяя их свойства. Фосфатиды и стерины входят в состав клеточных структур, в частности клеточных мембран, а также ядерного вещества и цитоплазмы. Исключительно важное физиологическое значение имеют стерины, в частности холестерин. Это вещество входит в состав клеточных мембран, является источником образования желчных кислот, а также гормонов коры надпочечников и половых желез, витамина D. Печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови и местом синтеза эндогенного холестерина. В плазме крови холестерин находится в составе липопротеидных комплексов, с помощью которых и осуществляется его транспорт. У взрослых людей 67—70% холестерина плазмы крови находится в составе липопротеидов низкой плотности (ЛПНП), 9—10% — в составе липопротеидов очень низкой плотности (ЛПОНП) и 20—24% — в составе липопротеидов высокой плотности (ЛПВП). Давно доказано, что именно липопротеиды определяют уровень холестерина и динамику его обмена.

Энергетическая роль жиров определяется их максимальной среди всех биологических молекул энергоемкостью, более чем в два раза превышающую таковую углеводов или белков. При окислении 1 г жира выделяется 37, 7 кДж (9, 0 ккал) энергии. В отличие от углеводов жиры составляют энергетический резерв организма. Преимущество жира в качестве энергетического резерва заключается в том, что жиры являются более восстановленными веществами по сравнению с углеводами (в молекулах углеводов при каждом углеродном атоме есть кислород — группы -CHOH-; у жира имеются длинные углеводородные радикалы, в которых преобладают группы -Ch3- — в них нет кислорода). От жира можно отнять больше водорода, который затем проходит по цепи митохондриального окисления с образованием АТФ. Еще одним преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность — он не связан с водой. Это обеспечивает компактность жировых запасов — они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме — примерно 400 г; при голодании этого количества не хватает даже на одни сутки.

Катаболизм жира включает в себя три этапа: 1) гидролиз жира до глицерина и жирных кислот (липолиз) ; 2) трансформация глицерина с последующим вступлением продуктов в гексозобифосфатный путь, а также окисление жирных кислот до ацетил-КоА; 3) вступление вышеуказанных продуктов в цикл трикарбоновых кислот. Кроме указанных этапов к катаболизму жиров относят также окисление кетоновых тел и перекисное окисление липидов. Обмен полученного в результате липолиза глицерина может осуществляться несколькими путями. Значительная часть образовавшегося при гидролизе липидов глицерина используется для ресинтеза триглицеридов. Второй путь обмена глицерина — включение продукта его окисления в гликолиз или в глюконеогенез. Окисление жирных кислот осуществляется различными путями, наиболее значимым из них является β-окисление. В ходе β-окисления последовательно происходит активация жирной кислоты на мембране митохондрии и ее связывание с молекулой карнитина, прохождение комплекса нв внутреннюю поверхность мембраны митохондрии, внутримитохондриальное окисление жирной кислоты с образованием ацетил-КоА и АТФ.

Одним из продуктов катаболизма жиров, имеющем важное значения для метаболизма в целом являются кетоновые тела. Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β-оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное строение и способные к взаимопревращениям. Главным путем синтеза кетоновых тел, происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при β-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Данный путь синтеза кетоновых тел более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени кетоновые тела поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. Кетоновые тела используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, так как все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез кетоновых тел. Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэтерифицнрованных жирных кислот, служащих источником энергии. В обмене жиров одна из важнейших ролей принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон), используемых как альтернативный глюкозе источник энергии.

При обильном углеводном питании и отсутствии жиров в пище синтез жира в организме может происходить из углеводов. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. В норме у человека 25—30% углеводов пищи превращается в жиры. Превращение белка в жирные кислоты происходит, вероятнее всего, также через образование углеводов. С другой стороны и нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Тем не менее жиры необходимы для нормальной жизнедеятельности. Известно, что длительное исключение жиров из пищевого рациона может явиться причиной возникновения целого ряда тяжелых метаболических нарушений. Отчасти это связано с отсутствием поступления в организм жирорастворимых витаминов (A, D, E, K). Но основная причина метаболических нарушений кроется в возникновении в организме дефицита незаменимых жирных кислот. Некоторые ненасыщенные жирные кислоты (с числом двойных связей более 1), например линолевая, линоленовая и арахидоновая, в организме человека и некоторых животных не образуются из других жирных кислот и поэтому являются незаменимыми. Особенно остро реагирует организм на дефицит незаменимой линолевой кислоты СН3- (СН2) 4 — СН = СН — СН2 — СН = СН — (СН2) 7 — СООН. Возможно это связано с тем, что эта ненасыщенная жирная кислота в организме человека служит предшественником арахидоновой кислоты, которая в свою очередь необходима для синтеза универсальных биорегуляторов — простагландинов. Основными пищевыми источниками полиненасыщенных жирных кислот, в том числе линолевой, являются растительные масла.

Как указывалось выше метаболизм жиров контролируется нервной и эндокринной системами. Мобилизация жиров из депо происходит под влиянием гормонов мозгового слоя надпочечников — адреналина и норадреналина. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови. Действие инсулина связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, напротив, способствуют отложению жира в депо.

Статья добавлена 31 мая 2016 г.

Обмен жиров и углеводов: нарушения и диагностика

Нарушение обмена веществ зачастую является отправной точкой развития различных заболеваний, которые со временем становятся хроническими. Примером последствия нарушения обмена веществ является сахарный диабет – заболевание, которое приводит человека к инвалидности, считается неизлечимым. Поэтому важно своевременно выявлять любые, даже малейшие нарушения в обмене веществ, и для этого необходимо раз в год проходить обследование в медицинском центре «Сенситив» в Ейске.

Самыми важными показателями являются обмен белков, обмен жиров (или липидов) и обмен углеводов. Об обмене белков мы писали в предыдущей статье, а сейчас рассмотрим два других вида обмена, показатели их нарушений, и диагностику, которая позволяет вовремя их выявить.

Нарушения обмена жиров

Основная функция жировой ткани – защищать все органы от повреждений, высоких и низких температур. С точки зрения биохимических процессов липиды участвуют в усвоении жирорастворимых витаминов, участвуют в выработке женских гормонов.

Если в организме у человека наблюдаются нарушения липидного обмена, то это будет выражено в следующих симптомах:

  • избыток холестерина в крови;
  • развитие атеросклероза мозга, брюшной полости, сердца;
  • повышение артериального давления;
  • ожирение с осложнениями;
  • дефицит жирорастворимых витаминов и незаменимых ненасыщенных жирных кислот;
  • выпадение волос, поражение почек, воспаления кожи.

Для выявления нарушений липидного обмена в медицинском центре «Сенситив» в Ейске диагностика предусмотрена следующая – липидограмма. Она представляет собой специфическое исследование крови на уровень холестерина. Осуществляется забор крови из вены для исследования. В крови исследуется концентрация и уровень:

  • холестерола;
  • «хорошего» холестерина – липопротеидов высокой прочности;
  • «плохого» холестерина – липопротеидов низкой прочности;
  • триглицеридов.

Нарушения обмена углеводов

Обмен углеводов напрямую связан с энергетическим обменом внутри клеток. Углеводы выполняют защитную функцию, принимают участие в синтезе ДНК и РНК, а также являются участниками липидного и белкового обмена. От нормального углеводного обмена зависит насыщение клеток мозга энергией.

При нарушении углеводного обмена в организме проявляются следующие симптомы:

  • ожирение или снижение массы тела;
  • повышенный уровень глюкозы и развитие кетоацидоза;
  • гипогликемия;
  • сонливость и общая слабость;
  • одышка;
  • тремор конечностей.

Для того, чтобы выявить нарушения углеводного обмена, требуется сдать анализы крови и мочи на сахар, пройти тест толерантности к глюкозе и анализ на гликолизированный гемоглобин.

Анализ на гликолизированный гемоглобин – это наиболее точный современный инструмент отслеживания уровня сахара. Гликолизированный гемоглобин представляет собой соединение, определяющее среднее значение сахара в крови за истекшие 120 суток. Этот анализ дает точный результат, даже если у пациента уровень сахара находится на самой грани нормы. Также погрешности в диете у человека, больного сахарным диабетом, на протяжении 3-4 месяцев и переход к диете за неделю до теста все равно позволит установить, что погрешности в еде были, и вредные углеводы в организм поступали.

Другие статьи:

Рациональное питание — Клиническая больница №6 им. Г.А. Захарьина

Подробности

Опубликовано: 05 Апрель 2019

Просмотров: 2952

Рациональное питание .

Питание – это процесс поступления, переваривания, всасывания и усвоение в организме питательных веществ, которые необходимы для покрытия затрат энергии, формирования тканей организма, полноценного функционирования организма. Рациональное питание в свою очередь – это полноценное питание с полностью необходимым количеством и соотношением всех компонентов пищи, в соответствии с индивидуальными потребностями организма. Правильно организованное, основанное на современных знаниях рациональное питание помогает организму развиваться должным образом, а также сохранять и приумножать свое здоровье.

Принципы рационального питания Современная наука выделяет 4 основных принципов рационального питания. Первый принцип – необходимо соблюдать баланс между поступающей с пищей энергией и энергетическими затратами организма. Энергетические затраты организма зависят от возраста, пола, морфологического и биохимического статуса, состояния здоровья, вида деятельности, климатических условий. Энергия в основном поступает в организм через белки, жиры, углеводы. Ученые рассчитали, что 1 гр. белковой пищи дает организму 4,1 ккал (17,17 кДж), 1 г жиров — 9,3 ккал (38,96 кДж) и 1 г углеводов — 4,1 ккал (17,17 кДж). Если с пищей в организм человека поступает недостаточное количество энергии, то организм начинает брать энергию из внутренних источников: жировые отложения, мышечные ткани. При длительном дефиците это приводит к истощению организма. Если же наоборот энергии с пищей поступает чрезмерное количество, то она накапливается в организме в виде жировой клетчатки. Второй принцип – необходим баланс между поступающими в организм веществами: углеводами, белками, жирами, минеральными веществами, витаминами, балластными веществами. Каждый продукт несет в себе определенную биологическую ценность, например, один продукт богат белком, другой богат витаминами определенной группы. Современные ученные считают, что суточный рацион здорового человека должен быть поствоен на следующей пропорции соотношения белков, жиров и углеводов: 1:1:4. Как мы видим на углеводы приходится большая часть калорийности пищи. Углеводы — это основные источники энергии. Белки — это строительный материал для наших мышц, также они учувствуют в синтезе гормонов, ферментов и витаминов. Жиры, как и углеводы, являются источниками энергии, но если энергия, полученная из углеводов, расходуется сразу, то жир в свою очередь откладывается в организме и начитает использоваться им в тот момент, когда энергии из углеводов недостаточно. Третий принцип – необходимо соблюдение режима питания. Прежде всего питание должно быть регулярным, желательно принимать пищу в одни и тоже временные промежутки. Оптимальное количество приемов пищи равно 3-4 разам в день. Перерывы между приемами пищи могут составлять 2-3 часа. За завтраком желательно съедать 2/3 от суточной нормы калорийности, а за ужином 1/3. Такой баланс наиболее благоприятно будет сказываться на вашем самочувствие. Четвертый принцип – необходимо исключить все продукты, наносящие вред нашему организму. В продуктах питания не должно быть токсических веществ и патогенных бактерий. Питание человека должно включать: хлеб, макаронные изделия различные виды овощей продукты, содержащие в большом количестве белки животного происхождения (мясо, птицу рыбы, морепродукты) молоко и кисломолочные продукты (сметана, творог, сыр и т.д.) сахар яйца растительное масло соль Следует также отметить, что согласно нормам рационального питания, пища не должна быть жаренной, копченой, консервированной, сильно соленой или сильно острой. Лучше всего использовать такие приемы приготовления пищи как тушение, варка, приготовление на пару. И конечно же не стоит забывать о таком важном компоненте рационального питания как вода. Для взрослого человека суточная доза воды составляет примерно 2 литра. Вода принимает участие во всех процессах жизнедеятельности человека. Вода доставляет витамины и микроэлементы туда где они необходимы. Так же она принимает участие в пищеварение и усвоение необходимых питательных веществ. Полезно выпивать стакан теплой воды натощак, эта процедура запускает метаболизм.

Роль углеводов в организме — Школа пациента Нутриэн

Что такое углеводы

Углеводы – это органические вещества, в состав которых входят углерод, водород и кислород. Эти элементы соединены в молекуле углевода таким образом, что углеводы способны активно взаимодействовать в организме с белками, липидами (жирами или похожими на них веществами) и даже друг с другом. В последнем случае из самых простых углеводных молекул — можно сказать, «углеводных звеньев» — получаются длинные полимерные цепочки сложных углеводов. Строение такого «звена» выглядит непростым, хотя чаще всего оно построено только из трех видов атомов: углерода, водорода и кислорода.

Например, на картинке — формула глюкозы.

                                 

 

Если такие молекулы глюкозы соединятся в длинные цепочки – обозначим остатки глюкозы красными кружочками на рисунке, то получится неразветвленный вариант молекулы крахмала (зеленые точки – атомы кислорода из глюкозы) – ниже:


По количеству структурных «звеньев» в молекуле углеводы делят на:

  • Моносахариды (простые углеводы): состоят из одного «углеводного звена» — например, глюкоза и фруктоза

  • Олигосахариды: от 2 до 10 «звеньев». К ним относятся дисахариды (тоже простые углеводы), которые состоят из двух «углеводных звеньев» — например, сахароза

  • Полисахариды (сложные углеводы): больше 10 – например, крахмал

Почему количество простых фрагментов углевода имеет значение? От этого зависит, как усваивается углевод в пищеварительной системе человека и какую роль играет в работе всего организма и отдельных органов.  

Основные функции углеводов
  • Поступающие с пищей углеводы — главный источник энергии. Сложные углеводы (полисахариды) расщепляются ферментами человека и превращаются в глюкозу. Окисление глюкозы дает энергию для всех жизненных процессов.
  • Углеводы и их производные входят в самые важные молекулы человека: ДНК и РНК, антитела, интерфероны, некоторые гормоны и вещества на поверхности клеток, по которым организм узнает: клетка «своя» или «чужая».

  • Полисахариды создают энергетический резерв в организме – у человека это гликоген.

  • Не усваиваемые человеком сложные углеводы помогают кишечнику хорошо работать и «кормят» полезную микрофлору в нем – это пищевые волокна.

Таким образом, если рассматривать роль углеводов, попадающих в организм человека с едой, то они дают энергию и обеспечивают нормальное пищеварение. В пище встречаются простые и сложные углеводы.

Простые углеводы, или сахара

Это сладкие, хорошо растворимые в воде вещества, относятся к моно- и дисахаридам.

— фруктоза, глюкоза, галактоза – самые простые сахара.

— сахароза, мальтоза, лактоза – состоят из химически связанных по двое самых простых сахаров. В кишечнике человека углеводы расщепляются до моносахаридов и всасываются в кровь.

Сложные углеводы

Это полимеры – вещества с длинными молекулами. Состоят из химически связанных в цепочку моносахаридов. Их можно разделить на перевариваемые и неперевариваемые человеком.

  • Перевариваемые: например, крахмал, мальтодекстрин, гликоген.Расщепляются в организме медленно, дают плавное увеличение уровня глюкозы в крови, в отличие от простых углеводов
  • Неперевариваемые:  относятся к пищевым волокнам.Некоторые из них растворяются в воде: инулин, альгинаты, пектины, камеди. Они питают полезных бактерий в кишечнике.Другие не растворяются в воде: целлюлоза. Они помогают пище продвигаться по кишечнику, уносят с собой токсины и ускоряют наступление сытости

Как усваиваются простые и сложные перевариваемые углеводы из пищи? После всасывания в кровь они превращаются в производные фруктозы и глюкозы, потом расходуются в реакциях, дающих энергию организму. Эти превращения углеводов, происходящие в организме человека, называются «метаболизм углеводов».

Метаболизм углеводов

Чтобы превратиться в энергию для поддержания жизни, углеводы проходят несколько этапов превращений:

  • Переваривание (расщепление) углеводов. Всасывание их в кровь клетками пищеварительного тракта. Переваривание углеводов начинается во рту, продолжается в кишечнике. В процессе переваривания углеводы расщепляются до моносахаридов. Чаще всего это глюкоза, фруктоза и галактоза, причем среди этих трех сахаров больше всего глюкозы
  • Транспорт глюкозы, фруктозы и галактозы в печень и другие ткани и органы. В крови поддерживается постоянный уровень глюкозы, все сверх него идет в печень.
  • Создание углеводного запаса в печени.
  • Клетки печени превращают глюкозу в гликоген. Это сложный углевод, похожий на крахмал. Он запасается, чтобы быстро выровнять уровень глюкозы в крови при его снижении.Печень способна превращать фруктозу и галактозу в глюкозу.
  • Получение энергии из сахаров в других тканях тела.Там глюкоза после серии превращений окисляется. Эти реакции, протекающие в организме, приводят к выделению энергии. Энергия расходуется, например, для работы мышц.
  • Получение других полисахаридов, которые связываются, например, с белками, встроены в молекулы, хранящие и использующие наследственную информацию. Пример такого соединения — ДНК.
Хотя человек в принципе может обходиться практически без углеводов в пище какое-то время, он станет себя хуже чувствовать, если сахара отсутствуют. Ведь именно сахара являются источником «быстрой» энергии. Если снижается уровень глюкозы крови ниже нормы, первыми реагируют на это клетки головного мозга, которые очень нуждаются в энергии глюкозы. Именно поэтому, когда нет возможности нормально пообедать, надо всегда иметь с собой кусочек сахара, шоколада или обычного белого хлеба, чтобы быстро восстановить силы и не испытывать слабость. Жиры тоже служат источником энергии. Каждый грамм жира при расщеплении дает в 2 раза больше энергии по сравнению с углеводами, но эта энергия «медленная», т.к. жиры перевариваются долго и трудно. Энергия – это самое главное, что требует живой организм, поэтому в случае нехватки углеводов и жиров, которые являются основными источниками энергии, даже белки начинают выполнять энергетическую функцию. В этом случае страдают мышцы человека, которые стремительно уменьшаются в объеме, т.к. энергия добывается в первую очередь из мышечных белков. Если с едой поступает мало пищевых волокон, то страдает микрофлора кишечника, а, значит, кишечник не способен нормально работать, снижается иммунитет.

Сколько же углеводов человек должен получать ежедневно? Нужно ли ограничивать поступление в организм углеводов и каких именно?

Фруктовые соки, каши, напитки с добавлением большого количества сахаров, различные сладости, варенье, джемы   легко и быстро усваиваются. Их избыток приводит к болезням – диабету, ожирению, атеросклерозу, нарушениям работы сердца. Натуральные овощи, фрукты, ягоды, темный шоколад с минимальным добавлением сахара, продукты, содержащие злаки, обогащают рацион энергией и способствуют нормальной работе всего организма.

Специальные смеси линейки Nutrien содержат более полезные сложные углеводы. Из этих смесей можно приготовить напиток, который даст вам энергию, полноценный белок, витамины и микроэлементы.

Среди продуктов Nutrien есть смеси, которые подойдут и здоровым людям старше 1 года, и тем, кому нужна специальная диета из-за болезни.

Влияние генетики на обмен жиров и углеводов

Исследования ДНК и полная расшифровка генома человека в 2003 году позволили найти ответы на многие вопросы. Один из них – почему одни люди страдают от ожирения и не могут сбросить лишний вес даже при помощи диет и физических нагрузок, а другие остаются стройными безо всяких усилий. Отвечает на этот вопрос наука нутригенетика, которая изучает влияние генов на метаболизм, в том числе на расщепление и усвоение жиров и углеводов.

Как связана генетика и жировой обмен

Жиры являются одним из основных источников энергии для человеческого организма. Помимо этого, они оказывают влияние на иммунитет, являются предшественниками многих синтезируемых гормонов, витаминов и других незаменимых веществ, необходимых для полноценной работы органов и тканей. Для каждого человека суточная потребность в них индивидуальна и определяется генотипом.

Для этих целей проводят исследование генов:

  • FABP2 – кодирует белок, связывающий в кишечнике жирные кислоты, способствующий их активному транспорту сквозь клеточные мембраны и усвоению. Нежелательный полиморфизм FABP2 вызывает усиление транспорта жиров в кишечнике, устойчивость к инсулину, повышение уровня холестерина, жирных кислот и сахара в крови. В этом случае увеличивается вероятность развития ожирения и сахарного диабета 2-го типа.
  • PPARG – кодирует белок, участвующий в делении жировых клеток и обеспечивающий увеличение их размеров при появлении жиров в крови, отвечает за развитие атеросклероза. Менее благоприятный вариант PPARG приводит к усилению накоплений в жировых клетках и повышению общего уровня холестерина.
  • CD36 – кодирует белок, отвечающий за распознавание жиров в пище и усвоение их в кишечнике. Полиморфизм CD36 приводит к нарушению восприятия жирных кислот и неосознанному увеличению количества их потребления.

Как генетика регулирует углеводный обмен

Вторым значимым источником энергии в организме человека являются углеводы. Они необходимы для нормальной деятельности центральной нервной системы и мышц, а также играют важную роль в регуляции белкового и жирового обмена.

Для того, чтобы понять, как в человеческом организме происходит обмен углеводов, анализируют гены:

  • АDRB2 – кодирует белок, взаимодействующий с адреналином и увеличивающий скорость расщепления сахаров в печени и мышцах. Полиморфизм АDRB2 приводит к снижению скорости расходования запасов углеводов в клетках.
  • TCF7L2 – кодирует белок, участвующий в процессе секреции инсулина в поджелудочной железе и реакции снижения уровня глюкозы в крови при ее поступлении в организм. Менее благоприятный полиморфизм TCF7L2 способствует снижению выработки инсулина при появлении глюкозы в крови и повышает риск развития сахарного диабета 2-го типа.

Сделайте анализ ДНК в нашей компании. Мы проводим генетические исследования всех ключевых генов, отвечающих за метаболизм, и дадим ответы на вопросы – какие продукты и в каком количестве должны быть в ежедневном рационе, что следует исключить из питания и есть ли вероятность набора лишнего веса.

4.4: Функции углеводов в организме

Цели обучения

  • Перечислите четыре основные функции углеводов в организме человека.

В организме человека есть пять основных функций углеводов. Они производят энергию, накапливают энергию, строят макромолекулы, экономят белок и способствуют метаболизму липидов.

Производство энергии

Основная роль углеводов — снабжать энергией все клетки организма.Многие клетки предпочитают глюкозу как источник энергии по сравнению с другими соединениями, такими как жирные кислоты. Некоторые клетки, такие как красные кровяные тельца, способны производить клеточную энергию только из глюкозы. Мозг также очень чувствителен к низким уровням глюкозы в крови, потому что он использует только глюкозы для выработки энергии и функционирования (если только не в условиях крайнего голодания). Около 70 процентов глюкозы, поступающей в организм в результате пищеварения, перераспределяется (печенью) обратно в кровь для использования другими тканями.Клетки, которым требуется энергия, удаляют глюкозу из крови с помощью транспортного белка в своих мембранах. Энергия глюкозы поступает из химических связей между атомами углерода. Энергия солнечного света требовалась для образования этих высокоэнергетических связей в процессе фотосинтеза. Клетки нашего тела разрывают эти связи и захватывают энергию для клеточного дыхания. Клеточное дыхание — это, по сути, контролируемое сжигание глюкозы по сравнению с неконтролируемым сжиганием. Клетка использует множество химических реакций на нескольких ферментативных стадиях, чтобы замедлить выделение энергии (без взрыва) и более эффективно улавливать энергию, удерживаемую в химических связях в глюкозе.

Первая стадия распада глюкозы называется гликолизом, который происходит в сложной серии из десяти стадий ферментативных реакций. Второй этап распада глюкозы происходит в органеллах энергетической фабрики, называемых митохондриями. Один атом углерода и два атома кислорода удаляются, что дает больше энергии. Энергия от этих углеродных связей переносится в другую область митохондрий, делая клеточную энергию доступной в той форме, которую клетки могут использовать.

Клеточное дыхание — это процесс извлечения энергии из глюкозы.

Накопитель энергии

Если у тела уже достаточно энергии для поддержания своих функций, избыток глюкозы откладывается в виде гликогена (большая часть которого хранится в мышцах и печени). Молекула гликогена может содержать более пятидесяти тысяч отдельных единиц глюкозы и сильно разветвлена, что позволяет быстро распространять глюкозу, когда она необходима для выработки клеточной энергии (рисунок \ (\ PageIndex {1} \)).

Рисунок \ (\ PageIndex {1} \) : Структура гликогена обеспечивает его быструю мобилизацию в свободную глюкозу для питания клеток.

Количество гликогена в организме в любой момент времени эквивалентно примерно 4000 килокалорий — 3000 в мышечной ткани и 1000 в печени. Длительное использование мышц (например, упражнения более нескольких часов) может истощить запас энергии гликогена. Это называется «удар о стену» или «удары ногами» и характеризуется утомляемостью и снижением работоспособности. Ослабление мышц наступает потому, что для преобразования химической энергии жирных кислот и белков в полезную энергию требуется больше времени, чем для глюкозы.После продолжительных упражнений гликоген уходит, и мышцы должны больше полагаться на липиды и белки как на источник энергии. Спортсмены могут незначительно увеличить свой запас гликогена, снизив интенсивность тренировок и увеличив потребление углеводов до 60-70 процентов от общего количества калорий за три-пять дней до соревнований. Людям, которые не занимаются жесткими тренировками и предпочитают пробегать 5-километровый забег ради развлечения, не нужно есть большую тарелку пасты перед гонкой, поскольку без длительных интенсивных тренировок не произойдет адаптации повышенного гликогена в мышцах.

Печень, как и мышца, может накапливать энергию глюкозы в виде гликогена, но в отличие от мышечной ткани она жертвует накопленную энергию глюкозы другим тканям тела, когда уровень глюкозы в крови низкий. Примерно четверть общего содержания гликогена в организме находится в печени (что эквивалентно примерно четырехчасовому запасу глюкозы), но это сильно зависит от уровня активности. Печень использует этот запас гликогена как способ поддерживать уровень глюкозы в крови в узком диапазоне между приемами пищи.Когда запасы гликогена в печени истощаются, глюкоза производится из аминокислот, полученных в результате разрушения белков, чтобы поддерживать метаболический гомеостаз.

Строительные макромолекулы

Хотя большая часть поглощенной глюкозы используется для производства энергии, некоторая часть глюкозы превращается в рибозу и дезоксирибозу, которые являются важными строительными блоками важных макромолекул, таких как РНК, ДНК и АТФ (Рисунок \ (\ PageIndex {2} \)). Глюкоза дополнительно используется для образования молекулы НАДФН, который важен для защиты от окислительного стресса и используется во многих других химических реакциях в организме.Если вся энергия, способность накапливать гликоген и потребности организма в строительстве удовлетворяются, избыток глюкозы может быть использован для производства жира. Вот почему диета с высоким содержанием углеводов и калорий может прибавить лишнего веса — тема, которая будет обсуждаться в ближайшее время.

Рисунок \ (\ PageIndex {2} \) : Дезоксирибоза из молекулы сахара используется для построения основы ДНК. © Shutterstock

Экономный белок

В ситуации, когда не хватает глюкозы для удовлетворения потребностей организма, глюкоза синтезируется из аминокислот.Поскольку молекулы для хранения аминокислот отсутствуют, этот процесс требует разрушения белков, в первую очередь из мышечной ткани. Наличие адекватного количества глюкозы в основном предохраняет расщепление белков от использования для производства глюкозы, необходимой организму.

По мере повышения уровня глюкозы в крови использование липидов в качестве источника энергии подавляется. Таким образом, глюкоза дополнительно «сберегает жир». Это связано с тем, что повышение уровня глюкозы в крови стимулирует высвобождение гормона инсулина, который говорит клеткам использовать глюкозу (вместо липидов) для производства энергии.Достаточный уровень глюкозы в крови также предотвращает развитие кетоза. Кетоз — это метаболическое состояние, возникающее в результате повышения содержания кетоновых тел в крови. Кетоновые тела — это альтернативный источник энергии, который клетки могут использовать при недостаточном поступлении глюкозы, например, во время голодания. Кетоновые тела являются кислыми, и высокое содержание в крови может привести к тому, что она станет слишком кислой. Это редко встречается у здоровых взрослых, но может возникать у алкоголиков, людей, страдающих от недоедания, и у людей с диабетом 1 типа.Минимальное количество углеводов в рационе, необходимое для подавления кетоза у взрослых, составляет 50 граммов в день.

Углеводы имеют решающее значение для поддержки самой основной функции жизни — производства энергии. Без энергии никакие другие жизненные процессы не выполняются. Хотя наш организм может синтезировать глюкозу, это происходит за счет разрушения белка. Однако, как и все питательные вещества, углеводы следует потреблять в умеренных количествах, поскольку их слишком много или слишком мало в рационе может привести к проблемам со здоровьем.

Основные выводы

  • Четыре основные функции углеводов в организме — обеспечивать энергию, накапливать энергию, строить макромолекулы и сберегать белок и жир для других целей.
  • Энергия глюкозы хранится в виде гликогена, большая часть которого находится в мышцах и печени. Печень использует свой запас гликогена, чтобы поддерживать уровень глюкозы в крови в узком диапазоне между приемами пищи. Некоторая глюкоза также используется в качестве строительных блоков важных макромолекул, таких как РНК, ДНК и АТФ.
  • Наличие достаточного количества глюкозы в организме предохраняет расщепление белков от использования для производства глюкозы, необходимой организму.

Обсуждение стартеров

  1. Обсудите две причины, по которым необходимо включать углеводы в свой рацион.
  2. Почему организму необходимо экономить белок?

Метаболические эффекты диет с очень низким содержанием углеводов: неправильно понятые «злодеи» метаболизма человека | Журнал Международного общества спортивного питания

  • 1.

    St Jeor ST, Howard BV, Prewitt E: Диетический белок и снижение веса: заявление для профессионалов здравоохранения от Комитета по питанию Совета по питанию, физической активности и метаболизму Американской кардиологической ассоциации. Тираж. 2001, 104: 1869–1874. 10.1161 / hc4001.096152.

    CAS Статья Google ученый

  • 2.

    МакАрдл В.Д., Катч Ф.И., Катч В.Л.: Физиология упражнений: энергия, питание и работоспособность человека.2001, Филадельфия: Липпинкотт Уильямс и Уилкинс

    Google ученый

  • 3.

    Goodridge AG, Sul HS: Липидный метаболизм — синтез и окисление. Биохимические и физиологические аспекты питания человека. Под редакцией: Стипанук М.Х. 2000, Филадельфия, Пенсильвания: W.B. Компания Сондерс, 305–350.

    Google ученый

  • 4.

    Уотфорд М., Гудридж АГ: Регулирование использования топлива.Биохимические и физиологические аспекты питания человека. Под редакцией: Стипанук М.Х. 2000, Филадельфия, Пенсильвания: W.B. Компания Сондерс, 384–407.

    Google ученый

  • 5.

    Salway JG: Метаболизм вкратце. 1999, Оксфорд: Blackwell Science

    Google ученый

  • 6.

    Фернстром Дж. Д., Фернстром М. Х .: Питание и мозг. Питание и обмен веществ. Отредактировано: Гибни MJ, Macdonald IA, Roche HM.2003, Оксфорд, Великобритания: Blackwell Science, 145–167.

    Google ученый

  • 7.

    Фрейн К.Н., Аканджи А.О .: Интеграция метаболизма 3: Макронутриенты. Питание и обмен веществ. Отредактировано: Гибни MJ, Macdonald IA, Roche HM. 2003, Оксфорд, Великобритания: Blackwell Science, 74–95.

    Google ученый

  • 8.

    Волек Дж. С., Шарман М. Дж., Лав Д. М.: Состав тела и гормональные реакции на диету с ограничением углеводов.Обмен веществ. 2002, 51: 864–870. 10.1053 / meta.2002.32037.

    CAS Статья Google ученый

  • 9.

    Заммит В.А.: Регуляция кетогенеза в печени. Справочник по физиологии — Раздел 7: Эндокринная система — Том II: Эндокринная поджелудочная железа и регуляция метаболизма. 2001, Оксфорд: Издательство Оксфордского университета, 659–673.

    Google ученый

  • 10.

    Бьорнторп П: Влияние кетоновых тел на липолиз жировой ткани in vitro.J Lipid Res. 1966, 7: 621–626.

    PubMed Google ученый

  • 11.

    Вич Р.Л .: Терапевтическое значение кетоновых тел: эффекты кетоновых тел при патологических состояниях: кетоз, кетогенная диета, окислительно-восстановительные состояния, инсулинорезистентность и митохондриальный метаболизм. Простагландины Leukot Essent Fatty Acids. 2004, 70: 309–19. 10.1016 / j.plefa.2003.09.007.

    CAS Статья Google ученый

  • 12.

    Burke LM: Питание для тренировок и соревнований. Физиологические основы спортивных достижений. Отредактировано: Hargreaves M, Hawley J. 2003, Австралия: Mc-Graw-Hill Australia, 152–182.

    Google ученый

  • 13.

    Westman EC: Важны ли диетические углеводы для питания человека ?. Am J Clin Nutr. 2002, 75: 951–954.

    CAS Статья Google ученый

  • 14.

    Фейнман Р.Д., Маковске М.: Метаболический синдром и низкоуглеводные кетогенные диеты в программе биохимии медицинских вузов.Metab Synd Relat Disord. 2003, 1: 189–197. 10.1089 / 1540412716660.

    CAS Статья Google ученый

  • 15.

    Veech RL, Chance B, Kashiwaya Y: Кетоновые тела: терапевтическое применение. IUBMB Life. 2001, 51: 241–247.

    CAS Статья Google ученый

  • 16.

    Сато К., Кашивая Ю., Кеон К.А.: Инсулин, кетоновые тела и митохондриальная трансдукция энергии. FASEB J.1995, 9: 651–658.

    CAS Статья Google ученый

  • 17.

    Макдональд И.А.: Углеводы как питательное вещество для взрослых: допустимый диапазон потребления. Eur J Clin Nutr. 1999, 53: S101–106. 10.1038 / sj.ejcn.1600750.

    Артикул Google ученый

  • 18.

    Willett WC: Диеты с пониженным содержанием углеводов: нет возможности контролировать вес ?. Ann Intern Med. 2004, 140: 836–837.

    Артикул Google ученый

  • 19.

    Ginsberg HN, Karmally W: Питание, липиды и сердечно-сосудистые заболевания. Биохимические и физиологические аспекты питания человека. Под редакцией: Стипанук М.Х. 2000, Филадельфия, Пенсильвания: W.B. Компания Сондерс, 917–944.

    Google ученый

  • 20.

    Альджада А., Моханти П., Дандона П.: Липиды, углеводы и болезни сердца. Metab Synd и Relat Disord. 2003, 1: 185–188. 10.1089 / 1540412716651.

    CAS Статья Google ученый

  • 21.

    Сонксен PH: инсулин, гормон роста и спорт. J Endocrinol. 2001, 170: 13–25. 10.1677 / joe.0.1700013.

    CAS Статья Google ученый

  • 22.

    Робергс Р.А., Робертс С.О .: Фундаментальные принципы физиологии упражнений для фитнеса, производительности и здоровья. 2000, Нью-Йорк: Макгроу-Хилл

    Google ученый

  • 23.

    Хочачка П.В., Дрессендорфер Р.Х .: Накопление сукцината у человека во время физических упражнений.Eur J Appl Physiol. 1976, 35: 235–242. 10.1007 / BF00423282.

    CAS Статья Google ученый

  • 24.

    Ди Паскуале MG: аминокислоты и белки для спортсменов: анаболическое преимущество. 1997, Бока-Ратон, Флорида: CRC Press

    Google ученый

  • 25.

    Айви Дж. Л., Рес П. Т., Спраг Р. К., Видзер Миссури: Влияние углеводно-белковой добавки на выносливость во время упражнений различной интенсивности.Int J Sport Nutr Exerc Exerc Metab. 2003, 13: 382–95.

    CAS Статья Google ученый

  • 26.

    Сондерс MJ, Kane MD, Todd MK: Влияние углеводно-белкового напитка на выносливость при езде на велосипеде и повреждение мышц. Медико-спортивные упражнения. 2004, 36: 1233–8. 10.1249 / 01.MSS.0000132377.66177.9F.

    CAS Статья Google ученый

  • Углеводный метаболизм — обзор

    11.10 Энергетика углеводного обмена

    Пути углеводного обмена соответствуют принципам термодинамики (Глава 10). Каждый путь в целом экзергонический. Например, согласно расчетам по термодинамическим данным, разложение глюкозы до двух молекул лактата происходит с высвобождением свободной энергии в соответствии с уравнением:

    Глюкоза → 2 лактат + 2H + ;

    Δ G 0 ‘= — 196,6 кДж моль −1

    В клетках скелетных мышц млекопитающих деградация происходит согласно следующему уравнению:

    Глюкоза + 2АДФ + 2 фосфат →

    2 лактат + 2H + + 2ATP + 2H 2 O;

    Δ G 0 ’= — 135.6 кДж моль -1

    Таким образом, во время гликолиза часть высвобождаемой энергии сохраняется за счет реакций фосфорилирования на уровне субстрата, которые синтезируют АТФ. Большая часть энергии рассеивается в виде тепла.

    В таблице 11.2 указаны стандартные изменения свободной энергии для отдельных реакций гликолиза. Более половины реакций являются эндергоническими, т.е. Δ G 0 ’= + ve. Однако, когда фактические изменения свободной энергии Δ G вычисляются с использованием имеющихся данных о внутриклеточных концентрациях метаболитов, только три реакции, т.е.е. реакции триозофосфат-изомеразы, фосфоглицераткиназы и фосфоглицератмутазы требуют энергии, но в таких малых количествах, что их энергетический дефицит может быть компенсирован механизмом реакций сочетания (раздел 10.3). Для точной оценки Δ G необходимо, чтобы реакция достигла устойчивого состояния. Однако метаболический поток по путям (раздел 10.6) подразумевает, что ни одна из промежуточных реакций не находится в состоянии равновесия, поэтому значения Δ G также следует рассматривать как ограниченные, хотя и служат основой для рационализации.

    ТАБЛИЦА 11.2. Стандартная и фактическая свободная энергия изменяется во время реакций гликолиза

    133 — 1,3 133 + 2,5 9028фоглиц 9028фоглиц 6
    Фермент Изменение свободной энергии (кДж моль -1 )
    Стандарт; Δ G 0 Фактический; Δ G
    Гексокиназа — 16,7 — 33,4
    Глюкозо-6-фосфат-изомераза + 1.7 — 2,5
    6-Фосфофруктокиназа — 14,2 — 22,2
    Фруктозобисфосфат альдолаза + 23,8
    Глицеральдегид-3-фосфатдегидрогеназа + 6,3 — 1,7
    Фосфоглицераткиназа — 18,8 + 1,3
    + 0,8
    Энолаза + 1,7 — 3,3
    Пируваткиназа — 31,4 — 16,7
    9000TP cat может быть получен из нетто-анестезии глюкозы Aerobic. рассчитывается как показано в таблице 11.3. Гликолиз дает две молекулы АТФ на молекулу потребленной глюкозы.

    ТАБЛИЦА 11.3. Роль АТФ в гликолизе

    : праймирование энергия 903 Консервация 9014 903 903 903 903 903 903 903 Чистый выход АТФ = 4 — 2 = 2 молекулы
    Стадия Ферментативная реакция Изменение АТФ на одну молекулу глюкозы
    Утилизация 903 903
    Гексокиназа 1
    6-Фосфофруктокиназа 1
    Этап 2: расщепление 3 — Фосфоглицераткиназа 1 × 2 *
    Пируваткиназа 1 × 2 *
    900 02 Гликоген — это высокоэффективный способ хранения глюкозы.Только один эквивалент АТФ (то есть УТФ) используется для удлинения цепи гликогена на один остаток глюкозы. Фосфоролиз расщепляет гликоген до глюкозо-1-фосфата, который легко превращается в глюкозо-6-фосфат. Каждая глюкоза, высвобождаемая системой разветвления, фосфорилируется в глюкозо-6-фосфат за счет одного АТФ. В анаэробных условиях каждый глюкозо-6-фосфат будет давать три молекулы АТФ.

    Направление глюкозо-6-фосфата в пентозофосфатный путь снижает прямой выход АТФ во время окисления до пирувата, поскольку три молекулы глюкозо-6-фосфата генерируют только восемь молекул АТФ.

    В глюконеогенезе пируваткиназа обходится многоступенчатым путем, который в стандартных условиях требует всего 0,84 кДж моль -1 . С учетом реальных внутриклеточных условий реакция является экзэргонической (Δ G ≈ — 25 кДж моль -1 ). Реакции дефосфорилирования, катализируемые фруктозобисфосфатазой и глюкозо-6-фосфатазой, обеспечивают экзергонические реакции, которые обращают экзергонические гликолитические реакции по другому механизму. Однако следует отметить, что АТФ участвует в реакции фосфорилирования, тогда как гидролитическое расщепление фосфатной группы высвобождает энергию в противоположной реакции (Рисунок 11.11).

    Глюконеогенез из пирувата — это энергоемкий процесс. Обход пируваткиназы использует АТФ на стадии пируваткарбоксилазы и GTP (эквивалент АТФ) на стадии карбоксикиназы PEP. Обращение реакций фосфоглицераткиназы и глицеральдегид-3-фосфатдегидрогеназы потребляет АТФ и НАДН соответственно. Для получения глицеральдегид-3-фосфата из пирувата требуется три АТФ. Для производства одной глюкозы необходимы два глицеральдегид-3-фосфата. Таким образом, для синтеза глюкозы из пирувата требуется шесть АТФ.Гликолиз дает только два АТФ, поэтому глюконеогенез следует рассматривать как энергетически затратный, что имеет фундаментальное значение для голодающего человека.

    Что такое метаболизм?

    Метаболизм — это термин, который используется для описания всех химических реакций, участвующих в поддержании живого состояния клеток и организма. Обмен веществ можно условно разделить на две категории:

    • Катаболизм — распад молекул для получения энергии
    • Анаболизм — синтез всех соединений, необходимых клеткам

    Метаболизм тесно связан с питанием и доступностью питательных веществ.Биоэнергетика — это термин, который описывает биохимические или метаболические пути, с помощью которых клетка в конечном итоге получает энергию. Образование энергии — один из важнейших компонентов обмена веществ.

    Изображение предоставлено: VectorMine / Shutterstock.com

    Питание, обмен веществ и энергия

    Питание — это ключ к метаболизму. Пути метаболизма зависят от питательных веществ, которые они расщепляют, чтобы произвести энергию. Эта энергия, в свою очередь, требуется организму для синтеза таких молекул, как новые белки и нуклеиновые кислоты (ДНК, РНК).

    Питательные вещества, связанные с метаболизмом, включают такие факторы, как потребности организма в различных веществах, индивидуальные функции организма, необходимое количество и уровень, ниже которого ухудшается состояние здоровья.

    Основные питательные вещества обеспечивают энергию (калории) и поставляют необходимые химические вещества, которые сам организм не может синтезировать. Пища содержит множество веществ, которые необходимы для построения, содержания и восстановления тканей тела, а также для эффективного функционирования организма.

    Диета нуждается в основных питательных веществах, таких как углерод, водород, кислород, азот, фосфор, сера и около 20 других неорганических элементов. Основные элементы представлены углеводами, липидами и белком. Кроме того, необходимы витамины, минералы и вода.

    Углеводы в обмене веществ

    Продукты питания содержат углеводы в трех формах: крахмал, сахар и целлюлозу (клетчатку). Крахмал и сахар являются основными и необходимыми источниками энергии для человека. Волокна способствуют увеличению объема рациона.

    Ткани организма зависят от глюкозы во всех сферах деятельности. Углеводы и сахара производят глюкозу в результате пищеварения или метаболизма.

    Общая реакция горения глюкозы записывается как:

    C 6 H 12 O 6 + 6 O 2 ——> 6 CO 2 + 6 H 2 O + энергия

    Большинство людей потребляют около половины своего рациона в виде углеводов. Это происходит из таких продуктов, как рис, пшеница, хлеб, картофель и макаронные изделия.

    Белки в обмене веществ

    Белки являются основными строителями тканей в организме. Они являются частью каждой клетки тела. Белки помогают в структуре клеток, функциях, формировании гемоглобина для переноса кислорода, ферментах для выполнения жизненно важных реакций и множестве других функций в организме. Белки также жизненно важны для снабжения азотом генетического материала ДНК и РНК и производства энергии.

    Белки необходимы для питания, так как содержат аминокислоты. Из 20 или более аминокислот человеческий организм не может синтезировать 8, и они называются незаменимыми аминокислотами.

    К незаменимым аминокислотам относятся:

    • Лизин
    • Триптофан
    • метионин
    • Лейцин
    • Изолейцин
    • Фенилаланин
    • Валин
    • Треонин

    Продукты с высоким содержанием белка: яйца, молоко, соевые бобы, мясо, овощи и зерновые.

    Жир в обмене веществ

    Жиры — это концентрированные источники энергии. Они производят в два раза больше энергии, чем углеводы или белки, в пересчете на вес.

    Функции жиров включают:

    • Помогает формировать клеточную структуру;
    • Образует защитную подушку и изоляцию вокруг жизненно важных органов;
    • Помогает усвоить жирорастворимые витамины,
    • Обеспечение резервного хранилища энергии

    Незаменимые жирные кислоты включают ненасыщенные жирные кислоты, такие как линолевая, линоленовая и арахидоновая кислоты. Их нужно принимать с пищей. Насыщенные жиры, наряду с холестерином, участвуют в артериосклерозе и сердечных заболеваниях.

    Минералы и витамины в обмене веществ

    Минералы, содержащиеся в пищевых продуктах, не вносят непосредственного вклада в энергетические потребности, но важны как регуляторы организма и играют роль в метаболических путях организма. В организме человека содержится более 50 элементов. Было обнаружено, что незаменимыми являются около 25 элементов, а это означает, что их дефицит вызывает определенные симптомы дефицита.

    Важные минералы включают:

    • Кальций
    • фосфор
    • Утюг
    • Натрий
    • Калий
    • Хлорид-ионы
    • Медь
    • Кобальт
    • Марганец
    • Цинк
    • Магний
    • Фтор
    • Йод

    Витамины — это важные органические соединения, которые человеческий организм не может синтезировать сам по себе, и поэтому они должны присутствовать в рационе.Витамины, особенно важные для обмена веществ, включают:

    • Витамин А
    • B2 (рибофлавин)
    • Ниацин или никотиновая кислота
    • Пантотеновая кислота

    Изображение предоставлено: Siberian Art / Shutterstock.com

    Метаболические пути

    Химические реакции метаболизма организованы в метаболические пути. Они позволяют преобразовать основные химические вещества из пищевых продуктов с помощью ряда ферментов в другие химические вещества.

    Ферменты имеют решающее значение для метаболизма, потому что они позволяют организмам проводить желательные реакции, требующие энергии. Эти реакции также связаны с реакциями, высвобождающими энергию. Поскольку ферменты действуют как катализаторы, они позволяют этим реакциям протекать быстро и эффективно. Ферменты также позволяют регулировать метаболические пути в ответ на изменения в клеточной среде или сигналы от других клеток.

    Список литературы

    Дополнительная литература

    Функции углеводов в организме — питание человека [УСТАРЕЛО]

    В организме человека есть пять основных функций углеводов.Они производят энергию, накапливают энергию, строят макромолекулы, экономят белок и способствуют метаболизму липидов.

    Производство энергии

    Основная роль углеводов — снабжать энергией все клетки организма. Многие клетки предпочитают глюкозу как источник энергии по сравнению с другими соединениями, такими как жирные кислоты. Некоторые клетки, такие как красные кровяные тельца, способны производить клеточную энергию только из глюкозы. Мозг также очень чувствителен к низким уровням глюкозы в крови, потому что он использует только глюкозу для выработки энергии и функционирования (если только не в условиях крайнего голодания).Около 70 процентов глюкозы, поступающей в организм в результате пищеварения, перераспределяется (печенью) обратно в кровь для использования другими тканями. Клетки, которым требуется энергия, удаляют глюкозу из крови с помощью транспортного белка в своих мембранах. Энергия глюкозы поступает из химических связей между атомами углерода. Энергия солнечного света требовалась для образования этих высокоэнергетических связей в процессе фотосинтеза. Клетки нашего тела разрывают эти связи и захватывают энергию для клеточного дыхания.Клеточное дыхание — это, по сути, контролируемое сжигание глюкозы по сравнению с неконтролируемым сжиганием. Клетка использует множество химических реакций на нескольких ферментативных стадиях, чтобы замедлить выделение энергии (без взрыва) и более эффективно улавливать энергию, удерживаемую в химических связях в глюкозе.

    Первая стадия распада глюкозы называется гликолизом. Гликолиз или расщепление глюкозы происходит в запутанной серии из десяти стадий ферментативных реакций. Второй этап распада глюкозы происходит в органеллах энергетической фабрики, называемых митохондриями.Один атом углерода и два атома кислорода удаляются, что дает больше энергии. Энергия от этих углеродных связей переносится в другую область митохондрий, делая клеточную энергию доступной в той форме, которую клетки могут использовать.

    Рисунок 4.10 Клеточное дыхание

    Клеточное дыхание — это процесс извлечения энергии из глюкозы.

    Накопитель энергии

    Если в организме уже достаточно энергии для поддержания своих функций, избыток глюкозы сохраняется в виде гликогена (большая часть которого хранится в мышцах и печени).Молекула гликогена может содержать более пятидесяти тысяч отдельных единиц глюкозы и сильно разветвлена, что позволяет быстро распространять глюкозу, когда она необходима для выработки клеточной энергии.

    Количество гликогена в организме в любой момент времени эквивалентно примерно 4000 килокалорий — 3000 в мышечной ткани и 1000 в печени. Длительное использование мышц (например, упражнения более нескольких часов) может истощить запас энергии гликогена. Помните, что это называется «ударом о стену» или «ударом о стену» и характеризуется утомляемостью и снижением работоспособности.Ослабление мышц наступает потому, что для преобразования химической энергии жирных кислот и белков в полезную энергию требуется больше времени, чем для глюкозы. После продолжительных упражнений гликоген уходит, и мышцы должны больше полагаться на липиды и белки как на источник энергии. Спортсмены могут незначительно увеличить свой запас гликогена, снизив интенсивность тренировок и увеличив потребление углеводов до 60-70 процентов от общего количества калорий за три-пять дней до соревнований. Людям, которые не занимаются жесткими тренировками и предпочитают пробегать 5-километровый забег ради развлечения, не нужно есть большую тарелку пасты перед гонкой, поскольку без длительных интенсивных тренировок не произойдет адаптации повышенного гликогена в мышцах.

    Печень, как и мышца, может накапливать энергию глюкозы в виде гликогена, но в отличие от мышечной ткани она жертвует накопленную энергию глюкозы другим тканям тела, когда уровень глюкозы в крови низкий. Примерно четверть общего содержания гликогена в организме находится в печени (что эквивалентно примерно четырехчасовому запасу глюкозы), но это сильно зависит от уровня активности. Печень использует этот запас гликогена как способ поддерживать уровень глюкозы в крови в узком диапазоне между приемами пищи.Когда запасы гликогена в печени истощаются, глюкоза производится из аминокислот, полученных в результате разрушения белков, чтобы поддерживать метаболический гомеостаз.

    Строительные макромолекулы

    Хотя большая часть поглощенной глюкозы используется для производства энергии, некоторая часть глюкозы превращается в рибозу и дезоксирибозу, которые являются важными строительными блоками важных макромолекул, таких как РНК, ДНК и АТФ. Глюкоза дополнительно используется для образования молекулы НАДФН, который важен для защиты от окислительного стресса и используется во многих других химических реакциях в организме.Если вся энергия, способность накапливать гликоген и потребности организма в строительстве удовлетворяются, избыток глюкозы может быть использован для производства жира. Вот почему диета с высоким содержанием углеводов и калорий может прибавить лишнего веса — тема, которая будет обсуждаться в ближайшее время.

    Рисунок 4.11 Химическая структура дезоксирибозы

    Дезоксирибоза из молекулы сахара используется для построения основы ДНК. Изображение rozeta / CC BY-SA 3.0

    Рис. 4.12 Двухцепочечная ДНК

    Изображение Forluvoft / Public Domain

    В ситуации, когда не хватает глюкозы для удовлетворения потребностей организма, глюкоза синтезируется из аминокислот.Поскольку молекулы для хранения аминокислот отсутствуют, этот процесс требует разрушения белков, в первую очередь из мышечной ткани. Наличие адекватного количества глюкозы в основном предохраняет расщепление белков от использования для производства глюкозы, необходимой организму.

    По мере повышения уровня глюкозы в крови использование липидов в качестве источника энергии подавляется. Таким образом, глюкоза дополнительно «сберегает жир». Это связано с тем, что повышение уровня глюкозы в крови стимулирует высвобождение гормона инсулина, который говорит клеткам использовать глюкозу (вместо липидов) для производства энергии.Достаточный уровень глюкозы в крови также предотвращает развитие кетоза. Кетоз — это метаболическое состояние, возникающее в результате повышения содержания кетоновых тел в крови. Кетоновые тела — это альтернативный источник энергии, который клетки могут использовать при недостаточном поступлении глюкозы, например, во время голодания. Кетоновые тела являются кислыми, и высокое содержание в крови может привести к тому, что она станет слишком кислой. Это редко встречается у здоровых взрослых, но может возникать у алкоголиков, людей, страдающих от недоедания, и у людей с диабетом 1 типа.Минимальное количество углеводов в рационе, необходимое для подавления кетоза у взрослых, составляет 50 граммов в день.

    Углеводы имеют решающее значение для поддержки самой основной функции жизни — производства энергии. Без энергии никакие другие жизненные процессы не выполняются. Хотя наш организм может синтезировать глюкозу, это происходит за счет разрушения белка. Однако, как и все питательные вещества, углеводы следует потреблять в умеренных количествах, поскольку их слишком много или слишком мало в рационе может привести к проблемам со здоровьем.

    Как организм использует углеводы, белки и жиры: Diabetes Forecast®

    Человеческое тело прекрасно справляется с любой доступной пищей. Наша способность выживать при помощи разнообразных диет была жизненно важной адаптацией для видов, которые развивались в условиях, когда источники пищи были скудными и непредсказуемыми. Представьте себе, если бы вам пришлось зависеть от успешной охоты на шерстистого мамонта или наткнуться на ягодный куст для пропитания!

    Сегодня калорий в основном дешево и много — возможно, даже слишком много.Понимание того, что могут предложить основные макроэлементы, может помочь нам сделать лучший выбор, когда дело доходит до нашей собственной диеты.

    С того момента, как кусок пищи попадает в рот, каждый кусочек пищи внутри начинает расщепляться для использования организмом. Так начинается процесс метаболизма, серия химических реакций, которые превращают пищу в компоненты, которые можно использовать для основных процессов организма. Белки, углеводы и жиры перемещаются по пересекающимся комплексам метаболических путей, которые уникальны для каждого основного питательного вещества.По сути, если все три питательных вещества присутствуют в рационе в изобилии, углеводы и жиры будут использоваться в основном для получения энергии, а белки являются сырьем для производства гормонов, мышц и другого необходимого биологического оборудования.

    Белок

    Белки в пище расщепляются на части (называемые аминокислотами), которые затем используются для создания новых белков с определенными функциями, такими как катализатор химических реакций, облегчение связи между различными клетками или транспортировка биологических молекул отсюда туда.При нехватке жиров или углеводов белки также могут давать энергию.

    Жир

    Жиры обычно обеспечивают более половины потребностей организма в энергии. Жир из пищи расщепляется на жирные кислоты, которые могут перемещаться в крови и захватываться голодными клетками. Жирные кислоты, которые не нужны сразу, упаковываются в связки, называемые триглицеридами, и хранятся в жировых клетках, которые обладают неограниченной емкостью. «Мы действительно хорошо храним жир», — говорит Джудит Вайли-Розетт, Эдд, доктор медицинских наук, профессор исследований поведения и питания в Медицинском колледже Альберта Эйнштейна.

    Углеводы

    Углеводы, с другой стороны, могут храниться только в ограниченных количествах, поэтому организм стремится использовать их для получения энергии. «Мы думаем об углеводах как о [питательном веществе], которое используется в первую очередь», — говорит Эрик Вестман, доктор медицинских наук, директор клиники медицины образа жизни в Медицинском центре Университета Дьюка. «Мы можем хранить углеводы только день или два». Углеводы в пище перевариваются на мелкие кусочки — либо глюкозу, либо сахар, который легко превращается в глюкозу, — которые могут всасываться через стенки тонкой кишки.После быстрой остановки в печени глюкоза попадает в систему кровообращения, вызывая повышение уровня глюкозы в крови. По словам Уайли-Розетт, клетки организма поглощают это изобилие глюкозы во время еды с большей готовностью, чем жир.

    После того, как клетки наполнились глюкозой, печень сохраняет часть излишка для распределения между приемами пищи, если уровень глюкозы в крови упадет ниже определенного порога. Если остается глюкоза сверх того, что может удержать печень, ее можно превратить в жир для длительного хранения, чтобы ничего не терять.Когда углеводов не хватает, организм в основном работает на жирах. Если потребности в энергии превышают потребности в жирах в рационе, организм должен ликвидировать часть своей жировой ткани для получения энергии.

    Хотя эти жиры являются желанным источником энергии для большей части тела, некоторые типы клеток, например, клетки мозга, нуждаются в особых. Эти клетки могут легко работать на глюкозе из рациона, но они не могут работать на жирных кислотах напрямую. Таким образом, в условиях низкого содержания углеводов эти привередливые клетки нуждаются в организме, чтобы вырабатывать жироподобные молекулы, называемые кетоновыми телами.Вот почему диета с очень низким содержанием углеводов иногда называется «кетогенной». (Кетоновые тела также связаны с опасным диабетическим осложнением, называемым кетоацидозом, которое может возникнуть при слишком низком уровне инсулина.) Кетоновые тела сами по себе могут обеспечить достаточно энергии для частей тела, которые не могут метаболизировать жирные кислоты, но для некоторых тканей по-прежнему требуется хотя бы немного глюкозы, которая обычно не производится из жира. Вместо этого глюкоза может вырабатываться в печени и почках, используя белок из других частей тела.Но будьте осторожны: если с пищей не поступает достаточно белка, организм начинает жевать мышечные клетки.

    нарушение обмена веществ | Определение, происхождение, типы и факты

    Болезнь обмена веществ , любое заболевание или расстройство, которое нарушает нормальный обмен веществ, процесс преобразования пищи в энергию на клеточном уровне. Тысячи ферментов, участвующих во множестве взаимозависимых метаболических путей, осуществляют этот процесс. Метаболические заболевания влияют на способность клетки выполнять важные биохимические реакции, которые включают переработку или транспортировку белков (аминокислот), углеводов (сахаров и крахмалов) или липидов (жирных кислот).

    Британская викторина

    44 вопроса из самых популярных викторин «Британника» о здоровье и медицине

    Что вы знаете об анатомии человека? Как насчет медицинских условий? Мозг? Вам нужно будет много знать, чтобы ответить на 44 самых сложных вопроса из самых популярных викторин Britannica о здоровье и медицине.

    Болезни обмена веществ обычно передаются по наследству, однако большинство людей, страдающих ими, могут выглядеть здоровыми в течение нескольких дней, месяцев или даже лет. Симптомы обычно появляются, когда метаболизм в организме подвергается стрессу, например, после длительного голодания или во время лихорадочного заболевания. При некоторых нарушениях обмена веществ можно пройти пренатальный диагностический скрининг. Такой анализ обычно предлагается семьям, у которых ранее был ребенок с нарушением обмена веществ или которые принадлежат к определенной этнической группе.Например, тестирование на болезнь Тея-Сакса относительно распространено среди еврейского населения ашкенази. Страны, которые проводят скрининг на метаболические заболевания при рождении, обычно проверяют до 10 различных состояний. Тандемная масс-спектрометрия — это новая технология, которая позволяет обнаруживать несколько аномальных метаболитов почти одновременно, что позволяет добавить около 30 расстройств к списку состояний, на которые могут быть проверены новорожденные. Если известно, что у ребенка нарушение обмена веществ вскоре после рождения, соответствующую терапию можно начать раньше, что может улучшить прогноз.Некоторые нарушения обмена веществ очень хорошо поддаются лечению, если лечение начато в раннем возрасте. Однако другие не имеют эффективной терапии и вызывают серьезные проблемы, несмотря на раннюю диагностику. В будущем генная терапия может оказаться успешной в лечении некоторых из этих заболеваний.

    Заболевания обмена веществ довольно редки по отдельности, но относительно часто, если рассматривать их в группе. Частота конкретных метаболических нарушений варьируется от примерно 1 на 500 (или даже выше в изолированных популяциях) до менее 1 на 1000000.Подсчитано, что метаболические нарушения затрагивают примерно 1 из 1000 человек.

    Истоки нарушения обмена веществ

    Метаболические пути

    В 1908 году британский врач сэр Арчибальд Гаррод предположил, что четыре унаследованных состояния на протяжении всей жизни — алкаптонурия, пентозурия, альбинизм и цистинурия — были вызваны дефектами конкретных биохимических путей из-за пониженной активности или полного отсутствия данного фермента. Он назвал эти нарушения «врожденными нарушениями обмена веществ».Хотя Гаррод ошибся в категоризации цистинурии, его идеи дали биохимической генетике прочную основу, и список унаследованных врожденных ошибок метаболизма быстро увеличивался. Эта статья в первую очередь касается этих наследственных метаболических заболеваний, хотя другие нарушения, включая эндокринные заболевания (например, сахарный диабет и гипотиреоз) и недоедание (например, маразм и квашиоркор), также влияют на клеточный метаболизм.

    Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишись сейчас

    Пища расщепляется клеточными ферментами (белками, которые катализируют превращение соединений, называемых субстратами) в несколько этапов в продукты с другой биохимической структурой. Затем эти продукты становятся субстратом для следующего фермента в метаболическом пути. Если фермент отсутствует или имеет пониженную активность, путь блокируется, и образование конечного продукта оказывается недостаточным, что приводит к заболеванию.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *