Какие микроэлементы: Витамины и микроэлементы, влияющие на состояние сердечно-сосудистой системы (K, Na, Сa, Mg, P, Fe, Zn, Mn, Cu, витамины B1, B5, E, B9, B12)

Содержание

Витамины и микроэлементы, влияющие на состояние сердечно-сосудистой системы (K, Na, Сa, Mg, P, Fe, Zn, Mn, Cu, витамины B1, B5, E, B9, B12)

Комплексное исследование, позволяющее оценить содержание витаминов и микроэлементов, влияющих на состояние и функционирование сердечно-сосудистой системы человека.

Синонимы русские

Витамины; микроэлементы; сердечно-сосудистая система.

Синонимы английские

Vitamins; minerals; cardiovascular system.

Метод исследования

Высокоэффективная жидкостная хроматография.

Какой биоматериал можно использовать для исследования?

Венозную кровь.

Как правильно подготовиться к исследованию?

  • Не принимать пищу в течение 8 часов до исследования, можно пить чистую негазированную воду.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Нормальное состояние и функционирование сердечно-сосудистой системы зависит от множества причин. Большую роль в нормальной работе системы играют микроэлементы и витамины. Они обеспечивают постоянство клеточного состава, работу кардиомиоцитов, процессов сокращения сердечной мышечной ткани, проведении нервного импульса, состояние сосудистой стенки. К наиболее значимым микроэлементам, влияющим на функционирование сердечно-сосудистой системы, относятся калий (K), натрий (Na), кальций (Сa), магний (Mg), фосфор (P), железо (Fe), цинк (Zn), марганец (Mn), медь (Cu).

Калий является основным внутриклеточным катионом, участвующим в водно-электролитном обмене, поддержании кислотно-основного равновесия. Он взаимодействует с другими электролитами (натрием, хлором, бикарбонатом) и участвует в поддержании заряда мембран клеток, механизмах возбуждения мышечных и нервных волокон. Натрий представляет собой катион, который присутствует во всех жидкостях и тканях организма человека. В наибольшей концентрации, около 96 %, он содержится во внеклеточной жидкости и крови. Изменение уровня калия в сыворотке крови имеет важное клиническое значение, требует своевременных мер диагностики и лечения. Гипокалиемия и гиперкалиемия характеризуются изменениями со стороны работы сердечно-сосудистой системы и имеют специфические проявления при электрокардиографическом исследовании. Повышение уровня калия может приводить к серьезным нарушениям ритма, вплоть до прогрессирующей фибрилляции желудочков сердца.

Кальций

к числу важнейших минералов организма человека. Около 99  % ионизированного кальция сосредоточено в костях и лишь менее 1  % циркулирует в крови. Концентрация кальция в цитоплазме значительно превышает его количество во внеклеточной жидкости. Он необходим для нормального сокращения сердечной мышцы, поперечно-полосатых мышц, для передачи нервного импульса, является компонентом свертывающей системы крови, каркаса костной ткани и зубов. Нарушение регуляции метаболизма кальция могут приводить к отклонениям в проводимости нервного импульса, мышечной возбудимости, сократительной способности миокарда и гладких мышц сосудистой стенки. Магний также является компонентом костной ткани, участвует в механизмах мышечных сокращений и проведении нервного импульса. По ряду эффектов является антагонистом кальция. При гипомагниемии возможно появление нарушений сердечного ритма в виде желудочковой экстрасистолии. При гипермагниемии – возникновение брадикардии, атриовентрикулярных блокад. Фосфор в составе органических и неорганических соединений участвует в метаболизме костной ткани, осуществлении нервно-мышечных сокращений, поддержании кислотно-щелочного баланса, в энергетическом обмене. Около 70-80  % фосфора в организме связано с кальцием, формируя каркас костей и зубов, 10  % находится в мышцах и около 1  % в нервной ткани. Клиническая симптоматика при гиперфосфатемии, как правило, обусловлена одновременно развивающейся гипокальциемией.

Железо является микроэлементом, входящим в состав гемоглобина, миоглобина, некоторых ферментов и других белков, которые участвуют в обеспечении тканей кислородом. В плазме крови ионы железа связаны с транспортным белком трансферрином. При дефиците железа развивается такое состояние, как анемия. Она характеризуется слабостью, головокружением, головными болями, одышкой. При повышении концентрации железа наряду с общими симптомами могут отмечаться нарушения сердечного ритма. Цинк – это микроэлемент, необходимый для нормального роста и дифференцировки клеток. Он является кофактором множества ферментов, входит в состав некоторых транскрипционных факторов и стабилизирует клеточные мембраны. При увеличении концентрации цинка отмечаются слабость, лихорадка, симптомы общей интоксикации организма, миалгии, нарушение сердечной деятельности. Марганец – это микроэлемент, необходимый для нормального формирования костной ткани, синтеза белков и регуляции клеточного метаболизма. При его повышении в крови могут отмечаться симптомы общей интоксикации, поражается множество систем и органов, в том числе печень, нервная и сердечно-сосудистая система. Отмечаются нарушения нервно-мышечной проводимости, характеризующиеся различными нарушениями ритма. Медь входит в состав многих ферментов, которые принимают участие в метаболизме железа, формировании соединительной ткани, выработке энергии на клеточном уровне, в нормальном функционировании нервной системы. При избытке меди отмечаются симптомы интоксикации. Недостаток меди может привести к развитию тяжелой анемии, характеризующейся наличием дефектных эритроцитов.

Витамины – это органические низкомолекулярные биологические вещества, которые не синтезируются в организме человека и поэтому должны поступать с пищей. Они обеспечивают нормальные метаболические процессы в организме и играют большую роль в профилактике и лечении многих заболеваний. По биохимическим свойствам все витамины делятся на две группы: жирорастворимые и водорастворимые. Жирорастворимые витамины способны всасываться в кишечнике только при наличии липидов и желчных кислот. Водорастворимые витамины не накапливаются в тканях, и их избыток удаляется из организма с мочой.

Витамин В1 (тиамин) относится к водорастворимым витамином, является кофактором в реакциях декарбоксилирования аминокислот, превращения пирувата в ацетилкоэнзим А; играет роль в углеводном обмене; принимает участие в передаче нервного импульса. Нарушения в сердечно-сосудистой системе проявляются одышкой, тахикардией, повышением артериального давления, отеками.

Витамин В5 (пантотеновая кислота) является водорастворимым, входит в состав коэнзима А, необходимого для обмена жиров, углеводов, синтеза холестерола, стероидных гормонов, гемоглобина. При недостатке этого витамина поражаются практически все системы и органы организма человека, развивается слабость, потеря веса, анемии, появляются симптомы поражения нервной и костно-мышечной систем.

Витамин В9 (фолиевая кислота) – водорастворимый витамин, необходимый для синтеза нуклеиновых кислот, некоторых аминокислот, белков, фосфолипидов, повышает всасывание витамина В12. При нехватке фолиевой кислоты могут отмечаться нарушения в виде мегалобластной анемии, глоссита, эзофагита, атрофического гастрита, энтерита. Отмечается слабость сосудистой стенки, проявляющаяся кровоточивостью слизистых оболочек.

Витамин В12 (цианокобаламин)

относится к группе водорастворимых витаминов. Он необходим для синтеза нуклеиновых кислот, образования эритроцитов, клеточного и тканевого обменов, участвует в поддержании нормального функционирования нервной системы. Недостаточность витамина приводит к развитию злокачественной (пернициозной) макроцитарной анемии.

Витамин Е (токоферол) представляет собой группу из нескольких соединений, относится к группе жирорастворимых витаминов и содержится в растительных маслах, зернах злаковых растений, орехах, зеленых овощах. Данный витамин входит в состав всех органов и тканей организма человека, больше всего его в жировой ткани, печени, мышцах и нервной системе. Витамин Е обладает антиоксидантной функцией, предохраняет от окисления ненасыщенные жирные кислоты, защищая от повреждения липидные структуры клеточных мембран и субклеточные структуры. Участвует в образовании гемоглобина, снижает риск развития атеросклероза и тромбозов. При дефиците данного витамина, в первую очередь, страдают ткани с высокой пролиферативной активностью и высокой интенсивностью процессов окисления: нервная ткань, мышечная ткань, эпителий половых желез, эндометрий, структуры печени, почек. Витамин Е необходим для профилактики и лечения злокачественных опухолей, сердечно-сосудистых заболеваний, атеросклероза. При гипервитаминозе отмечаются нарушения в свертывающей системе крови, тромбоцитопатии.

Для определения количественного состава микроэлементов и витаминов в сыворотке крови используется метод высокоэффективной жидкостной хроматографии. Он относится к современным хроматографическим методам анализа. Хроматография – это метод разделения и определения веществ, основанный на распределении компонентов между двумя фазами – подвижной и неподвижной. Жидкостная хроматография – метод разделения и анализа сложных смесей веществ, в котором подвижной фазой является жидкость. Он позволяет разделить и выявить количественно более широкий круг веществ с различной молекулярной массой и размерами.

Для чего используется исследование?

  • Для диагностики концентрации микроэлементов и витаминов, влияющих на состояние и функционирование сердечно-сосудистой системы человека;
  • для диагностики недостатка или избытка исследуемых микроэлементов/витаминов.

Когда назначается исследование?

  • При симптомах недостатка микроэлементов и/или витаминов, характеризующихся нарушением деятельности сердечно-сосудистой системы;
  • при симптомах токсического действия витаминов и микроэлементов при их избыточном содержании;
  • при клинических признаках моно- или поливитаминной недостаточности, недостаточности микроэлементов в результате нарушения питания, нарушения всасывания, гипотрофиях, при парентеральном питании.

Что означают результаты?

Референсные значения

Селен в сыворотке: 23 — 190 мкг/л

Кобальт в сыворотке: 0,1 — 0,4 мкг/л

Хром в сыворотке: 0,05 — 2,1 мкг/л

Цинк в сыворотке: 650 — 2910 мкг/л

Никель в сыворотке: 0,6 — 7,5 мкг/л

Марганец в сыворотке: 0 — 2 мкг/л

Железо в сыворотке: 270 — 2930 мкг/л

Витамин В12 (цианокобаламин): 189 — 833 пг/мл

Витамин B9 (фолиевая кислота): 2,5 — 15 нг/мл

Витамин А (ретинол): 0,3 — 0,8 мкг/мл

Витамин С (аскорбиновая кислота): 4 — 20 мкг/мл

Фосфор: 22 — 517,1 мг/л

Причины повышения:

  • нарушение метаболизма микроэлементов и витаминов;
  • избыточное поступление микроэлементов;
  • нарушение баланса микроэлементов;
  • пероральное или парентеральное введение препаратов витаминов.

Причины понижения:

  • недостаточное поступление микроэлементов в организм человека;
  • недостаточное поступление и всасывание витаминов в организме;
  • повышенное использование микроэлементов, нарушение их баланса в организме;
  • повышенное использование витаминов в метаболизме.

Что может влиять на результат?

  • Прием некоторых лекарственных препаратов может влиять на содержание электролитов в исследуемом биоматериале;
  • прием витаминов и витаминсодержащих лекарственных препаратов влияет на истинный результат исследования.
 Скачать пример результата

Также рекомендуется

[06-250] Витамины и микроэлементы, участвующие в регуляции функции поджелудочной железы и углеводного обмена (Cr, K, Mn, Mg, Cu, Zn, Ni, витамины A, B6)

[06-251] Витамины и микроэлементы, участвующие в регуляции функции щитовидной железы (I, Se, Mg, Cu, витамин B6)

[06-244] Витамины и микроэлементы, влияющие на состояние кожи, ногтей, волос (K, Na, Ca, Mg, Fe, Cu, Zn, S, P, витамины A, C, E, B1, B2, B3, B5, B6, B9, B12)

[06-230] Комплексный анализ на витамины (A, D, E, K, C, B1, B5, B6)

[06-245] Витамины и микроэлементы, влияющие на состояние костной системы (K, Ca, Mg, Si, S, P, Fe, Cu, Zn, витамины K, D, B9, B12)

[06-246] Витамины и микроэлементы, влияющие на состояние мышечной системы (K, Na, Ca, Mg, Zn, Mn, витамины B1, B5)

[06-247] Витамины и микроэлементы, влияющие на состояние женской репродуктивной системы (Fe, Cu, Zn, Se, Ni, Co, Mn, Mg, Cr, Pb, As, Cd, Hg, витамины A, C, E, омега-3, омега-6 жирные кислоты)

Кто назначает исследование?

Терапевт, врач общей практики, кардиолог, гематолог, невролог, дерматолог.

Литература

  1. Taguchi K, Fukusaki E, Bamba T Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography. / J Chromatogr A. 2014 Oct 3;1362:270-7.
  2.  Долгов В.В., Меньшиков В.В. Клиническая лабораторная диагностика: национальное руководство. – Т. I. – М. : ГЭОТАР-Медиа, 2012. – 928 с.
  3. Камышников В.С. и др. Методы клинических лабораторных исследований / под ред. В.С. Камышникова.- 3-е изд., перераб. и доп. – М.: МеУДпресс-информ, 2009. – 752 с.: ил.
  4. Fauci, Braunwald, Kasper, Hauser, Longo, Jameson, Loscalzo Harrison’s principles of internal medicine, 17th edition, 2009.

Микроэлементы, таблица и подробная информация о микроэлементах

Элементы

Из 92 встречающихся в природе химических элементов 81 обнаружен в организме человека. 12 элементов называют структурными, т.к. они составляют 99 % элементного состава человеческого организма: (углерод С, Кислород О,  Водород Н,  Азот N,  Кальций Ca, Магний Mg, Натрий Na, Калий K, Сера S, Фосфор P, Фтор F, Хлор Cl).

Микроэлементами (МЭ) называют элементы, присутствующие в организме человека в очень малых следовых количествах (англ. — “trace elements”). Это в первую очередь 15 эссенциальных (жизненно необходимых, от англ. “essential”) — Fe, I, Cu, Zn, Co, Cr, Mo, Ni, V, Se, Mn, As, F, Si, Li, а также условно-эссенциальные B, Br. Элементы Cd, Pb, Al, Rb являются серьезными кандидатами на эссенциальность. В учение о МЭ особенно отчетливо видна справедливость слов Парацельса о том, что “нет токсичных веществ, а есть токсичные дозы”.

МЭ являются важнейшими катализаторами различных биохимических процессов, обмена веществ, играют значительную роль в адаптации организма в норме и патологии. Ряд элементов широко представленных в природе, редко встречается у человека, и наоборот. В этом проявляются особенности накопления элементов — активное и избирательное использование элементов внешней среды для поддержания гомеостаза и построения организма вне зависимости от меняющихся параметров внешних условий.

Хорошо известно, что микроэлементы обладают широким спектром синергических и антагонистических взаимоотношений. Так, показано, что между 15 известными жизненно необходимыми элементами существует 105 двусторонних и 455 трехсторонних взаимодействий. Это положение является естественной основой для изучения проявлений и оценки развития дисбаланса микроэлементного гомеостаза, столь характерного при дефиците даже одного эссенциального элемента.

Микроэлементный гомеостаз может нарушаться при недостаточном поступлении эссенциальных МЭ и/или избыточном поступлении в организм токсических микроэлементов. Причем, с учетом сложных антагонистических и синергических взаимовлияний и отношений между элементами, картина интоксикации или возникновения патологического состояния и заболеваний может быть очень сложной и трудной для интерпретации. В этом случае очень важна адекватная диагностика микроэлементозов, связанная, в первую очередь, с точным количественным определением элементов в индикаторных биосубстратах человека.

Накопленные к настоящему времени научные и медицинские данные о роли минеральных элементов в функционировании отдельных органов, систем и организма человека в целом, данные о последствиях, для здоровья человека, дефицита биогенных, жизненно необходимых элементов и избытка токсичных могут быть обобщены и используются в диагностической и лечебной практике Центром Биотической Медицины под руководством д.м.н. проф. А.В.Скального.

Подробно о каждом элементе:

Смотрите научные статьи в нашем журнале Микроэлементы в медицине


Исследование крови на микроэлементы Анализ волос на микроэлементы Определение содержание микроэлементов в моче Оценка шерсти животных на микроэлементный состав Анализ эякулята на микроэлементный статус Анализ слюны на микроэлементный состав Анализ волос на эссенциальные микроэлементы Анализ взаимодействия микроэлементов в реальной среде Источники микроэлементов Сопоставительный анализ крови и волос у пациентов с челюстно лицевой патологией можно увидеть здесь Большинство измерений элементного состава волос, крови, эякулята и других субстратах выполняется в лаборатории ЦБМ на самом современном оборудовании с использованием методик, разработанных с участием наших специалистов и аттестованных органами метрологического надзора за качеством измерений РФ: Аттестованная методика измерений элементов в волосах, крови и других биосубстратах человека

7 основных микроэлементов для продуктов, укрепляющих иммунитет

Многие производители не уделили достаточно внимания производству продуктов, которые укрепляют иммунитет. На протяжении последних пяти продукты, которые укрепляют иммунитет, стали запускаться в производство в достаточно ограниченном количестве. Данное утверждение особенно актуально для таких категорий как продукты питания и напитки. У клиентов могут существовать определенные потребности, которые не удовлетворены, и может быть достаточно возможностей и пространства для инноваций и разработки новых продуктов, которые улучшают состояние нашего здоровья. Интерес клиентов в продуктах, укрепляющих иммунитет, растет, так что люди будут искать продукты, которые удовлетворяют их требованиям.

За период с апреля 2014 г. до марта 2019 г.
Источник Mintel GNPD

Начни с правильных питательных веществ

Правильное питание является одной из основ крепкого иммунитета. Клиенты хотят защититься от инфекций, поэтому они ищут удобные способы добавить дополнительные питательные вещества в свой рацион. Согласно Mintel GNPD, около 63% новых продуктов, напитков, товаров здравоохранения запускается с утверждениями о том, что в них содержатся микроэлементы (за период с апреля 2014 г. до марта 2019 г.)

Основные микроэлементы, которые включены в продукты, укрепляющие иммунитет (источник — Mintel GNPD)

Витамин C, витамин D и витамин B6 оказались теми веществам-лидерами, которые были указаны за период, указанный выше, в составе новых продуктов, которые, согласно утверждениям, укрепляли иммунную систему. Витамин С оказался самым популярным, он содержался в 38% новых продуктов в категории, связанной с имунной системой. График, приведенный внизу, указывает процентное соотношение каждого из семи основных питательных веществ в новых продуктах. 

За период с апреля 2014 г. до марта 2019 г.
Источник Mintel GNPD

Витамин С

Витамин С является крайне важным для функционирования иммунной системы, он принимает участие в выработке антител и крайне важен для работы белых кровяных телец. Считается, что они помогает противостоять вирусам и канцерогенам. Известно, что, если принимать витамин С, то можно сократить время заболевания простудой или гриппом, а также помогает предотвратить инфекции. Потребность в витамине С увеличивается, когда наша иммунная система борется со стрессом.

Витамин D

Витамин D принимает участие в регулировании иммунной системы и выполняет несколько функций, среди которых – влияние на белые кровяные тельца: моноциты и лимфоциты, и, судя по всему, подавляет функционирование некоторых элементов иммунной системы.

Витамин B6

Витамин B6 относится к тому же семейству химических компонентов, что и пиридиксамин и пиридоксал, которые входят в состав животных продуктов, и пиридоксин, который входит в состав растений и витаминизированных продуктов и добавок. Витамин В6 используется в разных функций организма, таких как метаболизм, он является незаменимым компонентом для сердечно-сосудистой системы, иммунной системы, при выработке гормонов, развитии гормонов и нервной системы

Витамин А

Витамин А еще имеет название «противоинфекционный», и он защищает наш организм от инфекций. Он поддерживает поверхность кожи в здоровом состоянии, чтобы она выполняла функцию барьера для всевозможных микроорганизмов. Витамин А стимулирует и усиливает многие защитные функции нашей иммунной системы, включительно такие, как выработка антител и деятельность белых кровяных телец, таких как Т-хелперы и фагоциты. Иммуноукрепляющие характеристики витамина А стимулируют заживление инфицированных тканей и усиливают сопротивляемость инфекции.

Цинк

Цинк – это природный минерал, который входит в состав нашего организма и выполняет множество функций по укреплению состояния здоровья. Цинк был признан важным в 1934 году, когда ученые обнаружили, что он присутствует практически в каждой ткани и жидкости нашего тела. В функции цинка также входит укрепление иммунной системы, что обусловлено его антиоксидантными свойствами, а также он способствует развитию мозга и стимулирует репродуктивную функцию.

Витамин Е

Витамин Е крайне важен для поддержания иммунной системы в здоровом состоянии. Он помогает иммунной системе, защищая от повреждений зобную железу и белые кровяные тельца от повреждений. Данный витамин особенно важен для защиты иммунной системы от повреждений во время оксидативного стресса и при хронических заболеваниях.

Кальций

Кальций является одним из самых распространенных минералов, присутствующих в человеческом организме. Девяносто девять процентов всего кальция в организме находится в зубах и костях. Оставшийся один процент входит в состав лимфы и клетки других жидкостей в организме. Функции, которые кальций выполняет, настолько важны для нашего организма, что он может даже деминерализовать кости для того, чтобы поддерживать необходимый уровень кальция.

Функциональность для создания продукта, привлекательного для клиентов В поисках продуктов, улучшающих состояние здоровья

Самым простым способов улучшить качество продуктов и напитков – это использовать специально разработанные пищевые добавки. Сначала производитель выбирает функцинальные ингредиенты либо из смесь, которые и будут направлены на то, чтобы удовлетворить специфические потребности клиентов, также будет определено то количество ингредиентов, которое принесет максимальный эффект. 

Далее, эта специально разработанная пищевая добавка, с учетом изменений, которые необходимы для того, чтобы частицы получались одинакового размера (путем перемалывания или гранулирования) и таким образом, чтобы они оказывали минимальное влияние на вкус и запах продукта (путем микроинкапсулизации). Свяжитесь с Glanbia Nutritionals для того, чтобы получить более подробную информацию по ингредиентам, которые помогают вам предлагать клиентам необходимую продукцию, которая укрепляет иммунную систему.  

Микроэлементы — Calorizator.ru

Микроэлементами принято называть химические элементы, которые находятся во всех живых организмах, включая человека, в минимальных (следовых) количествах, то есть в тысячных и менее долях процентов. Иногда можно услышать название следовые элементы, но чаще встречается микроэлементы. Несмотря на незначительное количество содержания в организме человека, микроэлементы – жизненно важные составные части нашего здоровья.

Список всех микроэлементов (можно перейти на любой микроэлемент, кликнув по нему мышью):

Бром (Br, Bromum) Молибден (Mo, Molybdenum)
Ванадий (V, Vanadium) Натрий (Na, Natrium)
Железо (Fe, Ferrum) Никель (Ni, Niccolum)
Йод (I, Iodum) Олово (Sn, Stannum)
Калий (K, Kalium) Селен (Se, Selenium)
Кальций (Ca, Calcium) Сера (S, Sulphur)
Кислород (O, Oxygenium) Фосфор (P, Phosphorus)
Кобальт (Co, Cobaltum) Фтор (F, Fluor)
Магний (Mg, Magnesium) Хлор (Cl, Chlorine)
Марганец (Mn, Manganum) Хром (Cr, Chromium)
Медь (Cu, Cuprum) Цинк (Zn, Zincum)

Роль микроэлементов в организме человека

Организм человека содержит более 70 минеральных веществ, микроэлементы участвуют во всех процессах жизнеобеспечения. Чтобы понять, насколько важны и эффективны микроэлементы, посмотрим на список основных функций следовых элементов:

  • Обеспечение нормального кислотно-щелочного баланса,
  • Участие в процессах кроветворения, секреции и костеобразования,
  • Поддержание осмотического давления на постоянном уровне,
  • Управление нервной проводимостью,
  • Налаживание внутриклеточного дыхания,
  • Влияние на иммунную систему,
  • Обеспечение полноценного сокращения мышц.

Становится понятно, что микроэлементы необходимы человеку, чтобы поддерживать физическое и умственное здоровье на должном уровне, поэтому, живя в постоянном стрессе и в условиях всё ухудшающейся экологии, необходимо уделять повышенное внимание поступлению в организм не только витаминов, но и минеральных веществ.

Интересный факт – волосы реагируют на нехватку микроэлементов быстрее всего, именно анализ состояния волос покажет самое точное количество и качество имеющихся в организме человека микроэлементов.

Классификация микроэлементов

Основные минеральные вещества по количеству содержания делятся на макроэлементы (содержатся в организме в количестве 0,1% и выше), микроэлементы (содержание 0,001% и ниже) и ультрамикроэлементы (содержание менее 0,00001%). Это является традиционным способом классификации, но он не даёт полной картины биологической ценности или заменимости, поэтому часто микроэлементы классифицируют по другим признакам.

Например, существует разделение по заменимости микроэлементов:

  • Незаменимые (железо, кобальт, марганец и цинк),
  • Жизненно необходимые (алюминий, бор, бериллий, йод, молибден и никель),
  • Токсиканты (кадмий, рубидий, свинец),
  • Недостаточно изученные (висмут, золото, мышьяк, титан, хром).

Для определения ценности различных микроэлементов, имеется данная классификация, согласно которой микроэлементы делятся на следующие группы:

  • Незаменимые (железо, йод, кобальт, марганец и цинк),
  • Вероятно незаменимые (бром, молибден, селен, фтор),
  • Физиологически неактивные (бериллий, кадмий).

Все имеющиеся классификации не идеальны, потому что многие микроэлементы недостаточно изучены и в различных тканях организма ведут себя по-разному, иногда из незаменимых превращаясь в токсичные. Поэтому учёные-химики и медики постоянно находятся в писке новых критериев для классификации (роль в питании и метаболизме, например), чтобы получить наиболее подробную и понятную систему.

Совместимость микроэлементов с витаминами

В организме человека прослеживается чёткая взаимосвязь и совместимость микроэлементов и витаминов, более того, процесс совместимости может играть как положительную роль, помогая усвоению витаминов или микроэлементов, так и отрицательную – разрушительно действуя на ту или иную сторону взаимосвязи. Многие витамины и микроэлементы не вступают в реакции, то есть воздействие их друг на друга нейтральное.

Положительная совместимость:

Несовместимость микроэлементов и витаминов:

  • Витамин В9 препятствует всасыванию цинка,
  • Кальций, магний и цинк препятствуют усвоению железа,
  • Медь и железо обесценивают действие витамина В12,
  • Кальций теряет биодоступность в присутствии фосфора.

Зная эти особенности, можно скорректировать режим питания и быть внимательным, принимая лекарственные препараты. Как правило, в инструкциях к лекарствам указано, как они влияют на содержания минеральных веществ (например, цинк из организма вымывается при приёме аспирина).

Всасывание и выделение микроэлементов

Большинство микроэлементов хорошо растворяются в воде, поэтому проблем с их всасыванием, как правило, не замечено. Процесс всасывания происходит в зоне тонкого кишечника, особенно в двенадцатиперстной кишке. Выделение микроэлементов происходит традиционными путями – через выдыхаемый воздух, кал (железо, медь, ртуть, цинк и фосфор) и мочу (бром, калий, литий, марганец, натрий).

Дефицит микроэлементов

Дефицит микроэлементов может иметь пагубное влияние на организм человека, основные признаки нехватки микроэлементов:

  • Дисбактериоз,
  • Анемия,
  • Снижение иммунитета,
  • Задержка в развитии,
  • Тусклость и выпадение волос,
  • Плохое пищеварение,
  • Лишний вес вплоть до ожирения,
  • Развитие диабета,
  • Заболевания кожных покровов и костей,
  • Сердечно-сосудистые недуги,
  • Проблемы в половой сфере.

Дефицит микроэлементов возникает при скудном или несбалансированном питании, если человек проживает в экологически неблагоприятном регионе, где имеется питьевая вода ненадлежащего качества, при неконтролируемом приёме препаратов, влияющих на содержание микроэлементов.

Влияние микроэлементов на иммунную систему

Необходимость микроэлементов подтверждают исследования учёных, подтверждающие, что микроэлементы способны усиливать защитные механизмы иммунной системы, оказывая стимулирующее действие на основные функции организма. Некоторые из минералов (железо, йод, кобальт, медь и марганец) участвуют в образовании антител, разрушают бактериальные токсины.

Многообразие воздействия микроэлементов на организм человека доказывает необходимость данных минеральных веществ для полноценного функционирования и поддержания организма в здоровом состоянии в течении всей жизни.

Больше и микро- и макроэлементах смотрите в видеоролике «Роль химических элементов в организме человека»

Автор: Виктория Н. (специально для Calorizator.ru)
Копирование данной статьи целиком или частично запрещено.

Микроэлементы | справочник Пестициды.ru

Микроэлементы являются активным веществом микроудобрений.

Микроэлементы распространены в земной коре в концентрациях, не превышающих 0,1 %, а в живом веществе они обнаруживаются в количестве 10-3–10-12%. К группе микроэлементов относят металлы, неметаллы, галогены. Единственная их общая черта – низкое содержание в живых тканях.

Микроэлементы принимают самое активное участие во многих жизненных процессах, происходящих в растениях на молекулярном уровне. Путем воздействия на ферментную систему либо в непосредственной связи с биополимерами растений они стимулируют или ингибируют протекание физиологических процессов в тканях.

Для корректировки содержания микроэлементов в почве практикуют некорневые подкормки в течение вегетации, предпосевную обработку семян и посадочного материала, а также внесение в почву необходимых веществ в виде удобрений.

Физические и химические свойства

Микроэлементы различны по своим физическим и химическим свойствам. Среди них встречаются металлы (цинк, медь, марганец, кобальт, ванадий, молибден), неметаллы (бор), галогены (йод).

Химические элементы подразделяются на необходимые для растений и полезные им.

питательные элементы отвечают следующим требованиям:
  • без элемента не может завершиться жизненный цикл растения;
  • физиологические функции, выполняемые с участием конкретного элемента, не осуществляются при его замене на другой элемент;
  • элемент обязательно вовлекается в метаболизм растения.

Однако существует ряд условностей в использовании данного термина. Дело в том, что сложности с его применением возникают уже при сравнении необходимости того или иного элемента для жизни высших и низших растений и, тем более, животных и человека. Так, например, не доказана необходимость бора для некоторых грибов, спорна необходимость наличия кобальта для осуществления физиологических функций целого ряда растений. К бесспорно необходимым элементам относят марганец, цинк, медь, молибден, бор, хлор, никель.

– это питательные элементы, обладающие способностью стимулировать рост и развитие растений, но не в полной мере соответствующие трем требованиям, приведенным выше. К этой группе относятся и те элементы, которые необходимы только в определенных условиях и только для определенных видов растений. В настоящее время из микроэлементов полезными для растений считаются кобальт, селен, кремний, алюминий, йод и другие.[2]

В настоящее время жизненно необходимыми для растений считаются только около десяти микроэлементов, еще несколько – необходимыми узкому кругу видов. Для остальных элементов известно, что они могут оказывать стимулирующее действие на растения, но их функции не установлены.[5]

Некоторые физические и химические свойства микроэлементов, согласно данным:[3][9]

Микроэлемент

Атомный номер

Атомная масса

Группа

Cвойства

Т. кип,

°C

Т. плавл,

°C

Физическое состояние при нормальны условиях

Бор (В)

5

10,81

III

неметалл

3700

2075

порошок черного цвета

Ванадий (V)

23

50,94

V

металл

3400

1900

металл серебристого цвета

Йод (I)

53

126,90

VII

галоген

113,6

185,5

черно-фиолетовые кристаллы

Марганец (Mn)

25

54,94

VII

металл

2095

1244

металл серебристого белого цвета

Кобальт (Со)

27

59,93

VIII

металл

2960

1494

твердый, тягучий, блестящий металл

Медь (Cu)

29

63,54

I

металл

2600

1083

металл красного, в изломе розового цвета

Цинк (Zn)

30

65,39

II

металл

906

419,5

голубовато-серебристый металл

Молибден (Мо)

42

95,94

VI

металл

4800

2620

светло-серый металл

Содержание микроэлементов в природе

Микроэлементы содержатся в небольших количествах практически повсеместно: в горных породах, почве, растениях и, естественно, в организме человека и животных.

Бор. В небольших количествах в составе различных соединений можно встретить во всех почвах, воде, в составе растительных и животных организмов.[5]

Йод. Образует мало самостоятельных минералов, но присутствует во многих в виде изоморфных примесей.[5]

Марганец. Один из наиболее распространенных в литосфере элементов. Преобладает в почвообразующих породах.[2]

Кобальт. Содержание в литосфере незначительно. Присутствует в растениях, при этом, бобовые культуры богаче кобальтом, чем злаковые.[6]

Медь. В земной коре – 0,01 %. Встречается в свободном состоянии в виде самородков, иногда очень значительных размеров.[7]

Цинк. Широко распространен в природе. В породах цинк содержится в виде простого сульфида, а также замещает магний в силикатах.[2]

Ванадий. Относится к рассеянным элементам и в свободном виде в природе не встречается.[7]

Молибден. Связан с гранитными и другими кислыми магматическими породами. Содержание его в этих породах колеблется в пределах 1–2 мг/кг.[5]

Факторы, определяющие концентрацию микроэлементов в почвах

Содержание микроэлементов в почвах зависит от многих факторов и подчинено ряду закономерностей:

  • Чем больше микроэлементов в горной породе, тем больше их и в почве. Эта неизменная, за некоторым исключением, закономерность (например, йод) проистекает из того факта, что основным источником поступления микроэлементов в почву являются материнские горные породы. Известно, что в процессе длительного почвообразования происходит перераспределение химических элементов исходных горных пород, но при этом специфические свойства и химические особенности микроэлементов горных пород практически навсегда сохраняются в почвах.[1]
  • Концентрация микроэлементов в почвообразующих породах увеличивается с возрастанием содержания физической глины и уменьшается с увеличением содержания песка и супеси. Это объясняется тем, что в состав глин включен монтмориллонит, содержащий большую концентрацию микроэлементов, чем включенный в состав песка кварц. Обычно в пределах одного почвенного района закономерность возрастания содержания микроэлементов от песков к глинистым породам увеличивается, но между породами в различных областях можно наблюдать значительные различия.
  • Один из определяющих факторов содержания микроэлементов в породах – карбонатность.
  • Почвы с реакцией, близкой к нейтральной, содержат больше микроэлементов.
  • Почвообразующие породы, расположенные в зоне активного воздействия грунтовых вод и подверженные процессу заболачивания, приобретают некоторые особенности по содержанию микроэлементов.
  • Почвы с повышенным накоплением органического вещества, как правило, и микроэлементами обеспечены в достаточной степени. Это связано с тем, что в растительных остатках и плазме микроорганизмов находится значительное количество микроэлементов. Гумусовые вещества обладают большей адсорбционной способностью и поглощают ионы микроэлементов из окружающей среды.
  • Содержание в почве водорастворимых солей оказывает большое влияние на наличие в ней микроэлементов.
  • Специфика условий почвообразования также накладывает свой отпечаток на количественное содержание микроэлементов в почвах.
  • Концентрация микроэлементов в грунтовых водах сильно влияет на их содержание в почве. В данном случае наблюдается тесная взаимосвязь, поскольку и колебание концентрации микроэлементов в почвенно-грунтовых водах – следствие разнообразия почвенного покрова и почвообразующих пород.[1]
  • «>

Содержание микроэлементов в различных типах почв

характеризуются самыми высокими концентрациями микроэлементов (исключение – барий). содержат в 2–2,5 раза больше кобальта, стронция и хрома, чем пески. Содержание ванадия, бора и марганца в тех же породах уже в 3–4 раза больше, чем в песчаных. накапливают ванадий, хром, марганец, кобальт. включают подвижные формы меди и марганца. и близкой к нейтральной реакцией содержат больше марганца. содержат больше валового и подвижного кобальта. характеризуются содержанием подвижного бора от 10 до 20 % от валового.

Однако по общим запасам микроэлементов в почве нельзя судить об их доступности для растений. Микроэлементы могут присутствовать в почве в формах, недоступных растениям. В связи с этим важно учитывать не столько общее содержание микроэлементов, сколько наличие их усвояемых форм.[1]

Содержание валовых и усвояемых форм микроэлементов в основных типах почв СНГ. (мг/кг) числитель – валовое содержание, знаменатель – усвояемые формы, согласно данным:[1]

Почва

B

Cu

Zn

Mn

Mo

Co

V

I

Дерново-

подзолистая

1,5–6 ,6

0,08–0,38

0,1–47,9

0,05–5,0

20–67

0,12–20,0

40–7200

50,0–150

1,0–4,0

0,04–0,97

0,45–14,0

0,12–3,0

10–62

н.д.

0,5–4,4

н.д.

Чернозем

4–12

0,38–1,58

7–18

4,5–10,0

24–90

0,10–0,25

200–5600

1,0–75

0,7–8,6

0,02–0,33

2,6–13,0

1,10–2,2

37–125

н.д.

2,0–9,8

н.д.

Серозем

8,8–160,3

0,23–0,62

5–20

2,5–10,0

26–63

0,09–1,12

310–3800

1,5-125

0,7–2,0

0,03-0,15

н.д.

0,9-1,5

50–87

н.д.

1,3–38

н.д.

Каштановая

100–200

0,30–0,90

0,6–20

8,0–14,0

53

0,06–0,14

600–1270

1,5–75

0,2–2,0

0,09–0,62

8,6

0,1–6,0

56

н.д.

2,0–9,8

н.д.

Бурая

40,5

0,38–1,95

14–44,5

6,0–12,0

32,5–54,0

0,03–0,20

390–580

1,5–75

0,4–2,8

0,06–0,12

2,3–3,8

0,57–2,25

56

н.д.

0,3–5,3

н.д.

Роль в растении

Биохимические функции

Роль микроэлементов для растений многогранна. Они призваны улучшать обмен веществ, устранять функциональные нарушения, содействовать нормальному течению физиолого-биохимических процессов, влиять на процессы фотосинтеза и дыхания. Под действием микроэлементов возрастает устойчивость растений к бактериальным и грибковым заболеваниям, неблагоприятным факторам окружающей среды (засухе, повышению или понижению температуры, тяжелой зимовке и прочим).

Установлено, что микроэлементы входят в состав большого числа ферментов, играющих важную роль в жизни растений. Все биохимические реакции синтеза, распада, обмена органических веществ протекают только при участии ферментов.

в составе микроудобрений повышают активность ферментов пероксидазы и полифенолоксидазы как в семядолях, так и в корнях гороха, но не изменяют их активности в проростках. При этом, и у гороха, и у кукурузы пероксидазная окислительная система преобладает над полифенолоксидазной.

Микроэлементы с ферментами могут быть связаны прочно и непрочно. Непрочные связи присущи тем элементам, которые способны оказывать сходное действие на направленность фотосинтеза, окислительно-восстановительных процессов, обмен углеводов, накопление витаминов и ряд других процессов. Это микроэлементы, вступающие в биохимические реакции как двухвалентные металлы. Примером могут служить цинк и кобальт.[1]

Роль в растении и главные функции некоторых необходимых питательные микроэлементов, согласно данным:[5]

Микроэлемент

В какие компоненты входит

Процессы, в которых участвует

Бор

Фосфоглюконаты

Метаболизм и перенос углеводов,

Синтез флавоноидов, 

Синтез нуклеиновых кислот,

Утилизация фосфата,образование полифенолов.

Кобальт

Кофермент кобамид

Симбиотическая фиксация азота (возможно и у не клубеньковых растений), стимулирование окислительно-восстановительных реакций при синтезе хлорофилла и протеинов.

Медь

Разнообразные оксиданты, пластоцианины, ценилоплазмин.

Окисление, фотосинтез, метаболизм протеинов и углеводов,

Возможно, участвует в симбиотической фиксации азота и окислительно-восстановительных реакциях.

Йод

Тирозин и его производные у покрытосеменных  и водорослей

 

Марганец

Многие ферментные системы

Фотопродукция кислорода в хлоропластах и косвенное участие  в восстановлении NO3

Молибден

Нитратредуктаза, нитрогеназа, оксидазы и молибденоферридоксин

Фиксация азота, восстановление NO3

Окислительно-восстановительные реакции

Ванадий

Порфины,  гемопротеины

Метаболизм липидов, фотосинтез в зеленых водорослях и, возможно, участие в фиксации N2

Цинк

Ангидразы, дегидрогеназы, протеиназы и пептидазы

Метаболизм углеводов и белков

Недостаток (дефицит) микроэлементов в растениях

Изменения листьев при дефиците цинка

Изменения листьев при дефиците цинка


1 – хлороз листьев пшеницы; 2 – бурые пятна на листьях риса

Использовано изображение:[13][15]

При недостаточном поступлении какого-либо микроэлемента из числа необходимых питательных элементов рост растения отклоняется от нормы или прекращается вовсе, а дальнейшее развитие растения, в особенности его метаболические циклы, нарушаются.[5]

При недостатке микроэлементов активность многих ферментов резко снижается. Например, установлено, что при недостатке меди резко падает активность ферментов, в состав которых входит медь, а именно, полифенолоксидазы и аскорбатоксидазы.[1]

Симптомы недостаточности (дефицита) трудно свести к одному знаменателю, но, все же, они характерны для конкретных микроэлементов. Наиболее часто наблюдается хлороз.

Визуальная симптоматика очень важна для диагностики недостаточности, но нарушения метаболических процессов и, как следствие, потеря биомассы продукции могут наступать прежде, чем симптомы недостаточности будут заметны. Для улучшения методов диагностики дефицита микроэлементов ряд авторов предлагает биохимические индикаторы. К сожалению, широкое применение этого способа ограничено в связи с большой изменчивостью энзиматической активности и трудностью определения данного показателя.

Наиболее широко используются тесты – анализ почв и растений. Но и в этом случае неподвижные формы микроэлементов, находящиеся в старых частях растения, могут исказить данные. Однако анализ растительных тканей успешно используют для установления дефицита микроэлементов путем сравнения с содержанием этих соединений в тех же тканях нормальных растений, того же возраста и в тех же органах.

При устранении дефицита микроэлементов при помощи удобрений следует учитывать тот факт, что подобная процедура является эффективной, только если содержание элемента в почве либо его доступность достаточно низкие.

В любом случае, формирование дефицита микроэлементов в растениях является результатом сложного взаимодействия нескольких факторов. Многочисленные наблюдения доказали, что свойства и генезис почв – это главные причины, вызывающие дефицит микроэлементов в растении. Обычно недостаток микроэлементов связан с почвами высокой кислотности (светлыми песчанистыми) и щелочными (известковистыми) почвами с неблагоприятным водным режимом, а также с избытком фосфатов, азота, кальция, оксидов железа и марганца.[5]

Симптомы недостатка микроэлементов питания у сельскохозяйственных культур, согласно данным:[5]

Элемент

Симптомы

Чувствительные культуры

Бор

Хлороз и покоричневение молодых листьев,

Погибшие верхушечные почки,

Нарушение развития цветов,

Поражение сердцевины растений и корней,

Мультипликация при делении клеток

Бобовые,

Капуста и близкие виды,

Свекла,

Сельдерей,

Виноград,

Фруктовые деревья (груши и яблони)

Медь

Вилт,

Меланизм,

Белые скрученные макушки,

Ослабление образования метелок,

Нарушение одревеснения

Злаки (овес),

Подсолнечник,

Шпинат,

Люцерна.

Марганец

Пятна хлороза,

Некроз молодых листьев,

Ослабленный тургор

Злаки (овес),

Бобовые,

Фруктовые деревья (яблони, вишни, цитрусовые)

Молибден

Хлороз края листовой пластинки,

Нарушение свертывания цветной капусты,

Огненные края и деформация листьев,

Разрушение зародышевых тканей.

Капуста, близкие виды,

Бобовые

Цинк

Межжилковый хлороз (у однодольных),

Остановка роста,

Розетчатость листьев у деревьев,

Фиолетово-красные точки на листьях

 

Зерновые (кукуруза),

Бобовые,

Травы,

Хмель,

Лен,

Виноград,

Фруктовые деревья (цитрусы).

Избыток микроэлементов в растениях

Дисбаланс микроэлементов

Дисбаланс микроэлементов


Поражения листовой пластины при дефиците и избытке микроэлементов у пшеницы

1 – избыток бора; 2 – избыток марганца;

3 – дефицит цинка

Использовано изображение:[11][12][14]

Метаболические нарушения в растениях вызывают не только недостаток, но и избыток элементов питания. Растения более устойчивы к повышенной, чем к пониженной концентрации микроэлементов.

Главные реакции, связанные с токсичным действием микроэлементов:

  • изменение проницаемости клеточных мембран;
  • реакции тиольных групп с катионами;
  • конкуренция с жизненно важными метаболитами;
  • большое сродство с фосфатными группами и активными центрами в АДФ и АТФ;
  • захват в молекулах позиций, занимаемых жизненно важными группами, такими, как фосфат и нитрат.

Оценка влияния токсичных концентраций элементов на растение достаточно сложна, поскольку зависит от множества факторов. К числу наиболее важных относят пропорции, в которых ионы и их соединения присутствуют в почвенном растворе.

Например, токсичность арсената и селената заметно понижается при избытке сульфата и фосфата. Металлоорганические соединения могут быть более токсичными, чем катионы того же элемента. Кислородные анионы элементов, как правило, более ядовиты, чем их простые катионы.

Наиболее токсичными для высших растений являются медь, никель, свинец, кобальт.

Видимые симптомы токсичности изменяются в зависимости от вида растения, но имеются и общие, неспецифические симптомы фитотоксичности: хлорозные и бурые точки на листовых пластинках и их краях, а также коричневые чахлые корни кораллоподобной конфигурации.

Симптомы токсичности микроэлементов у распространенных с/х культур, согласно данным:[5]

Элемент

Симптомы

Чувствительные культуры

Бор

Хлороз краев и концов листьев,

Бурые точки на листья,

Загнивание ростовых точек,

Скручивание и отмирание старых листьев

Злаки,

Картофель,

Помидоры,

Огурцы,

Подсолнечник,

Горчица

Кобальт

Межжилковый хлороз молодых листьев,

Белые края и кончики листьев,

Уродливые кончики корней

Злаки,

Картофель,

Помидоры,

Огурцы,

Подсолнечник,

Горчица

Медь

Темно-зеленые листья,

Корни толстые, короткие или похожие на колючую проволоку,

Угнетение образования побегов

Злаки,

Бобовые,

Шпинат,

Саженцы цитрусовых, Гладиолусы

Марганец

Хлороз и некротические поражения у старых листьев,

Буровато-черные или красные некротические пятна,

Накопление частиц оксида марганца в клетках эпидермиса,

Засохшие кончики листьев,

Чахлые корни

Злаки,

Бобовые,

Картофель,

Капуста

Молибден

Пожелтение или покоричневение листьев,

Угнетение роста корней,

Угнетение кущения

Злаки

Цинк

Хлороз и некроз концов листьев,

Межжилковый хлороз молодых листьев,

Задержка роста у растения в целом,

Корни повреждены, похожи на колючую проволоку.

Злаки,

Шпинат

Содержание микроэлементов в различных соединениях

Микроудобрения – это удобрения, в которых действующим веществом является один (или несколько) микроэлементов. Они могут быть представлены как в виде минеральных форм, так и органоминеральными соединениями. Микроудобрения классифицируют по основному элементу, который они содержат (марганцевые, цинковые, медьсодержащие и прочее).

Микроэлементы могут входить и в состав макроудобрений в виде примесей. Определенное количество микроэлементов привносится в почву и в составе органических удобрений. На практике в качестве микроудобрений часто используют отходы различных производств, обогащенные микроэлементами.[2]

Способы применения микроудобрений и удобрений, содержащих микроэлементы

Микроудобрения применяют для внесения в почву, некорневых подкормок и предпосадочной обработки семян. Дозы микроудобрений малы. Это требует высокой точности дозирования и равномерности внесения.

применяется для радикального повышения содержания микроэлементов в почве на протяжении всего вегетационного периода. При этом способе могут наблюдаться отрицательные эффекты:
  • образование трудно растворимых форм микроэлементов,
  • вымывание микроэлементов за пределы корнеобитаемого слоя.

Не рекомендуется вносить в почву дорогостоящие виды микроудобрений, особенно осенью. В данном случае лучше использовать различные макроудобрения, модифицированные микроэлементами, труднодоступные промышленные отходы и удобрения пролонгированного действия.

самый распространенный способ использования микроудобрений. Этот способ технологичен и позволяет сочетать обработку семян с их посевом. Именно такая форма обработки способствует оптимизации питания растения микроэлементами на самых ранних стадиях развития. Часто обработку семян микроэлементами сочетают с применением пленкообразующих веществ, регуляторов роста и протравителей. Этот процесс носит название инкрустации семян. рекомендуется проводить при непосредственном обнаружении дефицита микроэлемента. Этот способ позволяет корректировать питание растений микроэлементами, избегая негативных последствий внесения микроудобрений в почву.[2]

Среднее содержание микроэлементов в виде примесей в минеральных удобрениях и мелиорантах, мг/кг, согласно данным:[2]

Удобрение

Бор

Молибден

Цинк

Медь

Кобальт

Марганец

Фосфофоритная мука

Месторождение Кингисеппа

Месторождения Каратау

 

 

 

9,9

 

2,1

 

1,4

30,6

 

22,5

550,0

Суперфосфат

0,4

2,0

0,7

134,8

Суперфосфат двойной

109,0

8,0

34,0

Калийная соль (сырая)

8,4

10,0

0,3

10,0

1,3

42,2

Калий хлористый

0,2

10,0

5,0

1,0

5,0

Аммиачная селитра

0,2

0,1

0,6

Аммония сульфат

6,4

0,1

15,0

9,0

25,0

0,1

Натриевая селитра

0,4

1,0

8,0

25,9

Аммофос

следы

14,5

2,9

следы

37,0

Мочевина

следы

1,3

0,9

0,7

следы

Комплексные NPK – удобрения

123,0

34,0

138,0

Известковые материалы

4,0

0,3

20,0

10,0

1,6

100,0

Эффект от применения удобрений, содержащих микроэлементы

Применение микроудобрений в сельском хозяйстве является существенным резервом повышения урожайности культурных растений. В среднем микроудобрения обеспечивают повышение урожайности на 10–12 % и более.[10]

повышают урожайность сахарной свеклы,люцерны, клевера, тимофеевки, картофеля, капусты, огурцов, томатов, синих баклажанов, плодово-ягодных, зерновых культур, хлопчатника, силосной кукурузы, а также благотворно влияют на качество продукции, повышая содержание в ней белка, сахаров, сырого протеина, жиров, клейковины, витаминов.[8]повышают урожайность и улучшают качество сельскохозяйственной продукции у таких видов культурных растений, какзерновые, лен, кормовые культуры, корнеплоды сахарной свеклы, многолетние травы, картофель на дерново-подзолистых почвах, томаты, морковь.[1] положительно влияют на урожайность и качество картофеля, бобовых культур, томата, гречихи, гороха, ячменя, овса, льна, ячменя, озимой ржи, сахарной свеклы, семян клевера, конопли, винограда и других плодово-ягодных культур, огурцов, лука, цветной капусты, салата.[1] улучшают рост и развитие, повышают содержание белка в бобовых, технических, зерновых и овощных культурах.[1]в зависимости от кислотности почв благотворно влияют на кукурузу, салат, клевер, корнеплоды сахарной свеклы, капусту, лук, персик, вишню, яблоню, землянику, виноград.[1] в малых дозах эффективно действуют на горох, лен, люцерну, горчицу, овес, пшеницу, кукурузу, бобовые культуры, красный клевер.[6]при предпосевной обработке семян способствуют повышению урожайности сахарной свеклы, хлопчатника, кукурузы, овса, подсолнечника, томата, лука, капусты, огурца. Кроме того, повышается содержание йода в растениях.[1]повышают урожайность и улучшают качество льна, конопли, сахарной свеклы, клевера, люцерны, зернобобовых, кукурузы, подсолнечника, картофеля, корневых корнеплодов, овощных культур, плодово-ягодных культур, зерновых злаков.[1]

При написании статьи использовались источники:[3][4][9]

 

Статья составлена с использованием следующих материалов:

Литературные источники:

1.

Анспок П.И. Микроудобрения: Справочник.– 2-е издание, переработанное и дополненное.– Л.: Агропромиздат. Ленинградское отделение, 1990.– 272 с.

2.

Битюцкий Н.П. Микроэлементы и растение. Учебное пособие. – СПб.: Издательство Санкт-петербургского университета, 1999. – 232 с.

3.

Глинка Н.Л. Общая химия. Учебник для ВУЗов. Изд: Л: Химия, 1985 г, с 731

4.

Жеребцов Н. А., Попова Т. Н., Артюхов В. Г. Биохимия. — Воронеж: Издательство Воронежского государственного университета, 2002. — 696с.

5.

Кабата-Пендиас А., Пендиас Х. Микроэлементы в почвах и растениях: Перевод с англиского.– М.: Мир, 1989.– 439 с., ил.

6.

Каталымов М.В. Микроэлементы и микроудобрения.– М.: Издательство «Химия», 1965.– 332 с.

7.

Краткая химическая энциклопедия, Главный редактор Н.Л. Кнунянц,  Москва, 1964

8.

Минеев В.Г. Агрохимия: Учебник.– 2-е издание, переработанное и дополненное.– М.: Издательство МГУ, Издательство «КолосС», 2004.– 720 с., [16] л. ил.: ил. – (Классический университетский учебник).

9.

Химическая энциклопедия:  в пяти томах: т.1: А-Дарзана/Редкол.: Кнунянц И.Л. (гл. ред.) и др. – М.: Советская энциклопедия, 1988. – 623.: ил

10.

Ягодин Б.А., Жуков Ю.П., Кобзаренко В.И. Агрохимия / Под редакцией Б.А. Ягодина.– М.: Колос, 2002.– 584 с.: ил (Учебники и учебные пособия для студентов высших учебных заведений).

Изображения (переработаны):

11.12.13.14.15.

Zinc deficiency, by  Donald Groth, Louisiana State University AgCenter, Bugwood.org, по лицензии CC BY

Свернуть Список всех источников

Микроэлементы необходимы

Незаменимые микроэлементы входят в состав ферментов, витаминов, гормонов и других биологически активных веществ. Незаменимыми микроэлементами являются железо, йод, медь, марганец, цинк, кобальт, молибден, селен, хром, фтор.

Физиологическое значение макро- и микроэлементов определяется их участием:

  • в структуре и функции большинства ферментативных систем и процессов, протекающих в организме;
  • в пластических процессах и построении тканей фосфор и кальций – основные структурные компоненты костей;
  • в поддержании кислотно-основного состояния;
  • в поддержании солевого состава крови и водно-солевого обмена.

 

Уровень поступления микроэлементов в организм зависит от их содержания в пищевых продуктах и воде. Постоянное снижение или повышение концентрации определенных минеральных веществ в суточном рационе человека, как правило, связано с недостатком или излишком этих микроэлементов в окружающей среде района проживания. Формирующийся при этом в организме людей дефицит или избыток определенных микроэлементов приводит к развитию эндемических геохимических заболеваний (микроэлементозов).

Наиболее изученной является йодная эндемия. Так, в регионах, где в окружающей среде отмечено недостаточное содержание йода, широко распространен эндемический зоб.

При профилактике недостатка микроэлементов в первую очередь нужно устранить причины, которые могли привести к их нехватке в организме. Необходимо избегать стрессовых ситуаций, нельзя злоупотреблять алкоголем, необходимо адекватное лечение, заболеваний пищеварительной системы, при которых нарушается всасывание питательных веществ, в том числе и микроэлементов.

Йодированная соль — это часть здорового питания. Использование йодированной соли при приготовлении пищи предупреждает нарушения, вызванные йодным дефицитом. Йодная добавка не изменяет вкус, цвет и запах соли. Йодированную соль можно использовать для приготовлений пищи, домашнего консервирования и в пищевой промышленности, так как йодная добавка не влияет на качество продуктов.

Йодированная соль — дешевый продукт питания, доступный и безопасный для любого человека, в том числе для беременных женщин и маленьких детей. Если врач рекомендовал вам ограничить потребление соли, то вам тем более следует употреблять только йодированную соль. Для профилактики йододефицитных состояний достаточно того же количества йодированной соли, что и обычной.

Чтобы убедиться в том, что соль йодированная, прочитайте надпись на упаковке. На ней должно быть указано «Йодированная соль».

В качестве профилактики микроэлементозов также рекомендуется употребление витаминно-минеральных комплексов,  восполняющих дефицит важнейших витаминов и минералов. Перед употреблением не забудьте проконсультироваться с вашим лечащим врачом.

По информации Центра гигиены и эпидемиологии в Свердловской области

Макро- и микроэлементы в комбинациях

Заказать микроэлементы в аптеке

Каждый потребитель может заказать микроэлементы в аптеке с доставкой до ближайшего из 1200+ отделений в Москве и Санкт-Петербурге, в Московской и Ленинградской областях, после чего оплатить продукт в аптеке и забрать его. Мы регулярно проводим различные акции и запускаем бонусные программы, поэтому товары предлагаются по доступным ценам.

Продукция получила лицензию и сертификацию, поэтому полностью отвечает всем необходимым требованиям. Благодаря удобной поисковой системе, можно быстро отыскать требуемый препарат по производителю, активному компоненту и бренду. Для каждого товара приведена инструкция и возможные аналоги по действующему веществу.

Показания

Органические микроэлементы наряду с витаминными комплексами и биологически активными компонентами, являются обязательной составляющей человеческого организма, ведь они обеспечивают жизнеспособность и нормальное течение жизнедеятельности [1]. При наличии патологических состояний организма, беременности, повышенных физических нагрузках, требуется дополнительное количество макроэлементов, которые содержатся в препаратах.

Заказать органические микроэлементы в аптеке необходимо при следующих состояниях:

  • С целью профилактики дефицита витаминов;
  • При высоких физических нагрузках;
  • Плохом усвоении пищевых продуктов;
  • При неполноценном питании;
  • Период беременности и лактации;
  • Обильные менструации и другое.

Противопоказания

Как и другие препараты, такие комплексы нельзя принимать бесконтрольно. Проконсультируйтесь с врачом и сдайте перечень анализов, чтобы избежать негативных последствий.

Основными противопоказаниями к приему данных лекарственных средств выступают:

  1. Повышенная чувствительности к отдельным компонентам препарата.
  2. Высокий уровень кальция в крови.
  3. Гиперкальциурия.

Формы выпуска

Подбирая определенную форму, руководствуйтесь удобством применения и показаниями специалиста. Данное лекарство представлено в виде драже, шипучих таблеток и капель. Первые два вида отличаются точной дозировкой и удобным использованием, достаточно изучить инструкцию. Капли необходимо точно отмерять по указанной дозировке, что не всегда возможно по ряду причин, но они быстрее всасываются и усваиваются организмом.

В нашей аптеке представлен данный препарат в виде:

  • Таблеток;
  • Таблеток без оболочки.

Страны изготовители

На выбор потребителей, помимо российских средств, представлены продукты следующих стран-производителей:

  • Германия;
  • США;
  • Венгрия;
  • Великобритания.

ПЕРЕД ПРИМЕНЕНИЕМ ПРЕПАРАТОВ НЕОБХОДИМО ОЗНАКОМИТЬСЯ С ИНСТРУКЦИЕЙ ПО ПРИМЕНЕНИЮ ИЛИ ПРОКОНСУЛЬТИРОВАТЬСЯ СО СПЕЦИАЛИСТОМ.

Список литературы:

  1. [i] А.В.Скальный, книга «Микроэлементы. Бодрость, здоровье, долголетие», 2011

Аспекты питания основных микроэлементов в здоровье и заболеваниях полости рта: всесторонний обзор

Человеческому телу требуются определенные незаменимые элементы в небольших количествах, и их отсутствие или избыток может привести к серьезным сбоям в работе организма и даже смерти в крайних случаях из-за наличия этих важных следов. элементы напрямую влияют на метаболические и физиологические процессы организма. Быстрая урбанизация и экономическое развитие привели к радикальным изменениям в рационе питания, в результате чего предпочтение отдается рафинированной диете и нездоровой пище с ограниченным питанием.Плохое питание может привести к снижению иммунитета, повышенной уязвимости к различным заболеваниям полости рта и системным заболеваниям, нарушению физического и умственного роста и снижению работоспособности. Диета и питание влияют на здоровье полости рта по-разному, влияя на черепно-лицевое развитие, рост и поддержание мягких тканей зубов и полости рта. Потенциально злокачественные заболевания полости рта (OPMD) лечат антиоксидантами, содержащими необходимые микроэлементы, такие как селен, но даже повышенное потребление микроэлементов, таких как медь, с пищей, может привести к подслизистому фиброзу полости рта.Дефицит или избыток других микроэлементов, таких как йод, железо, цинк и т. Д., Оказывает сильное влияние на организм, и такие состояния часто диагностируются через их ранние оральные проявления. В этом обзоре оцениваются биологические функции важных микроэлементов и их роль в сохранении здоровья полости рта и прогрессировании различных заболеваний полости рта.

1. Введение

Правильное питание всех метаболически активных клеток и тканей необходимо для сохранения здоровья человеческого организма в целом.Микроэлементы, включая микроэлементы, витамины и антиоксиданты, играют жизненно важную роль в непрерывно протекающих регенеративных процессах, справляются с продолжающимся окислительным стрессом в тканях организма и поддерживают достаточный иммунитет против патогенов [1, 2]. Проявления недостаточного питания, а также избыточного питания микроэлементами для здоровья полости рта обширны и могут привести к дефектам твердых тканей зубов, а также слизистой оболочки полости рта [3, 4].

Слово «микроэлементы» используется для элементов, существующих в естественных и нарушенных средах в небольших количествах, с избыточной биодоступностью, оказывающих токсическое действие на живой организм [5].Микроэлементы — это химические микроэлементы, которые необходимы в незначительном количестве, но играют жизненно важную роль в поддержании целостности различных физиологических и метаболических процессов, происходящих в живых тканях. Дефицит любого из микроэлементов может проявляться скорее как комбинация различных клинических проявлений, чем как конкретное проявление, поскольку каждый микроэлемент связан со многими ферментными системами.

Здоровое питание с регулярным потреблением необходимых витаминов и минералов имеет огромное значение как для общего здоровья, так и для здоровья полости рта.Поскольку у стоматологов были ограниченные знания о значении микроэлементов в питании человека, в настоящем обзоре основное внимание уделяется роли тех основных микроэлементов, которые доказали свою роль в поддержании здоровья полости рта, и их влиянию на различные заболевания и расстройства полости рта.

2. Классификация микроэлементов

Были предприняты ограниченные попытки классификации только микроэлементов. Были перечислены классификации, которые касаются присутствия микроэлементов.

2.1. Классификация ВОЗ, 1973 [6]

В соответствии с этой классификацией девятнадцать микроэлементов были разделены на три группы: (1) Основные элементы: цинк (Zn), медь (Cu), селен (Se), хром (Cr), кобальт (Co), йод (I), марганец (Mn) и молибден (Mo). (2) Возможно, важные элементы. (3) Потенциально токсичные элементы.

2.2. Классификация элементов Frieden

В 1981 году Frieden предложил биологическую классификацию микроэлементов на основе их количества в тканях [7] 🙁 1) Основные микроэлементы: бор, кобальт, медь, йод, железо, марганец, молибден и цинк. .(2) Вероятно необходимые микроэлементы: хром, фтор, никель, селен и ванадий. (3) Физически активные микроэлементы: бром, литий, кремний, олово и титан.

2.3. Категориальная классификация элементов Фридена [8]

Двадцать девять типов элементов, присутствующих в организме человека, были разделены на пять основных групп следующим образом: (i) Группа I: основные компоненты макромолекул, такие как углеводы, белки и липиды. Примеры включают углерод, водород, кислород и азот.(ii) Группа II: важные для питания минералы, также называемые основными или макроэлементами. Суточная потребность в этих макроэлементах для взрослого человека превышает 100 мг / сут. Примеры включают натрий, калий, хлорид, кальций, фосфор, магний и серу. (Iii) Группа III: основные микроэлементы. Микроэлементы также называют второстепенными. Элемент считается микроэлементом, если его дневная потребность составляет менее 100 мг. Дефицит этих элементов встречается редко, но может оказаться фатальным.Примеры включают медь, железо, цинк, хром, кобальт, йод, молибден и селен. (Iv) Группа IV: дополнительные микроэлементы. Их роль пока неясна, и они могут быть существенными. Примеры включают кадмий, никель, диоксид кремния, олово, ванадий и алюминий. Эта группа может быть эквивалентна, вероятно, основным микроэлементам в классификации ВОЗ. (V) Группа V: эти металлы не являются основными, и их функции неизвестны. Они могут вызывать токсичность в чрезмерных количествах. Примеры включают золото, ртуть и свинец.Эта группа эквивалентна потенциально токсичным элементам, определенным в классификации ВОЗ.

3. Обсуждение

Внутри человеческого тела функционирует обширная и сложная система для управления и поддержания количества основных микроэлементов в пределах нормы. Микроэлементы из рациона транспортируются в кровь, если есть дефицит, проникают в клетки, если клеточные уровни недостаточны, или выводятся из организма, если уровни в крови и клетках удовлетворительны или повышены. Различные основные микроэлементы, а также потребности в питании и диетические источники перечислены в таблице 1.


Микроэлемент Рекомендуемая суточная доза (RDI) Рекомендуемая диета (RDA) Допустимый верхний уровень потребления (UL) Источники питания

Медь 2000 μ г Дети от 1 до 3 лет: 340 мкг / день; От 4 до 8 лет: 440 мкг / день; От 9 до 13 лет: 700 мкг / день; От 14 до 18 лет: 890 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 900 мкг / день
Беременность: 1000 мкг / день
Лактация: 1300 мкг / день
Дети от 1 до 3 лет: 1 мг / день день; От 4 до 8 лет: 3 мг / день; От 9 до 13 лет: 5 мг / день; От 14 до 18 лет: 8 мг / день
Взрослые от 19 лет и старше (включая период лактации): 10 мг / день
Беременность: 8 мг / день
Устрицы, другие моллюски, цельнозерновые, бобы, орехи, картофель, субпродукты (почки, печень), темная зелень, сухофрукты и дрожжи

Железо 18 мг Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 10 мг / день; От 9 до 13 лет: 8 мг / день
Мальчики от 14 до 18 лет:
11 мг / день
Девочки от 14 до 18 лет: 15 мг / день
Взрослые: 8 мг / день для мужчин в возрасте 19 лет и старше и женщин от 51 года и старше
Женщины от 19 до 50 лет: 18 мг / день
Беременные женщины: 27 мг / день
Кормящие матери: 10 мг / день
Младенцы и дети от рождения до 13 лет: 40 мг / день
Дети в возрасте 14 лет и взрослые (включая беременность и кормление грудью): 45 мг / день
Гемовое железо: печень, мясо, птица и рыба
Негемное железо: злаки, зеленые листовые овощи, бобовые, орехи, масличные семена, пальмовый сахар и сушеные фрукты

Цинк 15 мг Младенцы и дети от 7 месяцев до 3 лет: 3 мг / день; От 4 до 8 лет: 5 мг / день; 9-13 лет: 8 мг / день
Девочки 14-18 лет: 9 мг / день
Мальчики и мужчины 14 лет и старше: 11 мг / день
Женщины 19 лет и старше: 8 мг / день
Беременные женщины : 11 мг / день
Кормящие женщины: 12 мг / день
Младенцы: 4-5 мг / день
Дети от 1 до 3 лет: 7 мг / день; От 4 до 8 лет: 12 мг / день; От 9 до 13 лет: 23 мг / день; От 14 до 18 лет: 34 мг / день
Взрослые 19 лет и старше (включая беременность и период лактации): 40 мг / день
Корма для животных: мясо, молоко и рыба
Биодоступность цинка в растительной пище низкая

Кобальт 6 μ г Младенцы: 0.5 мкг
Дети 1-3 лет: 0,9 мкг; 4–8 лет: 1,2 мкг; 9–13 лет: 1,8 мкг
Дети старшего возраста и взрослые: 2,4 мкг
Беременные женщины: 2,6 мкг
Кормящие матери: 2,8 мкг
Неизвестно Рыба, орехи, зеленые листовые овощи (брокколи, шпинат), злаки и овес

Хром 120 μ г Дети от 1 до 3 лет: 11 мкг; От 4 до 8 лет: 15 мкг
Мальчики от 9 до 13 лет: 25 мкг
Мужчины от 14 до 50 лет: 35 мкг
Мужчины от 51 года и старше: 30 мкг
Девочки от 9 до 13 лет: 21 мкг; От 14 до 18 лет: 24 мкг
Женщины от 19 до 50 лет: 25 мкг; 51 год и старше: 20 мкг
Беременные женщины: 30 мкг
Кормящие женщины: 45 мкг
Дозы, превышающие 200 мкг, токсичны Лучшие источники: переработанное мясо, цельнозерновые продукты и специи

Молибден 75 мкг г Дети от 1 до 3 лет: 17 мкг / день; От 4 до 8 лет: 22 мкг / день; От 9 до 13 лет: 34 мкг / день; От 14 до 18 лет: 43 мкг / день
Мужчины и женщины в возрасте 19 лет и старше: 45 мкг / день
Беременность и лактация: 50 мкг / день
Дети: 300-600 мкг / день
Взрослые (включая беременность и период лактации ): 1100–2000 мкг / день
Корм ​​для животных: печень; овощи: чечевица, сушеный горох, фасоль, соя, овес и ячмень

Селен 70 μ г Дети 1-3 лет: 20 мкг / день
Дети 4– 8 лет: 30 мкг / день
Дети 9–13 лет: 40 мкг / день
Взрослые и дети 14 лет и старше: 55 мкг / день
Беременные женщины: 60 мкг / день
Кормящие женщины: 70 микрограмм / день
Безопасный верхний предел для селена составляет 400 мкг в день для взрослых Печень, почки, морепродукты, мышечное мясо, злаки, зерновые продукты, молочные продукты, фрукты и овощи

Йод 150 мкг г Дети от 1 до 8 лет: 90 мкг / день; От 9 до 13 лет: 120 мкг / день
Дети в возрасте 14 лет и взрослые: 150 мкг / день
Беременные женщины: 209 мкг / день
Кормящие матери: 290 мкг / день
Дети от 1 до 3 лет: 200 мкг / день ; От 4 до 8 лет: 300 мкг / день; От 9 до 13 лет: 600 мкг / день; От 14 до 18 лет: 900 мкг / день
Взрослые старше 19 лет, включая беременных и кормящих женщин: 1100 мкг / день
Лучшие источники: морепродукты (морская рыба и морская соль) и жир печени трески
Небольшие количества: молоко, овощи и крупы

Фтор В питьевой воде: 0.От 5 до 0,8 мг Дети от 1 до 3 лет: 0,7 мг; От 4 до 8 лет: 1 мг; От 9 до 13 лет: 2 мг; От 14 до 18 лет: 3 мг
Мужчины 19 лет и старше: 4 мг
Женщины от 14 лет и старше (включая беременных и кормящих женщин): 3 мг
0,7–9 мг для младенцев
1,3 мг для детей от 1 до 3 года
2,2 мг для детей от 4 до 8 лет
10 мг для детей старше 8 лет, взрослых, беременных и кормящих женщин
Питьевая вода, продукты (морская рыба и сыр) и чай

3.1. Медь

Медь — третий по распространенности микроэлемент, общее количество которого в организме человека составляет всего 75–100 мг [9]. Медь присутствует почти во всех тканях тела и хранится главным образом в печени, а также в головном мозге, сердце, почках и мышцах [10]. Медь всасывается в кишечнике и транспортируется в печень. В крови человека медь в основном распределяется между эритроцитами и в плазме [11]. Он транспортируется в форме церулоплазмина в плазму, где его метаболизм регулируется, и выводится с желчью [12].Церулоплазмин составляет 90% содержания меди в крови и отвечает за перенос меди к дефицитным клеткам [13]. Медно-цинковый металлофермент супероксиддисмутаза содержит 60% меди в эритроцитах, а остальные 40% слабо связаны с другими белками и аминокислотами.

3.1.1. Биологические функции

Значительное количество метаболических ферментов правильно функционируют благодаря меди [13–16]. Биологические функции меди перечислены [14–16]: (1) Фермент цитохром с оксидаза, содержащий медь и железо, играет жизненно важную роль в производстве энергии во время аэробного дыхания.(2) Медь также присутствует в супероксиддисмутазе, которая детоксифицирует супероксиды, превращая их в кислород и перекись водорода. (3) Медь также является компонентом лизилоксидазы, которая участвует в синтезе коллагена и эластина. Медь также необходима для поддержания прочности кожи, волос, кровеносных сосудов, эпителиальной и соединительной ткани по всему телу. (4) Cu играет значительную роль в производстве гемоглобина. Церулоплазмин катализирует окисление железа, которое впоследствии необходимо для связывания с его транспортным белком, трансферрином [12].(5) Производство меланина: медьсодержащий фермент тирозиназа превращает тирозин в меланин. (6) Производство миелина: Cu также необходима для синтеза фосфолипидов, содержащихся в миелиновых оболочках периферических нервов [13, 16]. (7) Также требуется медь. для производства гормона щитовидной железы тироксина [13]. (8) Медь может действовать как антиоксидант, так и прооксидант. В качестве антиоксиданта Cu улавливает или нейтрализует свободные радикалы и может уменьшить или помочь предотвратить некоторые из повреждений, которые они вызывают [16–19]. Медь способствует повреждению тканей свободными радикалами, когда действует как прооксидант [20].

3.1.2. Роль в здоровье полости рта и заболеваниях

Симптомами дефицита меди являются гипохромная анемия, нейтропения, гипопигментация волос и кожи, аномальное костеобразование с хрупкостью скелета и остеопорозом, боли в суставах, снижение иммунитета, сосудистые аберрации и курчавые волосы [21]: (1) Дефицит Cu в рационе в течение длительного периода, особенно на стадиях активного роста, приводит к анемии и дефектному ороговению ротовой полости [22]. Анемический эффект объясняется снижением ферроксидазной активности церулоплазмина и восстановленным окислением железа [5].(2) Инфекции: снижение иммунитета может привести к различным инфекциям полости рта из-за сопровождающейся нейтропении [23]. Отмечены нарушения созревания гранулоцитов в костном мозге и вакуолизация нейтрофилов [5]. (3) Костные аномалии и боль: костные изменения при дефиците меди включают потерю образования трабекул с истончением коры. Может возникнуть остеопороз и образование затылочного рога из-за функционального нарушения медь-требующих ферментов, таких как аскорбатоксидаза и лизилоксидаза, в случае дефицита меди [10].(4) Поражения полости рта: различные исследования показали, что средние уровни меди в сыворотке были значительно выше в сыворотках пациентов с потенциально злокачественными заболеваниями полости рта, такими как лейкоплакия полости рта и подслизистый фиброз полости рта, а также злокачественные опухоли, такие как плоскоклеточная карцинома. Среднее потребление меди в Индии составляет 2,1–3,9 мг / день, тогда как из-за жевания орехов ареки оно превышает 5 мг / день. Было высказано предположение, что медь, выделяемая из орехов ареки во время жевания, вступает в прямой контакт с эпителием ротовой полости и растворяется в слюне.Сообщается, что медь присутствует в слюне в течение 30 минут. Чем дольше медь присутствует в слюне, тем выше вероятность ее поглощения эпителием ротовой полости [24]. Было высказано мнение, что медь появляется в крови через 15 минут приема ореха арека и его продуктов [25]. У пациентов с подслизистым фиброзом полости рта уровни Cu в сыворотке постепенно повышаются по мере прогрессирования клинической стадии заболевания. Однако местный эффект повышенного содержания меди в слюне может играть более важную роль, чем повышенный уровень в сыворотке.Другие школы мысли оценивали снижение концентрации меди в сыворотке крови из-за использования меди в повышающей регуляции лизилоксидазы, приводящей к чрезмерному перекрестному связыванию коллагена [26]. (5) Также считается, что Cu обладает свойством способствовать развитию кариеса [27].

3.2. Цинк

В организме человека распределено 2–4 грамма цинка [28]. Цинк хранится в простате, частях глаза, головном мозге, мышцах, костях, почках и печени [29]. Это второй по распространенности переходный металл в организмах после железа и единственный металл, который присутствует во всех классах ферментов [28, 30].В плазме крови Zn связывается и транспортируется с альбумином (60%) и трансферрином (10%) [31]. Поскольку трансферрин также переносит железо, избыточное количество железа может снизить абсорбцию цинка, и наоборот [32]. Концентрация цинка в плазме крови остается относительно постоянной независимо от приема цинка.

3.2.1. Биологические функции

Функции цинка в биологии многочисленны, но их можно разделить на три основные категории: каталитические, регуляторные и структурные роли. Он необходим для каталитической активности большого количества ферментов [33, 34].Он играет важную роль в иммунной функции, заживлении ран, синтезе белка, синтезе ДНК и делении клеток [34–36]. Цинк необходим для правильного обоняния и вкуса [37, 38]. Он также поддерживает нормальный рост и развитие во время беременности, детства и подросткового возраста [39–42]. Предположительно, он также обладает антиоксидантными свойствами и, таким образом, может играть роль в ускорении процесса заживления после травмы и защите от ускоренного старения [40, 43]. Ионы цинка являются эффективными противомикробными средствами даже при низких концентрациях.

3.2.2. Роль в здоровье полости рта и заболеваниях

Роль цинка в здоровье полости рта и заболеваниях резюмируется следующим образом: (1) В полости рта цинк естественным образом присутствует в зубном налете, слюне и эмали. Цинк превращается в продукты для ухода за полостью рта, чтобы контролировать зубной налет, уменьшить неприятный запах и замедлить образование зубного камня. Повышенные концентрации цинка могут сохраняться в течение продолжительных периодов времени в зубном налете и слюне после доставки из полосканий для рта и зубных паст. Хотя низкие концентрации цинка могут как уменьшить деминерализацию эмали, так и изменить реминерализацию, антикариогенная эффективность все еще остается спорной и не подтверждается различными исследованиями [44].(2) Расстройства вкуса: роль цинка во вкусовых функциях заметна на различных уровнях организации, таких как вкусовые рецепторы, передача вкусового нерва и мозг. Цинк играет важную роль в архитектуре клеточной структуры, поддержании целостности клеточной мембраны и функций различных цитоплазматических и мембранных ферментов. Ранние исследователи пришли к выводу, что дефицит цинка, вторичный по отношению к любой этиологии, приводит к нарушению вкуса, и, таким образом, истощение цинка все же корректируется для пациентов, сообщающих о дисбалансе вкуса [45].(3) Исследование, проведенное на грызунах, показало, что диета с дефицитом цинка может привести к паракератозу обычно ортокератинизированной слизистой оболочки полости рта. Следовательно, дефицит цинка может быть потенциальным фактором риска заболеваний полости рта и пародонта. Паракератотические изменения щек, языка и пищевода являются признаком дефицита цинка. Утолщение слизистой оболочки щеки является частым проявлением наряду с потерей нитевидных сосочков [46]. (4) Как указано выше, цинк является кофактором фермента супероксиддисмутазы, и различные исследования показали более низкие уровни цинка в сыворотке крови у пациентов с потенциально предраковыми заболеваниями. как оральная лейкоплакия.Это может быть связано с потреблением цинка в ответ на высокое содержание меди в орехе арека или окислители, выделяемые во время употребления табака [47]. (5) Аналогичным образом, концентрация цинка в сыворотке крови значительно снижается при плоскоклеточном раке полости рта и подслизистой оболочке полости рта. пациенты с фиброзом, употреблявшие табак в анамнезе, по сравнению с контрольной группой и постепенно уменьшались с продолжительностью привычки. Сообщается, что уровень цинка в сыворотке крови у пациентов с плоскоклеточным раком полости рта был ниже, чем у пациентов с субмукозным фиброзом полости рта [25, 48].(6) Поскольку трансферрин транспортирует и железо, и цинк, уровень цинка увеличивается по мере снижения уровня железа у пациентов с дефицитом железа. Таким образом, пациенты с OSMF, также страдающие железодефицитной анемией, показывают более высокие уровни цинка в сыворотке [25, 48]. (7) Супероксиддисмутаза, которая является естественным антиоксидантом организма, представляет собой белковый комплекс Cu-Zn, который оказывает антиканцерогенное действие на OSMF. . Во-вторых, цинк снижает активность медьсодержащего фермента лизилоксидазы и, таким образом, вызывает ингибирование поперечного связывания пептидов коллагена.Он также играет важную роль в стимулировании деградации коллагена через коллагеназу и матриксную металлопротеиназу. Таким образом, цинк имеет обратную связь с медью и, таким образом, препятствует абсорбции меди слизистой оболочкой. Избыток цинка особенно ухудшает абсорбцию меди, поскольку оба металла абсорбируются через металлотионеины. Отношение меди к цинку также считается надежным биомаркером в развитии и прогрессировании канцерогенеза [48]. (8) Вопреки распространенному мнению о защитной функции цинка, ограниченная литература предполагает канцерогенный эффект цинка [49]. ].

3.3. Железо

Железо — самый распространенный незаменимый микроэлемент в организме человека. Общее содержание железа в организме составляет около 3–5 г, большая часть которого находится в крови, а остальное — в печени, костном мозге и мышцах в виде гема [50]. Железо всасывается в кишечнике из пищи в случае его истощения и транспортируется в форме ферритина. Гемосидерин — это золотисто-коричневый пигмент, который является побочным продуктом метаболизма ферритина и откладывается в клетках ретикулоэндотелиальной системы [51].Гомеостаз железа поддерживает уровни железа в сыворотке крови в пределах нормы только за счет активации или подавления механизма абсорбции железа, что уникально, поскольку оно поддерживает гомеостаз за счет регулирования абсорбции, а не выведения.

3.3.1. Биологические функции

Гем — это основное железосодержащее вещество в двухвалентном или трехвалентном состоянии, которое присутствует в гемоглобине, миоглобине и цитохроме. Существует множество ферментов, связанных с железом, а именно цитохром а-с, р450, цитохром с редуктаза, каталазы, пероксидазы, ксантиноксидазы, триптофан пирролаза, сукцинатдегидрогеназа, глюкозо-6-фосфатдегидрогеназа и холиндегидрогеназа.Гем образует ковалентные связи с глобиновым белком с образованием гемоглобина, который является основным переносящим кислород пигментом в эритроцитах млекопитающих. Он принимает участие во множестве метаболических циклов, таких как реакции производства энергии (цитохромы цикла Кребса) во всех клетках, и активирует производящие энергию окисляющие ферменты. Помимо участия в поддержании бесчисленных физиологических и метаболических процессов, он также необходим для синтеза ДНК, РНК, коллагена, антител и так далее [52].Биологические роли железа в организме человека выходят за рамки данной статьи, и перечислены лишь несколько важных из них.

3.3.2. Роль в здоровье полости рта и заболеваниях

Роль железа в здоровье полости рта и болезнях резюмируется следующим образом: (1) Железодефицитная анемия является наиболее частым проявлением низких уровней этого важного микроэлемента в сыворотке крови. Микроцитарные гипохромные эритроциты, утомляемость, ахлоргидрия, атрофия эпителия, потеря внимания, раздражительность, одышка и снижение памяти — вот некоторые из особенностей железодефицитной анемии [25].Оральные проявления железодефицитной анемии можно обобщить как угловой хейлит, атрофический глоссит, генерализованную атрофию слизистой оболочки полости рта, кандидозные инфекции, бледность и стоматит. Синдром Пламмера-Винсона или синдром Патерсона-Келли или сидеропеническая дисфагия — это редкое состояние, характеризующееся железодефицитной анемией, дисфагией и койлонихией, причем женщины страдают чаще, чем мужчины. Дисфагия возникает из-за наличия аномальных перепонок пищевода, которые имеют предрасположенность к злокачественной трансформации [53].(2) Предраковые поражения и состояния полости рта: у пациентов с OSMF было обнаружено значительное снижение концентрации железа в сыворотке с повышением общей железосвязывающей способности. Снижение уровня железа у пациентов с OSMF может быть связано с использованием железа в синтезе коллагена. Кроме того, дефицит железа в тканях полости рта приводит к снижению кровоснабжения, что еще больше способствует просачиванию ареколина (побочный продукт ореха арека). Дальнейшее повреждение вызвано повышенной перколяцией ареколина, которая усиливает пролиферацию фибробластов и образование коллагена [25].Хотя большая часть литературы предполагает, что OSMF приводит к дефициту железа из-за нарушенных диетических привычек, Bhattacharya et al. сообщили об интересном случае, когда железодефицитная анемия в первую очередь привела к развитию подслизистого фиброза полости рта, который успешно лечился пероральным приемом добавок железа и антиоксидантов [54]. Аналогичным образом, низкие уровни железа в сыворотке крови были оценены у пациентов, страдающих лейкоплакией полости рта. (3) Также было отмечено, что уровни ферритина в сыворотке повышаются, а концентрации железа в сыворотке снижаются по мере прогрессирования опухоли в карциномах головы и шеи, и, таким образом, гем может быть используется в качестве инструмента последующего наблюдения за пациентами наряду с оценкой питания [47].

3.4. Кобальт

Присутствие кобальта в тканях животных было впервые установлено Бертраном и Машебёфом в 1925 году, что позже было подтверждено различными исследованиями с использованием спектрографических методов [55, 56]. Кобальт является важным микроэлементом для человеческого организма и может присутствовать в органических и неорганических формах. В органической форме он составляет неотъемлемую часть витамина B12 и играет важную роль в образовании аминокислот и нейромедиаторов. Неорганические формы кобальта токсичны для человеческого организма, и чем дольше они остаются в организме, тем больше вредных эффектов они вызывают в клетках.Ионы кобальта всасываются в организме человека несколькими путями: во-первых, с пищей; во-вторых, дыхательной системой; в-третьих, кожей; и, наконец, как компонент биоматериалов. Ионы кобальта попадают в организм любым из вышеупомянутых путей, связываются с белками в кровотоке и транспортируются с кровью для депонирования в тканях и клетках. Общее содержание кобальта в организме составляет от 80 до 300 мкг витамина B12 [57–59].

3.4.1. Биологические функции

Витамин B12, также известный как кобаламин, является водорастворимым витамином и содержит биохимически редкий элемент кобальт в центре плоского тетрапиррольного корринового кольца. Витамин B12 вырабатывается в виде гидроксокобаламина в бактериях, а превращение в метилкобаламин и 5′-дезоксиаденозилкобаламин, ферментативно активные формы кофактора, происходит в организме. Цианокобаламин, четвертый витамин B12, может метаболизироваться в организме до активной формы кофермента и использоваться в пищевых добавках.Эритропоэтин, необходимый для образования эритроцитов, стимуляция осуществляется витамином B12, содержащим соли кобальта, и, таким образом, дефицит кобальта сильно связан с нарушениями синтеза витамина B12, что приводит к анемии и гипофункции щитовидной железы с повышенным риском аномалий развития и недостаточности у младенцев. [59]. Помимо того, что кобальт является важным компонентом этих различных форм витамина B12, он необходим для эффективного образования аминокислот и различных белков для образования миелиновой оболочки.Кобальт также играет решающую роль в создании нейромедиаторов, необходимых для правильной работы организма. С другой стороны, избыток ионов кобальта в организме может усилить действие щитовидной железы и костного мозга, что приведет к перепроизводству эритроцитов, фиброзу в легких и астме [60].

3.4.2. Роль в здоровье полости рта

Роль кобальта в здоровье полости рта резюмируется следующим образом: (1) Кобальт, входящий в состав витамина B12, также называемый внешним фактором, необходим для образования эритроцитов.Таким образом, наиболее известным проявлением дефицита кобальта в полости рта является злокачественная анемия, которая характеризуется глосситом, чувством жжения, мускулистым красным языком в виде пятен или полностью красным языком, который также называют глосситом Хантера или Мёллера. и редко неглубокие язвы [61]. (2) Помимо эритропоэза, витамин B12 также играет важную роль в восстановлении и регенерации нервов. Следовательно, дефицит кобальта может иметь побочные эффекты, такие как периферическая невропатия.(3) Красный плоский лишай и реакции на лихеноид полости рта были связаны с их воздействием Cr, Co, Ni и сплавов амальгамы, которые выделяются из металлических сплавов, обычно используемых в стоматологии в полости рта. Эти следы металлов при высвобождении из металлических сплавов вступают в прямой контакт со слизистой оболочкой полости рта, что приводит к иммуноопосредованному повреждению базальных эпителиальных кератиноцитов и впоследствии вызывает реакции чувствительности в форме OLR. Некоторые исследования связывают OLR с риском злокачественной трансформации [62].

3.5. Chromium

Слово «хром» — это греческое слово, означающее «цвет». Хром существует в двухвалентном [Cr (II)], трехвалентном [Cr (III)] и шестивалентном [Cr (VI)] состояниях окисления, причем Cr (VI) и Cr (III) являются наиболее стабильными формами, среди которых Cr ( III) и Cr (VI) являются нерастворимыми и растворимыми формами соответственно. Общее содержание хрома в организме относительно низкое и составляет около 0,006 г у среднего здорового взрослого человека. Трехвалентный Cr является важным микроэлементом и играет важную роль в метаболизме глюкозы, выступая в качестве кофактора действия инсулина.Шестивалентный хром является токсичным промышленным загрязнителем и классифицируется как канцероген, обладающий мутагенными и тератогенными свойствами. Воздействие хрома в результате занятий через дыхательные пути было связано с различными видами рака легких, желудочно-кишечного тракта и центральной нервной системы. Хром выводится в основном с мочой и фекалиями, а в небольших количествах — с волосами, потом и желчью [63].

3.5.1. Биологические функции

Хром является важным микроэлементом для людей с избыточным весом, поскольку он является одним из ключевых минералов, контролирующих уровень сахара и липидов в крови.Хром [Cr (III)] увеличивает эффективность инсулина и стимулирует захват глюкозы мышцами и другими тканями, являясь основным ингредиентом фактора толерантности к глюкозе (GFT). В случае низкого уровня хрома в сыворотке крови уровень циркулирующего (GFT) также меньше, и, следовательно, инсулин менее эффективен для снижения уровня сахара в крови. В результате высокий уровень сахара в крови стимулирует дальнейшее высвобождение неэффективного инсулина [64, 65]. Считается, что хром подавляет р53, белок-супрессор опухолей, инактивация которого посредством мутаций связана со многими типами рака человека.Сообщалось о хромовых язвах, разъедающих реакциях на носовой перегородке, остром раздражающем дерматите и аллергическом экзематозном дерматите среди лиц, подвергшихся воздействию соединений шестивалентного хрома. Было документально подтверждено, что промышленные рабочие, подвергающиеся воздействию хроматов, подвергаются чрезмерному риску рака легких.

Поскольку хром присутствует в организме в очень малых количествах, трудно определить его дефицитное состояние. Считается, что если концентрация хрома ниже нормального значения 0.14–0,15 нг / мл в сыворотке крови, это указывает на наличие тяжелого дефицита хрома. Несмотря на это, повышенные уровни в плазме могут сосуществовать с отрицательным тканевым балансом. Гипергликемия может сопровождаться повышенным содержанием хрома в плазме и повышенной экскрецией с мочой. Концентрации хрома в моче, волосах и биологических жидкостях не могут отражать истинный хромовый статус организма [65].

3.5.2. Роль в здоровье полости рта и заболеваниях

Роль хрома в OLR обсуждалась ранее [62].Гипергликемический статус больных сахарным диабетом с недиагностированным состоянием дефицита хрома может приводить к широкому спектру оральных проявлений, отмечаемых у диабетиков, таких как замедленное заживление ран, гнойный пародонтит, различные грибковые инфекции полости рта, преждевременные заболевания пародонта и гипосаливация [66].

3.6. Селен

Селен — жизненно важный микроэлемент, который является важным компонентом антиоксидантных ферментов, таких как пероксид глутатиона и тиоредоксинредуктаза [67]. Соли селена, необходимые для различных клеточных функций в организме человека, в чрезмерных количествах токсичны.Сообщается, что у микроорганизмов есть несколько селенсодержащих ферментов, и наиболее вероятно, что селенопротеины, отличные от глутатионпероксидазы, еще предстоит обнаружить у высших животных. Исторически, болезнь Кешан, эндемичная для детей в возрасте 2–10 лет и женщин детородного возраста, имела географическое распространение в широком поясообразном регионе материкового Китая с северо-востока на юго-запад. Типичными проявлениями были утомляемость даже после легких упражнений, сердечная аритмия и учащенное сердцебиение, потеря аппетита, сердечная недостаточность, кардиомегалия и застойная сердечная недостаточность.Заболевание было распространено среди людей, соблюдающих диету с дефицитом селена, и состояние пациентов быстро улучшилось после обогащения. Точно так же селен-чувствительное заболевание костей и суставов, болезнь Кашина-Бека, также выявлялось у детей в возрасте 5–13 лет в Китае и в меньшей степени — в юго-восточной Сибири. Болезнь Кашина-Бека также встречается в районах с низким содержанием селена в почве для возделывания сельскохозяйственных культур.

3.6.1. Биологические функции

Селен, как известно, обладает иммуномодулирующими и антипролиферативными свойствами и может влиять на иммунный ответ, изменяя экспрессию цитокинов и их рецепторов или делая иммунные клетки более устойчивыми к окислительному стрессу [68, 69].В составе фермента глутатионпероксидазы вместе с витамином Е, каталазой и супероксиддисмутазой селен является компонентом одной из важнейших систем антиоксидантной защиты организма. Также имеются убедительные доказательства того, что неизвестный селеноферментный белок играет определенную роль в синтезе трийодтиронинового гормона из тироксина [70, 71].

3.6.2. Роль в здоровье полости рта и заболеваниях

Уровни селена в сыворотке показали прогрессивное снижение от здоровых субъектов к пациентам с предраковыми поражениями, такими как лейкоплакия полости рта, и дальнейшее снижение у пациентов, страдающих раком полости рта.Также наблюдалось снижение уровня селенсодержащей глутатионпероксидазы и сопутствующее усиление окислительного стресса в том же порядке [72].

Таким образом, очевидно, что снижение концентрации селена приведет к усилению окислительного стресса в тканях организма с непреднамеренными вредными последствиями. Таким образом, пищевые добавки с микроэлементами, такими как селен, являются важным обоснованием при лечении предраковых поражений, таких как лейкоплакия, таких состояний, как OSMF, и пациентов с раком полости рта для снижения окислительного стресса внутри организма [54].

В недавнем исследовании оценивали противовоспалительный и антиоксидантный эффект селена при введении пациентам, страдающим мукозитом полости рта, вторичным по отношению к химиотерапии в высоких дозах. Исследователи утверждали, что адекватный прием селена может оказывать цитопротекторное действие и противоязвенное действие, и пришли к выводу, что селен может эффективно уменьшить продолжительность и тяжесть орального мукозита у этих пациентов [73].

3.7. Молибден

Минералы молибдена были известны на протяжении всей истории, но этот элемент был открыт Карлом Вильгельмом Шееле в 1778 году и впервые выделен в 1781 году Питером Якобом Хьельмом.

3.7.1. Биологические функции

Молибден, как компонент молибдопротеина, участвует в образовании активных центров различных ферментов. Три основных молибденсодержащих фермента — это ксантиндегидрогеназа / оксидаза, альдегидоксидаза и сульфитоксидаза. Фермент, содержащий молибден, играет определенную роль в катаболизме пуринов. Он также влияет на синтез белка и рост организма [74]. Молибден обладает антагонистическим действием по отношению к меди; таким образом, высокие концентрации молибдена могут снизить абсорбцию меди и впоследствии привести к ее дефициту [75].

3.7.2. Роль в здоровье полости рта и заболеваниях

Считается, что бор, ванадий и молибден обладают кариостатическим действием. Различные исследования из Венгрии и Новой Зеландии убедительно показали, что взаимодействие молибдена и фторида оказывает сильное кариостатическое действие. Тем не менее, кариостатический эффект молибдена подвергся критическому анализу в литературе с неубедительными результатами. Тем не менее в эмали зубов накапливается значительное количество молибдена. Необходимы дальнейшие исследования или исследования для получения надежных наблюдений [76].

3.8. Фтор

Фтор составляет незначительную часть веса тела и попадает в организм в основном через питьевую воду и в меньшей степени через пищу.

3.8.1. Биологические функции

Фтор в форме кристаллов фторапатита является важной частью организованного матрикса твердых тканей, таких как кости и зубы. Также считается, что фторид в сочетании с кальцием стимулирует активность остеобластов [64].

3.8.2. Роль в здоровье полости рта и заболеваниях

Низкий уровень фторида в питьевой воде был связан с кариесом зубов.Чрезмерные концентрации фтора на стадии кальцификации зубов могут привести к разновидности гипоплазии эмали, называемой флюорозом зубов. Клинически флюороз зубов может варьироваться от небольших белых помутнений на эмали до сильных пятнистостей на структуре зуба с возрастающей степенью тяжести. Общий эффект чрезмерного приема фтора на структуру зубов зависит от многих факторов, таких как концентрация фторида в питьевой воде, стадия кальцификации зубов, когда произошло воздействие, продолжительность воздействия и количество воздействия [61].

3.9. Йод

Йод — жизненно важный микроэлемент, необходимый на всех этапах жизни, особенно в годы формирования. Важно поддерживать повседневные функции человеческого тела, а недостаток или избыток могут иметь серьезные неблагоприятные последствия для организма.

3.9.1. Биологические функции

Йод является важным компонентом гормонов щитовидной железы, то есть тетрайодтиронина (Т4 или тироксин) и трийодтиронина (Т3). Он играет значительную роль в функционировании паращитовидных желез.Йод играет важную роль в общем росте и развитии организма наряду с поддержанием метаболических процессов [64].

3.9.2. Роль в здоровье полости рта и заболеваниях

Симптомы недостатка или избытка йода могут быть бесчисленными. Чаще проявляется дефицит йода. Наиболее частыми симптомами дефицита йода являются сильная усталость, раздражительность, психические расстройства, увеличение веса, отечность лица, запор и вялость. У детей, не получающих лечения, существует риск развития кретинизма и в конечном итоге они страдают от плохого роста и умственной отсталости [64].

Также было высказано предположение, что дефицит или избыток йода в пище играет важную роль в слизистой оболочке полости рта и в физиологии слюнных желез. Слюнные железы могут защищать свои собственные клетки от перекисного окисления благодаря способности концентрировать йод за счет симпортера йодида натрия и активности пероксидазы. Йодид, по-видимому, выполняет примитивную антиоксидантную функцию в организмах, концентрирующих йодид. Значительная роль йода в механизме иммунной защиты полости рта может быть подтверждена высокой концентрацией йода в тимусе.С. Вентури и М. Вентури также предположили, что эти действия йодидов могут быть важны для профилактики различных заболеваний ротовой полости и слюнных желез [77].

В исследовании, проведенном Литтлтоном и Фрелихом в 1993 году, также было очевидно, что скелетные останки из богатых йодом зон мира показали более высокий износ, меньший кариес зубов и меньшую преждевременную потерю зубов. Ранняя потеря зубов может быть основным фактором недостаточного питания, потери здоровья и снижения качества жизни [78].

Дефицит йода не редкость для различных частей населения мира. Обогащение пищевой соли во всем мире было предпринято, чтобы восполнить дефицит йода. Гипотиреоз характеризуется пониженным уровнем гормона щитовидной железы. Что касается поражения полости рта, может наблюдаться явное утолщение губ из-за отложения гликозаминогликанов в подкожных тканях. Точно так же можно увидеть макроглоссию языка по той же причине. Если поражены дети, может произойти отсроченное прорезывание зубов без какого-либо влияния на формирование зубов [53].

Гипертиреоз у взрослых может приводить к диффузной коричневой пигментации десен, слизистой оболочки щек, неба и языка, как при болезни Аддисона. Механизм, посредством которого происходит стимуляция синтеза меланина, пока неясен, но пигментация имеет тенденцию исчезать при лечении патологии щитовидной железы [79].

4. Обнаружение микроэлементов и оценка статуса питания

Это было сделано следующим образом: (1) Хотя для определения присутствия микроэлементов использовались различные методы, это громоздкая и непродуктивная работа из-за их широкого распространения. в живых тканях и ферментных системах.Колориметрические и спектрографические методы обычно используются для анализа количества микроэлементов. Как правило, для анализа отдельных элементов предпочтительны спектроскопия и электрохимические методы, тогда как нейтронно-активационный анализ и спектроскопические методы используются для определения более чем одного элемента [11]. (2) Наиболее легко определяется дефицит железа, который может быть определен в лабораторных условиях. тесты [80]. Мазок костного мозга, не содержащий окрашиваемого железа, является окончательным. Повышенная общая железосвязывающая способность, низкий уровень сывороточного железа и низкая концентрация сывороточного ферритина считаются диагностическими признаками дефицита железа.В последнее время новые подходы, такие как анализ цинк-порфирина эритроцитов, также использовались в первичных скрининговых тестах для оценки статуса железа [81]. (3) Сообщаемое оптимальное соотношение меди и цинка в плазме или сыворотке составляет 0,70–1,00. Как упоминалось ранее в статье, диагностика дефицита цинка является постоянной проблемой. Уровни цинка в плазме или сыворотке являются наиболее часто используемыми показателями для оценки дефицита цинка. Тяжелый дефицит Cu может быть обнаружен при тестировании на низкий уровень меди в плазме или сыворотке, низкий уровень церулоплазмина и низкий уровень супероксиддисмутазы, но эти тесты не очень чувствительны и не позволяют определить маргинальный дефицит меди [16, 82].(4) Оценка состояния йодного питания населения или группы, проживающей в районе или регионе, предположительно имеющем йододефицитный регион, может быть выполнена путем оценки частоты зоба, измерения экскреции йода с мочой и определения уровня Т3, Т4 или ТТГ в крови. (5) Тканевые запасы хрома явно не отражают содержание хрома в крови; таким образом, концентрация хрома в сыворотке не является хорошим индикатором хромового статуса. Было высказано предположение, что уровень хрома в сыворотке ниже 0.14–0,15 нг / мл указывают на наличие тяжелого дефицита хрома. Чрезмерное воздействие хрома на человека в результате профессиональной деятельности или несчастного случая может быть отражено повышенным содержанием хрома в сыворотке крови. (6) Различные ткани, такие как кровь, волосы и ногти, были проанализированы для определения статуса селена в питании. Как правило, эти ткани могут обеспечить надежную оценку статуса селена, если потребление селена с пищей относительно однородно. (7) Уровень других микроэлементов в тканях у нормальных людей определить трудно.

5. Заключение

Диагностика дефицита микроэлементов как с питательной, так и с клинической точки зрения — одна из самых сложных задач. Недостаточное поступление необходимого микроэлемента может снизить важные биологические функции в тканях, а восстановление физиологических уровней этого элемента облегчает нарушенную функцию или предотвращает нарушение. Человеческое тело имеет сложную систему управления и регулирования количества ключевых микроэлементов металлов, циркулирующих в крови и хранящихся в клетках.Аномальные уровни этих микроэлементов могут развиваться, когда организм не может нормально функционировать или есть неправильные уровни в пищевых источниках. Существуют убедительные доказательства того, что диета, богатая антиоксидантами и необходимыми минералами, необходима для здоровья души и тела. Профилактическая медицина в последние годы привлекает больше внимания, чем что-либо еще, поскольку правильно сказано: «Профилактика лучше лечения». Выборочное воспроизведение ассоциации профилактической медицины с различными микроэлементами представлено в таблице 2 [5].Состояние ротовой полости и общее состояние нельзя рассматривать независимо друг от друга, и на самом деле полость рта может эффективно отражать общее состояние здоровья. Комбинация различных питательных микроэлементов и микроэлементов использовалась в качестве стратегии лечения заболеваний полости рта, таких как лейкоплакия полости рта, подслизистый фиброз полости рта, рак полости рта и т. Д., Поскольку их совокупный результат более благоприятен по сравнению с одиночным применением. Следовательно, знание клинических аспектов микроэлементов становится необходимым как для врачей общей практики, так и для стоматологов.

Предрасположенность к кариесу 900,00 39

Профилактика Следующие элементы

Предрасположенность к анемии Железо, кобальт, медь
Снижение антиоксидантного потенциала Цинк , марганец, селен, медь
Способствование старению и его причина Цинк, медь, селен, хром
Иммунодефицит Цинк, железо, медь, селен
Повышенная канцерогенность Цинк, медь , селен
Повышенный атеросклероз Цинк, селен, железо, медь, хром
Повышенная заболеваемость сахарным диабетом Хром, цинк, селен
Предрасположенность к расстройству вкуса Цинк
Фтор, молибден?
Предрасположенность к зобу Йод

Конкурирующие интересы

Авторы заявляют, что у них нет конкурирующих интересов.

Микроэлементы (минералы) | Техасский институт сердца

Микроэлемент Требуется для Хорошие источники

Хром

Использование сахара в организме

Цельнозерновые, специи, мясо, пивные дрожжи
Медь Синтез и функция гемоглобина; выработка коллагена, эластина, нейромедиаторов; образование меланина Мясные субпродукты, моллюски, орехи, фрукты
фтор Связывание кальция в костях и зубах Вода фторированная
Йод Производство энергии (в составе гормонов щитовидной железы) Морепродукты йодированная соль
Утюг Синтез и функция гемоглобина; действия ферментов при производстве энергии; производство коллагена, эластина, нейротрансмиттеров Мясные субпродукты, мясо, птица, рыба
Марганец Функции не совсем понятны, но необходимы для оптимального здоровья Цельное зерно, орехи
Молибден Функции не совсем понятны, но необходимы для оптимального здоровья; детоксикация вредных веществ Мясные субпродукты, цельнозерновые, зеленые листовые овощи, молоко, бобы
Селен Функции не совсем понятны, но необходимы для оптимального здоровья Брокколи, капуста, сельдерей, лук, чеснок, цельнозерновые, пивные дрожжи, субпродукты
цинк Иммунитет и лечение, хорошее зрение, активность сотен ферментов Цельнозерновые, пивные дрожжи, рыба, мясо

Металлы и другие микроэлементы

Микроэлементы — это просто элементы, присутствующие в окружающей среде в незначительных количествах.Микроэлементы включают металлы, такие как свинец и железо; металлоиды, такие как мышьяк ; и радионклидов, (радиоактивных элементов), таких как радий и радон. Микроэлементы в ручьях, реках и грунтовых водах нашей страны имеют естественные и искусственные источники. Выветривание горных пород, эрозия почвы и растворение водорастворимых солей являются примерами естественных источников микроэлементов. Многие виды деятельности человека также вносят микроэлементы в окружающую среду: добыча полезных ископаемых, городские стоки, промышленные выбросы и ядерные реакции — это лишь некоторые из многих искусственных источников.Микроэлементы имеют тенденцию концентрироваться в отложениях, но также могут в некоторой степени растворяться в воде и могут представлять опасность для здоровья человека и водных организмов.

► Узнайте о микроэлементах в подземных водах основных водоносных горизонтов США, нашего невидимого и жизненно важного ресурса.

МЕТАЛЛЫ

Многие люди могут не осознавать, что большинство элементов — это металлы. Металлы, как правило, блестящие, из них получаются хорошие проводники, они податливы и пластичны.Большинство из них подвержены коррозии при контакте с морской водой или воздухом и теряют электроны во время реакций. Мы знакомы со многими металлами, например, с золотом, серебром, свинцом, цинком, хромом, кадмием и , ртутью . Менее очевидно, что другие элементы, например бериллий, натрий и литий, тоже являются металлами. Хотя искусственные металлические предметы окружают нас каждый день, металлы составляют лишь мизерную долю элементов земной коры.

Не существует согласованного определения «тяжелых металлов», но тяжелыми металлами обычно считаются металлы с высокой плотностью.Золото, серебро, олово, медь, цинк и железо — хорошо известные примеры тяжелых металлов. Некоторые тяжелые металлы, такие как железо и цинк, являются важными питательными веществами при низких концентрациях, но токсичны при высоких концентрациях. Другие несущественные тяжелые металлы, такие как кадмий, ртуть и свинец, токсичны даже при относительно низких концентрациях.

«Металлоид» имеет промежуточные свойства между металлами и неметаллами. С точки зрения качества воды, мышьяк , пожалуй, является наиболее опасным металлоидом.Другие металлоиды включают бор и кремний, а углерод и некоторые другие микроэлементы иногда классифицируются как металлоиды.

Металлы в воде, используемой для питья, и в отложениях могут представлять опасность для здоровья человека и водных организмов. Разработаны различные эталоны концентрации , которые указывают на концентрацию, выше которой металл опасен для здоровья.

РАДИОНУКЛИДЫ

Радионуклиды (радиоактивные элементы) также являются микроэлементами.Радионуклиды в нашей окружающей среде производятся минералами в земной коре, космическими лучами, поражающими атомы в атмосфере Земли, и деятельностью человека. Радионуклиды естественным образом встречаются во многих горных породах и минералах и поэтому часто встречаются в грунтовых водах. Наиболее распространенными примерами радионуклидов в подземных водах являются уран, радий и радон.

► Узнайте больше о радионуклидах и качестве воды .

ДРУГИЕ СЛЕДУЮЩИЕ ЭЛЕМЕНТЫ

Небольшое количество микроэлементов, таких как селен, не являются ни металлами, ни радионуклидами.Селен естественным образом встречается в осадочных породах, сланцах, угольных и фосфатных месторождениях и почвах. Применение поливной воды, содержащей растворенный кислород, может вызвать попадание селена из донных отложений в грунтовые воды, особенно в засушливых районах. Эти процессы были задокументированы в мелководном водоносном горизонте бассейна Денвер в Колорадо и в некоторых частях Запада, где селен встречается в породах и отложениях. Селен из грунтовых вод может сбрасываться в ручьи, где он может накапливаться в водной пищевой цепи.Хроническое воздействие на рыбу и водных беспозвоночных может вызвать нарушение репродуктивной функции.

СЛЕДОВЫЕ ЭЛЕМЕНТЫ И ПИТЬЕВАЯ ВОДА

Концентрации микроэлементов с большей вероятностью будут проблемой в грунтовых водах, чем в поверхностных водах, если только в этом районе не ведется добыча полезных ископаемых. Это связано с тем, что, когда грунтовые воды проходят через породы и отложения, составляющие водоносный горизонт, некоторые минералы в этих породах и отложениях или прилипшие к ним попадают в воду.Подземные воды, которые долгое время находились в водоносном горизонте, имели больше времени для взаимодействия с материалами водоносного горизонта, чем грунтовые воды, которые недавно восстановились. Кроме того, геохимические условия, такие как pH и окислительно-восстановительный потенциал , изменяются по мере того, как грунтовые воды медленно перемещаются по пути потока от подпитки к сбросу — эти геохимические условия могут влиять на попадание металлов в грунтовые воды.

Возраст подземных вод — это лишь один из факторов, который может повлиять на концентрацию микроэлементов.Другие факторы включают климат, геологию и действия человека. Климат4 играет важную роль, потому что в регионах, где количество осадков мало, а скорость испарения высока, меньше воды для разбавления продуктов выветривания горных пород. Геология играет важную роль, потому что металлы, доступные для выщелачивания в грунтовые воды, зависят от типов минералов, присутствующих в породах и отложениях. Наконец, действия человека, такие как орошение и откачка, могут повлиять на концентрацию микроэлементов в грунтовых водах, часто за счет изменения геохимических условий, таких как pH и окислительно-восстановительные условия, в водоносном горизонте.

Металлы, как сообщается, широко встречаются при концентрациях выше контрольных значений для питьевой воды в неочищенных грунтовых водах из некоторых водоносных горизонтов, включая марганец и металлоид мышьяк . Другие металлы, такие как железо, могут не присутствовать в количествах, представляющих риск для здоровья, но могут причинять неудобства, делая воду неприятной для питья или окрашивая приспособления . Уровни металлов можно снизить путем обработки. Вода из коммунальных колодцев должна проверяться оператором колодца на регулярной основе, чтобы гарантировать, что вода, поставляемая потребителям, соответствует федеральным и государственным стандартам качества воды , которые существуют для многих, но не для всех металлов.Регулярное тестирование воды из домашних (частных) колодцев не требуется, и домовладелец или владелец частного колодца должны проверять, поддерживать и очищать воду из своего колодца. Лучший способ узнать качество воды в домашнем колодце — это проверить его.

В зонах воздействия горнодобывающей промышленности кислотные стоки растворяют тяжелые металлы, такие как медь, свинец и ртуть, в грунтовых или поверхностных водах. Кислотные, содержащие металлы стоки из заброшенных угольных шахт могут иметь существенное воздействие на водные ресурсы.Проблемы, которые могут быть связаны с дренажем шахт, включают загрязненную питьевую воду, нарушение роста и воспроизводства водных растений и животных, а также разъедающее действие кислоты на части инфраструктуры, такие как мосты.

Коррозионная вода может способствовать повышению концентрации металлов в питьевой воде, но в этом случае металлы поступают из водопроводной системы, например из труб, используемых для водопровода. Естественно коррозионная вода сама по себе не опасна, но если сантехнические материалы содержат свинец или медь, коррозионная вода может вызвать выщелачивание этих металлов в водопровод.И поверхностные, и грунтовые воды могут быть коррозионными. На коррозионную активность влияют многие факторы, включая повышенные концентрации хлорида и других растворенных твердых веществ , pH вне нейтрального диапазона, повышенные концентрации взвешенных твердых частиц и низкую щелочность.

МЕТАЛЛЫ В ОТЛОЖЕНИЯХ ОЗЕР — ВОССТАНОВЛЕНИЕ ТЕНДЕНЦИЙ ЗАГРЯЗНЕНИЯ

Исследователи вырезали кусочки осадка из керна озерных отложений для анализа. Анализируя концентрации загрязняющих веществ, связанных с отложениями, от нижней части керна до верха, можно восстановить историю этого загрязнителя в водоразделе.

Металлы склонны к прилипанию к осадку ; они могут переноситься взвешенными наносами в ручьях и реках к озерам и водохранилищам, где отложения и металлы оседают на дно. История загрязнения водораздела металлами записывается в отложениях озера, и путем сбора и анализа кернов этого осадка можно восстановить историю загрязнения водосбора .

Тенденции в металлах, зафиксированные в кернах отложений, отражают законодательство, нормативные акты и меняющиеся демографические и производственные практики в Соединенных Штатах.Например, керны отложений четко указывают на пик использования этилированного бензина в конце 1960-х — начале 1970-х годов. Исследование тенденций содержания металлов в 35 водохранилищах и озерах в США выявило тенденции к снижению содержания свинца и хрома в большинстве озер и тенденции к увеличению в нескольких озерах или без них. Керны отложений также могут регистрировать тенденции в металлах, связанных с местными источниками, такими как горнодобывающие и металлургические предприятия. В городских районах речные источники (городской сток и ручьи) вносят гораздо больший поток металлов, чем атмосферные источники.

► Узнайте больше о металлах и кернах озерных отложений .

ДОПОЛНИТЕЛЬНЫЕ РЕСУРСЫ

Микроэлементы — Knowledge @ AMBOSS

Последнее обновление: 28 апреля 2021 г.

Сводка

Основные микроэлементы — это диетические элементы, включая железо, медь, цинк, йод, селен и серу, которые необходимы организму в минимальных количествах для надлежащего физиологического состояния. функция и развитие. В то время как наиболее важные микроэлементы в основном действуют как кофакторы для различных реакций, некоторые также действуют как составные части основных молекул (например,g., железо в гемоглобине и миоглобине), факторы транскрипции (например, цинковый палец) и аминокислоты (например, сера в метионине и цистеине). Избыток и недостаток основных микроэлементов может вызывать симптомы и заболевания, наиболее важные из которых обсуждаются ниже.

Обзор

  • Определение: В биохимии микроэлементы — это диетические элементы, которые необходимы организму в минимальных количествах для правильного функционирования и развития.

Утюг

Общий

  • Рекомендуемая суточная норма: 10 мг / сут (из кишечника всасывается только 10% железа)
  • Запасы железа в организме
    • Общее содержание железа в организме составляет ∼ 3 г в и ∼ 6 г в.
    • Общее количество железа существует в двух формах:
  • Утюг диетический
  • Свободное железо: может привести к образованию активных форм кислорода через реакцию Фентона.
    • H 2 O 2 + Fe 2+ → OH- + Fe 3+ + OH (гидроксильный радикал)
    • Гидроксильные радикалы → окислительный стресс → повреждение ДНК
  • Всасывание железа
    • Происходит в двенадцатиперстной кишке и верхней части тощей кишки
    • Фермент гепсидин регулирует всасывание железа в кишечнике.
    • Трехвалентное железо (негемовое железо, Fe 3+ ) в основном восстанавливается до двухвалентного железа (Fe 2+ ), а затем абсорбируется.
      • Витамин С увеличивает абсорбцию (преобразует Fe 3+ → Fe 2+ ).
      • Кальций снижает абсорбцию (из-за хелатирования железа).
      • Меньшая часть железа абсорбируется в виде трехвалентного железа (Fe 3+ ).
    • Гемовое железо может непосредственно всасываться в кишечные клетки.
  • Железный транспорт

Хранение, переработка и потеря железа

[2] [3]

Функция

Дефицит

Подробнее о клинических особенностях, диагностике и этиологии дефицита железа см. В статье о железодефицитной анемии.

Избыток

Медь

Общие

  • Рекомендуемая суточная норма: 900 мкг / сут.
  • Источник: мясо, рыба, птица, овощи, зерна, бобовые (например, чечевица, фасоль)
  • Метаболизм

Функция

Дефицит

  • Причины: в первую очередь из-за генетических мутаций
  • Клинические особенности

Превышение

Цинк

Общие

  • Рекомендуемая суточная норма: 8–11 мг / сут.
  • Источник: птица, устрицы, рыба, мясо, продукты питания, обогащенные цинком (например,г., крупы), орехи
  • Обмен веществ

Функция

Недостаток

Избыток

  • Причины: редко, но могут развиться из-за избыточного потребления цинка
  • Клинические признаки

Йод

Общие

  • Рекомендуемая суточная норма: 150 мкг / сут.
  • Источник: морепродукты, водоросли, растения, выращенные на богатой йодом почве, вода, овощи, йодированная поваренная соль
  • Метаболизм
  • Другое: Элементарный йод можно использовать в качестве дезинфицирующего средства.

Функция

Дефицит йода

Избыток йода

  • Причины: избыток йода возникает редко, но может быть вызван введением йодсодержащих контрастных веществ или чрезмерным потреблением пищевых добавок (водоросли, ламинария).
  • Клинические особенности
    • У пациентов с нормальной функцией щитовидной железы избыток йода обычно хорошо переносится.
    • Феномен Йода-Базедова
    • Эффект Вольфа-Чайкова [4] [5]

Селен

Общий

  • Рекомендуемая суточная норма: 55 мкг / сут.
  • Источник: мясо, морепродукты, зерна и семена (напр.г., бразильский орех)
  • Метаболизм

Функция

Селен играет важную роль в нейтрализации окислительного стресса как часть глутатионпероксидазы.

Дефицит

Избыток

  • Причины: избыточное поступление селена (→ селеноз)
  • Клинические признаки

Сера

Общие

  • Источник: мясо, яйца, орехи, лосось, листовые зеленые овощи (например, капуста, шпинат), бобовые

Функция

Дефицит

  • Причины
    • Дефицит встречается очень редко.
    • Рацион на основе продуктов, выращенных на бедных серой почвах
    • Низкобелковый рацион
  • Клинические признаки

Превышение

  • Причины: чрезмерное употребление продуктов, богатых серой
  • Клинические особенности

Список литературы

  1. Поглощение железа. https://courses.washington.edu/conj/bess/iron/iron.htm . Обновлено: 28 февраля 2017 г. Доступ: 28 февраля 2017 г.
  2. Кумар В., Аббас А.К., Астер Дж.С. Роббинс и Котран Патологические основы болезни . Эльзевир Сондерс ; 2014 г.
  3. Soe-Lin S, Apte SS, Andriopoulos B Jr. Nramp1 способствует эффективному рециклированию железа макрофагами после эритрофагоцитоза in vivo. Proc Natl Acad Sci U S A . 2009; 106 (14): с.5960-5965. DOI: 10.1073 / pnas.08106. | Открыть в режиме чтения QxMD
  4. Люнг А.М., Браверман Л.Е.Последствия избытка йода. Нат Рев Эндокринол . 2013; 10 (3): с.136-142. DOI: 10.1038 / nrendo.2013.251. | Открыть в режиме чтения QxMD
  5. Марку К., Георгопулос Н., Кириазопулу В., Вагенакис А.Г. Йод-индуцированный гипотиреоз. Щитовидная железа . 2001; 11 (5): с. 501-510. DOI: 10,1089 / 105072501300176462. | Открыть в режиме чтения QxMD

Важность микроэлементов в организме человека | Здоровое питание

Сухсатей Батра, к.D. Обновлено 12 декабря 2018 г.

Хотя и требуются в очень небольших количествах, такие микроэлементы, как железо, йод, фторид, медь, цинк, хром, селен, марганец и молибден, жизненно важны для поддержания здоровья. Эти микроэлементы, также называемые микроминералами, являются частью ферментов, гормонов и клеток организма. Недостаточное потребление микроэлементов может вызвать симптомы дефицита питательных веществ. Однако ваши потребности в этих микроэлементах легко удовлетворить, употребляя в пищу разнообразные продукты из разных пищевых групп.

Железо

Являясь компонентом гемоглобина в крови, одной из наиболее важных функций железа является транспортировка кислорода из легких в различные части тела. В миоглобине железо способствует хранению кислорода в мышечных клетках. Железо также входит в состав многих ферментов и необходимо для роста, заживления, иммунной функции и синтеза ДНК. Для получения достаточного количества этого необходимого питательного вещества включите в свой рацион такие продукты, как говядина, птица, рыба, соевая мука, шпинат, бобы и обогащенные злаки.

Йод

Йод имеет решающее значение для образования гормонов щитовидной железы Т3, или трийодтиронина, и Т4, или тироксина. Недостаточное производство гормонов щитовидной железы может вызвать увеличение щитовидной железы, также известное как зоб, а его недостаток во время беременности может вызвать необратимое повреждение мозга у новорожденных. Однако вы можете получить достаточное количество йода, употребляя йодированную соль, морепродукты, яйца и молоко.

Фторид

Фторид, хорошо известный своей ролью в формировании костей и зубов, присутствует в организме в виде фторида кальция.Фторид укрепляет зубную эмаль, снижает частоту разрушения зубов и может предотвратить потерю костной массы. Хотя ваш основной источник фтора — это фторированная вода, фтор также присутствует в морской рыбе, чае и кофе.

Медь

Медь предотвращает повреждение клеток благодаря своему антиоксидантному действию и как компонент многих ферментов помогает в производстве энергии из углеводов, белков и жиров. Медь также необходима для образования костей, соединительных тканей и красных кровяных телец.Он присутствует во многих продуктах питания, включая мясные субпродукты, моллюски, шоколад, бобы и цельнозерновые злаки.

Цинк

Помимо своей роли в образовании ферментов, цинк улучшает иммунную функцию, способствует свертыванию крови, поддерживает чувство вкуса и запаха, сохраняет кожу здоровой и способствует нормальному росту и развитию. Вы можете получить достаточное количество цинка, регулярно употребляя в пищу яйца, морепродукты, красное мясо, обогащенные злаки и цельнозерновые продукты.

Хром

Хром — важный микроэлемент, необходимый для нормального функционирования инсулина — гормона, поддерживающего уровень сахара в крови.Он также важен для метаболизма углеводов, белков и жиров. Некоторые важные источники хрома включают печень, мясные продукты, пивные дрожжи, цельнозерновые продукты, сыр и орехи.

Селен

Селен вместе с витамином Е действует как антиоксидант, предотвращающий повреждение клеток, может предотвратить некоторые виды рака и необходим для нормального функционирования щитовидной железы. Мясо, морепродукты, орехи и крупы — хорошие источники селена.

Марганец

Марганец не только способствует образованию ферментов, но также необходим для их активации.Он действует как антиоксидант, способствует развитию костей и заживляет раны за счет увеличения выработки коллагена. Хорошие источники марганца — ананас, орехи, цельнозерновые продукты и бобы.

Молибден

Подобно марганцу, молибден помогает активировать некоторые ферменты и обеспечивает нормальное функционирование клеток. Пищевые источники молибдена включают молоко, бобовые, цельнозерновой хлеб и орехи.

Почему микроэлементы важны для здоровья

Что такое микроэлементы и где их найти?

Микроэлементы, также называемые микроминералами, являются важными минералами, которые человеческий организм должен получать с пищей, но, в отличие от макроэлементов, нам нужно очень небольшое количество.Несмотря на то, что микроэлементы необходимы в крошечных дозах, они по-прежнему имеют решающее значение для нашего здоровья и развития. Рекомендуемая суточная доза для большинства микроэлементов составляет от 0,2 до 15 миллиграммов. Найдите ниже список микроэлементов, их функции и распространенные продукты, которые их содержат.

Минералы:

  • Хром помогает инсулину регулировать уровень глюкозы (сахара в крови) и содержится в печени, цельнозерновых, орехах и сырах.
  • Медь способствует образованию костей и хрящей и помогает организму правильно использовать железо.Медь содержится в говядине, мясных субпродуктах, фруктах, овощах, орехах и бобах.
  • Фторид помогает в формировании костей и зубов и помогает предотвратить кариес. Его можно найти в рыбе, некоторых чаях и воде, которая либо естественным образом фторирована, либо содержит фторид. Важно не превышать рекомендуемую суточную норму фтора.
  • Железо имеет решающее значение для производства крови и имеет решающее значение при беременности и в раннем детстве. Железо содержится в мясе, птице, обогащенном хлебе и крупах, цельнозерновых, орехах и бобах.
  • Марганец — это фермент, который можно найти во многих продуктах питания, особенно в растениях.
  • Йод молибдена содержится в гормонах, которые помогают регулировать обмен веществ, рост и развитие, и его можно найти в продуктах, выращенных на почве, богатой йодом. В настоящее время большинство людей получают йод из йодированной соли, поскольку дефицит йода является ведущей мировой причиной нарушения когнитивного развития у детей (1).
  • Селен — это антиоксидант, содержащийся в зернах, мясе и морепродуктах.Антиоксиданты — это молекулы, которые помогают защитить клетки от повреждения.
  • Цинк содержится во многих ферментах человеческого тела, которые помогают производить белок и генетический материал. Цинк также играет роль в развитии плода, заживлении ран, иммунной системе и развитии подростков. Его можно употреблять с мясом, рыбой, птицей, овощами и некоторыми зерновыми.

Наслаждайтесь этими статьями по теме:
Диета и поведение: 3 изменения, которые нужно сделать сегодня
Советы для безглютенового образа жизни
Витамин B12 поддерживает работу мозга

(1) Источник: ВОЗ.int, Дефицит микронутриентов

Микроэлементы от производителя

В дополнение к солям сыпучих элементов, таких как кальций, магний и калий, и солям микроэлементов, таких как железо и цинк, мы также предлагаем целый ряд специальных микроэлементов с ионами или анионами металлов, которые встречаются гораздо реже.

Микроэлементы, в отличие от сыпучих, доступны в организме в концентрациях ниже 50 мг на кг массы тела. Микроэлементы включают медь, хром, марганец и селен, а также железо, йод и цинк.

Функция микроэлементов может быть как универсальной, как, например, в случае железа или цинка, так и очень специфической, как в случае молибдена или стронция.

Многие продукты содержат микроэлементы, но, несмотря на их низкую концентрацию в организме, недостаток может иметь серьезные негативные последствия для здоровья. Поэтому адекватное потребление всех микроэлементов необходимо для полностью здорового и устойчивого образа жизни.

Мы производим наши продукты с особыми размерами частиц и свойствами, которые часто требуются нашим клиентам, в широком диапазоне и в соответствии с их спецификациями.Разновидности продуктов, которые мы предлагаем для многих наших минеральных солей, включают микронизированные, гранулированные, микрокапсулированные продукты с различной насыпной плотностью.

Кроме того, мы производим гранулы для изготовления таблеток. Наши гранулы DC позволяют прямое прессование, избегая необходимости влажного гранулирования при производстве таблеток. Кроме того, наши минералы используются в качестве вспомогательных веществ в фармацевтической промышленности, в качестве агентов, препятствующих слеживанию, носителей или пленкообразующих агентов при производстве таблеток.

Растираний

Растираний

Мы предлагаем микроэлементы, которые обрабатываются в очень малых концентрациях в разбавленном виде в виде растираний.более

Растирание

Мы предлагаем микроэлементы, которые обрабатываются в очень малых концентрациях в разбавленном виде в виде растираний. В этих продуктах минералы диспергированы в инертном носителе, таком как мальтодекстрин, карбонат кальция или цитрат натрия в определенных концентрациях. Это обеспечивает простое и безопасное обращение, более низкую токсичность (например, в случае селена) и точную дозировку микроэлемента.

Натриевые соли от производителя

Натриевые соли от производителя

Натриевые соли являются одними из самых старых солей , когда-либо использовавшихся человечеством.более

Натриевые соли от производителя

Натриевые соли являются одними из самых старых солей , когда-либо использовавшихся человечеством. Хлорид натрия , широко известный как «соль », использовался для приправы и сохранения пищи с каменного века. Другие соединения натрия — это химические вещества , используемые с древних времен, такие как сода (карбонат натрия) и нитрат натрия. На протяжении веков каустическая сода (гидроксид натрия) использовалась в качестве исходного материала для мыла .

Для нас как производителя натрий занимает ключевую позицию благодаря многочисленным полезным соединениям . В частности, в фармацевтических и медицинских применениях соли натрия играют важную и разнообразную роль. Например, цитрат натрия используется в качестве антикоагулянта в мешках для крови. Ацетат натрия используется при фракционировании плазмы крови. Примечательно, что S хлорид одия и другие соединения натрия используются в производстве инфузионных и инъекционных растворов.Мы можем производить натриевые соли различной чистоты и в соответствии со многими фармакопеями. Продукция с особенно низким содержанием эндотоксинов — одна из наших специализаций.

В индустрии пищевых продуктов и пищевых добавок наши натриевые соли находят разнообразное применение в качестве вспомогательных веществ, буферов, эмульгаторов и для увеличения срока хранения.

В нашем ассортименте продуктов LomaSalt ® мы снижаем содержание натрия с помощью других минеральных солей, таких как калий , используя научные знания о питании для улучшения характеристик продукта.

Трудно представить себе сферу личной гигиены без солей натрия. Они широко используются в качестве буферов, хелатирующих агентов, увлажнителей и консервантов.

Мы предлагаем различные натриевые соли с определенным размером частиц для промышленного применения. Соединения натрия используются в качестве эндотермических вспенивателей при производстве гипсовых штукатурок и плазменной сварке.

В таблице ниже представлен обзор наших натриевых солей .

Алюминий

Алюминий

Соли алюминия в основном используются в продуктах личной гигиены.более

Алюминий

Соли алюминия в основном используются в продуктах личной гигиены. Они обладают множеством дезодорирующих и антиперспирантных свойств.

Соли алюминия также используются при производстве клеев ПВА.

Аммоний

Аммоний

Соли аммония также находят разнообразное применение в косметике и средствах гигиены тела. более

Аммоний

Соли аммония находят разнообразное применение в косметике и средствах гигиены тела.Примеры включают лактат аммония, обладающий свойствами ухода за кожей, и цитрат диммония в качестве хелатирующего агента.

В гальванической промышленности используется хелатирующее действие цитрата аммония в сочетании с его высокой растворимостью в воде.

Медь

Медь

Медь — важный микроэлемент, который, помимо прочего, помогает сохранить здоровье кожи, волос и ногтей. более

Медь

Медь — важный микроэлемент, который, помимо прочего, помогает сохранить здоровье кожи, волос и ногтей.Кроме того, медь участвует во многих различных ферментативных процессах синтеза и метаболизма в организме 4 . По-видимому, существует связь между болезнью Альцгеймера и уровнем меди в плазме крови 5 .

Кроме того, соединения меди производят преимущественно зеленые пигменты для окрашивания керамики.

Литий

Литий

На протяжении десятилетий литий успешно используется в психиатрии для лечения маниакально-депрессивных расстройств.более

Литий

На протяжении десятилетий литий успешно используется в психиатрии для лечения маниакально-депрессивных расстройств. Известно даже, что литиевая терапия предотвращает самоубийства 6 .

Кроме того, поверхности катализаторов на керамической основе легированы литием для образования активных вакансий.

Марганец

Марганец

Марганец является важным микроэлементом и требуется, в частности, для многих ферментативных процессов.более

Марганец

Марганец является важным микроэлементом и требуется, в частности, для многих ферментативных процессов. К ним относятся, например, глюконеогенез и выработка инсулина. Липидный обмен и свертывание крови также зависят от марганца 4 .

Кроме того, соединения марганца являются отличными активаторами отбеливания для отбеливателей на основе персульфата и перкарбоната.

Стронций

Стронций

Исследования показали, что стронций играет жизненно важную роль в поддержании крепких и здоровых костей в пожилом возрасте 7 .более

Стронций

Исследования показали, что стронций играет жизненно важную роль в поддержании крепких и здоровых костей в пожилом возрасте 7 . Стронций вызывает красный цвет фейерверков и является легирующим металлом для неорганических красителей.

Растирание йода

Растирание йода

Йод — незаменимый элемент гормона щитовидной железы (йодтиронин). более

Растирание йода

Йод — незаменимый элемент гормона щитовидной железы (йодтиронин).Это, в свою очередь, запускает многочисленные важные метаболические процессы, а также рост и когнитивное развитие человека 4 .

Растирание селена

Растирание селена

Селен выполняет важные антиоксидантные функции в организме. более

Растирание селена

Селен выполняет важные антиоксидантные функции в организме. Кроме того, селен стимулирует иммунную систему и подавляет рост опухолей 8 , 9 .

Растирание хрома

Растирание хрома

Хром усиливает действие инсулина и, следовательно, является важным фактором метаболизма глюкозы в организме. более

Растирание хрома

Хром усиливает действие инсулина и, следовательно, является важным фактором метаболизма глюкозы в организме. Уровни холестерина и триглицеридов в организме также зависят от адекватного потребления хрома 4 .

Растирание молибдена

Растирание молибдена

Молибден является важным кофактором в ряде ферментативных метаболических процессов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *