Из чего образуются липиды: «Что такое липиды?» – Яндекс.Знатоки – Липиды – классификация, строение и свойства в мембранах клеток

Содержание

из чего образуются липиды в организме человека

Значение липидов для организма человека Текст научной статьи по специальности «Сельское и лесное хозяйство»

Аннотация научной статьи по сельскому и лесному хозяйству, автор научной работы — Берзегова Анет Абрековна

Полиненасыщенные жирные кислоты вполняют в организме ряд важных физиологических функций: входят в состав клеточных мембран, влияют на обмен других липидов стимулируют выведение избытка холестерина из организма, препятствуют его отложению в стенках кровеносных сосудов; участвуют в обмене некоторых витаминов (тиамина и пиридоксина), обладают иммуномоделирующим действием, повышают устойчивость организма к инфекционным заболеваниям и действию неблагоприятных факторов внешней среды.

Похожие темы научных работ по сельскому и лесному хозяйству , автор научной работы — Берзегова Анет Абрековна,

Текст научной работы на тему «Значение липидов для организма человека»

Берзегоеа Л.А., МГТУ, г. Майкоп

ЗНАЧЕНИЕ ЛШШДОВ ДЛЯ ОРГАНИЗМА ЧЕЛОВЕКА

Полтіснасыщенные жирные кислоты выполняют в организме ряо важных физиологических функций: входят є состав клеточных мембран, влияют но обмен других липидов -стимулируют выведение избытка холестерина т организма, препятствуют его отложению в стенках кровеносных сосу’дов; участвуют в обмене некоторых витаминов (тиамина и пиридок-сика/. опадают иммуномодулирующим действием, повышают устойчивость организма к инфекционным заболеваниям и действию неблагоприятных факторов внешней среды.

Липиды і^гфают важную роль в жизнедеятельности организма. Общее количество жира у здорового человека составляет И) — 20 % от массы тела, в случае ожирения может достигать 50%. Существует несколько классов липидов, значительно отличающихся по структуре и по биологическим функциям. Собственно жиры (триглицериды) представляют собой эфиры высших жирных кислот и глицерина. В организме они служат главным источником энергии и образуют резерв энергетического материала. Среди пищевых веществ жиры обладают наибольшей .энергетической ценностью — при сгорании I г жира образуется 9 ккал, при сгорании белков и углеводов -примерно 4 ккал. Во многих тканях даже нри сбалансированном питании для получения энергии используются почти исключительно жиры, тогда как глюкоза сохраняется для тканей, особо в ней нуждающихся (головной мозг, эритроциты). Жиры выполняют защитные фуикиии.

Вокруг жизненно важных орі анов (почки, половые железы, тимус и др.) образуются жировые капсулы, которые удерживают их в нормальном анатомическом положении, предохраняют от смещений и травм. 11а поверхности кожи жиры образуют водоепталкшающую пленку, которая защищает ткани как от потери влаги, так и от переувлажнения, а также обладает антимикробным действием. Кроме зтчлхз подкожный жир создает термоизоляционный покров тела. Жирьг являются плохими проводниками тепла и предохраняют внутренние органы от переохлаждения. Жировая ткань является местом образованна гормона лептина, оказывающего разностороннее воздействие па организм человека. Сложные липиды — это комплексы липидов с бедками (липопрот«иды)> производными орто-фосфорной кислоты (фосфолипиды или фосфатиды), с сахарами (гликолипиды), с многоатомными спиртами (сфинголипиды и др.) и еще целый ряд соединений.

Сложные липиды выполняют пластические функции — опи наряду с белками служат основными структурными компонентами клеточных мембран. К липидам относятся также соединения, не являющиеся производными жирных кислот, — стероиды. Самым распространенным их представителем является холестерин, оті входит как структурный элемент’ в состав клеточных мембран, а также служит предшественником ряда других, стероидов — желчных кислот, стероидных гормонов (гормоны коры надпочечников, половые гормоны), витамина О. Самыми просты-

ми по структуре липидами являются жирные кислоты, которые служат промежуточными продуктами обмена липидов, а также принимают участие в биологической регуляции функций клеток,

Жирпые кислоты могут быть насыщенными и ненасыщенными. В насыщенных кислотах связи между углеродными атомами предельно насыщены, ненасыщенные жирные кислоты содержат одну и более двойных (ненасыщенных) со язей, по месту которых, можеп присоединяться водород. Жирные кислоты с одной двойной связью называются мононенасыщенными (МНЖК). Самой распространенной мононенасыщенной кислотой в жировой ткани человека является олеиновая, срсди других жирных кислот на ее долю приходится 55%, Олеиновая кислота принимает участие в регуляции холестеринового об иена, ОШ способствует повышению В КрОВИ уровня ЛИГЮНТОреИДПВ высокой плотности, ксгторые транспоргируют холсстерин из тканей в печень для утилизации. Этот холестерин не атерогенный или «хороший”, высокий уровень его в крови является фактором антириска для развития атеросклероза. Жирные кислоты с двумя (л и нолевая), тремя (альфа л и ноленовая), четырьмя (арахидо новая) и более двойными связями называются полиненасышенными (ПНЖК).

Ненасыщенные жирные кислоты подразделяют на классы омега в зависимости от положения двойной связи, ближайшей к метил ь но му или омега-углероду, М о ионе насыщенные олеиновая и пальмит иновая кислоты обозначаются соответственно как омега-9 и омега-7, а моли ненасыщенные жирные кислоты линолевая и альфа-линоленовая — как оме га-6 и ом ста-3, Две полиненасыщенные жирные кислоты — линолевая и альф а-шш о ле новая являются незаменимыми (гэссенциальными) для человека, так как они не синтезируются в организме и должны постоянно посту пать извне, из продуктов литания.

У животных, получавших безжировой рацион, отмечено укорочение продолжительности жизни. Особенно негативно сказывается дефицит незаменимых ПНЖК па растутиций организм, линолевая и ап ь фа-лиг юле новая кислота, необходимы для роста, правильного развития головного мозга, органа зрения, половых желез, почек; кожи. Линолевая и альфа-лииоле новая жирные кислоты являются родоначальницами двух семейств ПНЖК — омега-6 и омега-3, в том числе эйко-заноидов — проста гланд инов, лейкотриенов. громбоксанов, являющихся тканевыми гормонами.

Семейство омега-6 представлено линолевой кислотой, которая при наличии необходимых ферментов превращается в организме в г амма-л и но л с новую (ГЛК). Гамма-диноленовая кислота является предшественником дигомогаммалиноленовой кислоты (ДГЛК), которая является предшественницей первой серии простагландинов и арахидоновой кислоты (АК), предшественницы второй серии простагландинов. Альфа-линоленовая кислота превращается в эйкозо-пентасиовую кислоту (ЭПК), предшественницу третьей серии простат а иди но в, и докезагек-саеновую кислот>’ (ДПС). Метаболизм линолевой (18 атомов углерода, две двойных связи) и ал ьфа-л и ноленовой (18 атомов углерода, три двойных связи) кислот связан с дополнительным денасьицением, т.е. увеличением количества двойных связей и удлинением основной цепи, состоящей из атомов углерода, В результате арах идо нова я кислота имеет 20 атомов углерода и 4 двойных связи, эйкозопентае новая геи слота имеет 20 атомов углерода и 5 двойных связей, доко-зогексаеновая кислота имеет 22 атома углерода и 6 двойных связей. Арахидо новую, эйкозопен-таеновую и докозогексасновую кислоты называют длинноцепочными жирными кислотами. Они являются важными структурными компонентами клеточных мембран всех органов и т каней, но особенно велико их содержание в головном мозге, сетчатке глаза, в половых клетках.

Следует отметить, что метаболизм, омега-6 и омега-3 жирных кислот протекает с участием одних и тех же ферментов, что вызывает протекание конкурирующих реакций между двумя этими семействами. Избыток жирных кислот одного класса может тормозить превращения кислот другого класса, снижая их активность и варьируя биологическое действие. Дпинноцепочныс ПНЖК являются предшественниками эйкозаноидов (простагландинов, тромбоксанов, лен котр ненов), выполняющих функции местных тканевых гормонов, которые регулируют многочисленные, функции, включая тонус кровеносных сосудов, мускулатуры бронхов и матки, степень воспалительной реакции, уровень активности клеток иммунной системы, процессы тромбообрязования и ряд других. Причем направленность действия эйкозаноидов семейства омега-6 и омега -3 прямо противоположная. Простагландины, образующиеся из жирных кислот омега-6, суживают просвет4 кровеносных сосудов и бронхов, усиливают воспаление, усиливают тромбообразование. Простагландины -производные жирных кислот оме!а -3 расширяю) бронхи и кровеносные сосуды, уменьшают воспаление. снижают аггрегацию тромбоцитов и уменьшают образование тромбов в кровеносных, сосудах. Иногда первые называют «плохими» простагландинами. а вторые »хорошими». Однако такая оценка является неверной. Именно на принципе противоположности действия основаны процессы

регуляции тканевого гомеостаза. Полому важно не противопоставлять эти два класса жирных кислот а соблюдать баланс между ними. Поскольку источником поли ненасыщенных жирных кислот омега-6 и омега-3 являются пищевые продукты, необходимо знать содержание и соотношение их в рационе. Выполняя стать значимые функции, в организме человека, жиры являются важной составляющей пищевого рациона. Для подаержания оптимального здоровья необходимо придерживаться общих правил рационального питания и потребления жиров, в частности.

Средняя физиологическая потребность в жирах для здорового человека составляем около 30% общей калорийности, третью часть потребляемых жиров до.тжяы составлять растительные .масла. В некоторых специальных диетах долю растительных жиров увеличивают до 50% и более. Жиры улучшают вкус пищи и вызывают чувство сытости, в процессе обмена веществ они могут образовываться из углеводов и белков, но в полной мере ими не заменяются. Пищевая ценность жиров определяется их жирно кислотным составом, наличием незаменимых факторов питания, степенью усвояемости и удобоваримости. Биологическая активность пищевых жиров определяется содержанием в них незаменимых полиненасыщенных жирных кислот. Поскольку основным источником ПНЖК являются растительные масла, го они и обладают наибольшей биологической активностью. Высока и усвояемость растительных масел, в среднем этот показатель составляет 97-98%. Жирные масла растений представляют собой концентрированный энергетический строительный резерв, сосредоточенный в семемах и других органах растений.

Основная роль запасных жиров в растении — использование их для питания во время прорастания семян и развития зародыша; кроме того* они выполняют важную роль защитных кешеств. по-м01*ющих растению переносить неблагоприятные условия окружающей среды, в частности, низкие температуры. Жиры зимующих семян способствуют сохранению зародыша в условиях холода. У деревьев при переходе в состояние покои запасной крахмал превращаемся в жир, повышающий морозостойкость ствола. Наибольшей тепло гворной способностью обладают ненасыщенные жиры, поэтому растения северных широт содержат их в наибольших катичесгвах. Растительные жиры состоят в основном из триглицеридов — эфиров глицерина и жирных кислот. Около 75% растительных жиров со-стаиляют глицериды всег о’грех кислот — пальмитиновой, олеиновой и линолевой.

Жиры некоторых растений содержат специфические, характерные только для них жирные кислоты. Триглицериды мотут быть однокислотными и разнокислотными (смешанными). Од но кислотные жиры (оливковое масло, касторовое масло) встречаются редко, подавляющее большинство жиров представляет собой смеси разнокислотных триглицеридов. Жирные кислоты в растительных жирах могут быть насыщенными и ненасыщенными. Биологическая ценность растительных масел зависит и от содержания в них сопутствующих веществ — фосфолипидов, восков, стероидов, жирорастворимых витаминов, пигментов, фотохимических соединений, содержащихся в растениях и придающих маслам специфическую направленность действия.

1 Белобородов В. В.> Основные процессы производства растительных масел, М., 1966.

2. Белобородов В.В., Зайцев Л.С Руководство по методам исследования, технохими-ческому контролю и учету производства в масло-жировой промышленности, т. 5, Л., 1969.

3. Голдовский А. М. Теоретические основы производства растительных масел. М., 1958.

4. Тютюнников Б. Н,, Химия жиров, М., 1966.

5. Щербаков В. Г., Биохимия и товароведение масличного сырья, 2 изд., М., 1969.

Источник: cyberleninka.ru

Липиды и их роль в жизнедеятельности клетки

Липиды и их роль в жизнедеятельности клетки

1. 1.Какие липиды вам известны?
2. 2.Какие продукты питания богаты жирами?
3. 3.Какова роль липидов в организме?

Липиды и их классификация.

Липиды ( от греч.lipos- жир )-обширная группа жиров и жироподобных веществ, которые содержатся во всех живых клетках. Большинство их неполярны и, следовательно, гидрофобны.

Они практически нерастворимы в воде,но хорошо растворимы в органических растворителях ( бензин, хлороформ, эфир и др.)

В некоторых клетках липидов очень мало, всего несколько процентов, а вот в клетках подкожной жировой клетчатки млекопитающих и семенах, например подсолнечника, их содержание достигает 90%.

По химическому строению липиды весьма разнообразны.

Нейтральные жиры — наиболее простые и широко распространенные липиды. Их молекулы образуются в результате присоединения трех остатков высокомолекулярных жирных кислот к одной молекуле трехатомного спирта глицерина (рис. 11).

Среди соединений этой группы различают жиры, остающиеся твердыми при температуре 20 °С, и масла, которые в этих условиях становятся жидкими. Масла более типичны для растений, но могут встречаться и у животных.
Воска — сложные эфиры, образуемые жирными кислотами и многоатомными спиртами. Они покрывают кожу, шерсть, перья животных, смягчая их и предохраняя от действия воды. Восковой защитный слой покрывает также стебли, листья и плоды многих растений.

Фосфолипиды по своей структуре сходны с жирами, но в их молекуле один или два остатка жирных кислот замещены остатком фосфорной кислоты.


Фосфолипиды являются составным компонентом клеточных мембран.

Липиды могут образовывать сложные соединения с веществами других классов, например с белками — липопротеиды и с углеводами — гликолипиды.

Одна из основных функций — энергетическая. При полном окислении 1 г жира выделяется 38,9 кДж энергии. То есть жиры дают более чем в 2 раза больше энергии по сравнению с углеводами. У позвоночных животных примерно половина энергии, потребляемой клетками в состоянии покоя, образуется за счет окисления жиров.
Жиры являются основным запасающим веществом у животных, а также у некоторых растений. Они могут использоваться также в качестве источника воды (при окислении 1 г жира образуется более 1 г воды). Это особенно ценно для пустынных животных, обитающих в условиях дефицита воды.

Благодаря низкой теплопроводности липиды выполняют защитную функцию, т. е. служат для теплоизоляции организмов. Например, у многих позвоночных животных хорошо выражен подкожный жировой слой, что позволяет им жить в условиях холодного климата, а у китообразных он играет еще и другую роль — способствует плавучести.

Восковой налет на различных частях растений препятствует излишнему испарению воды, у животных он играет роль водоотталкивающего покрытия.

Липиды выполняют и строительную функцию, так как нерастворимость в воде делает их важнейшими компонентами клеточных мембран (фосфолипиды, липопротеины, гликолипиды, холестерин).

Многие производные липидов (например, гормоны коры надпочечников, половых желез, витамины А, D, Е) участвуют в обменных процессах, происходящих в организме. Следовательно, этим веществам присуща и регуляторная функция.


Липиды. Воска. Фосфолипиды.


1. Какие вещества относятся к липидам?
2. Какое строение имеют жиры?
3. Какие функции выполняют липиды?
4. Какие клетки и ткани наиболее богаты липидами?

Стероиды — это липиды, не содержащие жирных кислот и имеющие особую структуру.

К стероидам относятся гормоны, в частности кортизон, вырабатываемый корой надпочечников, различные половые гормоны, витамины А, D, Е, К и ростовые вещества растений. Стероид холестерин — важный компонент клеточных мембран у животных, однако его избыток в организме может привести к заболеваниям сердечно-сосудистой системы и образованию желчных камней. Необходимую для жизнедеятельности воду медведи, сурки и другие животные в спячке получают в результате окисления жира.

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 10 класс
Отправлено читателями с интернет-сайта

Онлайн библиотека с учениками и книгами, плани-конспекти уроков с Биологии 10 класса, книги и учебники согласно календарного плана планирование Биологии 10 класса

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Источник: edufuture.biz

Липиды — один из важнейших классов сложных молекул, присутствующих в клетках и тканях животных в составе жировой ткани, играющую важную физиологическую роль .

Липиды — группа органических веществ, входящае в состав всех живых клеток, включающая жиры и жироподобные вещества. Липиды очень разнообразны по функциям, выполняемым в клетке. Обычно липиды содержатся в количестве 2-3%. Часть из них представляет запасные энергетические вещества, другие, имея полярные молекулы, входят в состав клеточных мембран, являясь структурными компонентами клетки. Липиды — жироподобные вещества, в основном производные высших жирных кислот, спиртов или альдегидов. Подразделяются на простые (воски, триглицериды) и сложные (фосфолипиды, гликолипиды).

В состав этих малорастворимых в воде соединений, разнообразных по структуре, как правило, входят жирные кислоты или их производные и глицерин. [ Conigrave A.D. et al., 1996 , Small D.M., 1986 , Murray R.K. et al., 1988 ].

Липиды выполняют самые разнообразные функции. Они входят в состав клеточных мембран, служат предшественниками стероидных гормонов , желчных кислот , простагландинов и фосфоинозитидов . В крови содержатся отдельные компоненты липидов ( насыщенные жирные кислоты , мононенасыщенные жирные кислоты и полиненасыщенные жирные кислоты ), триглицериды , холестерин , эфиры холестерина и фосфолипиды . Все эти вещества не растворимы в воде, поэтому в организме имеется сложная система транспорта липидов . Свободные (неэтерифицированные) жирные кислоты переносятся кровью в виде комплексов с альбумином . Триглицериды, холестерин, эфиры холестерина и фосфолипиды транспортируются в форме водорастворимых липопротеидов .

В организме большая часть липидов представлена ацилглицеролами , когда к глицерину присоединен один, два или три остатка жирной кислоты (монокарбоновые алифатические ЖК с неразветвленной цепью, приимущественно C16 и C18), они образуют нейтральные жиры , образованные приимущественно ТРИАЦИЛГЛИЦЕРОЛАМИ ; они являются главными липидами жировых отложений и пищи.

Ацилглицеролы, в первую очередь ФОСФОЛИПИДЫ , являются основными компонентами плазматических и других мембран .

Фосфолипиды участвуют в метаболизме многих липидов.

СФИНГОЛИПИДЫ являются важными компонентами мембран и вездесущими клеточныим регуляторами (см. ЛИПИДЫ КАК БИОРЕГУЛЯТОРЫ )

Гликофосфолипиды , построенные из сфингозина, остатков сахаров и жирных кислот, составляют 5-10% всех липидов плазматической мембраны.

Фосфоглицеролы , фосфосфинголипиды и гликосфинголипиды представляют собой амфипатические липиды, поэтому они идеально выполняют функции основных компонентов плазматической мембраны. Некоторые фосфолипиды выполняют особые функции. Например, дипальмитоиллецитин является основным элементом сурфактанта (поверхностно-активного вещества) легких, который иногда отсутствует у недоношенных детей, в результате чего у них наблюдается расстройство дыхания.

Фосфолипиды, содержащие инозитол , являются предшественниками вторых посредников при действии гормонов, а алкилфосфолипид — тромбоцит — активирующим фактором ( ФАТ ).

Локализованные на внешней поверхности плазматической мембраны гликосфинголипиды, олигосахаридные цепи которых смотрят наружу, входят в состав гликокаликса клеточной поверхности и, по-видимому, выполняют важные функции, а именно:

2) являются рецепторами бактериальных токсинов , например холерного токсина, и

3) являются соединениями, определяющими группы крови (система АВО).

В настоящее время описано около дюжины болезней, связанных с накоплением гликолипидов (например, болезнь Гоше, болезнь Тея-Сакса), причиной которых является снижение активности локализованных в лизосомах гидролаз, катализирующих расщепление гликолипидов. см. заболевание: липидоз

Разнообразие и уровень липидов в клетках, тканях и органах определяются процессами липидного метаболизма (ЛМ), включающими их транспорт, поглощение, использование клетками, синтез de novo, разрушение и выведение ( рис. 1 ). Процессы липидного метаболизма происходят при участии множества белков с различными функциями, которые, как и кодирующие их гены, также являются компонентами системы липидного метаболизма.

Интерес к изучению системы ЛМ обусловлен ее важной ролью в жизнедеятельности организма, а также тем, что нарушения ее функционирования являются одной из причин возникновения заболеваний у человека [ Murray R.K. et al., 1988 , V.Breslow J.L., 1988 , Rees A. et al., 1990 , Chamberlain J.C. et al., 1990 ].

Синтез и разрушение липидов происходят практически во всех тканях организма. Вместе с тем, ряд тканей выполняют специализированные функции. Так, поглощение экзогенных липидов происходит в стенках тонкого кишечника ; запасание — в жировой ткани ; выведение продуктов распада липидов — в кишечнике , почках , легких [ Conigrave A.D. et al., 1996 , Jungerman K. et al., 1996 ]. Центральное место в ЛМ занимает печень , в которой происходит пересечение путей метаболизма липидов, углеводов и белков. Здесь же синтезируется основная масса белков транспорта липидов , также продукты деградации липидов, выводящиеся из организма [ Haussinger D., 1996 ].

Объем экспериментальных данных по различным особенностям функционирования этой системы в последние годы стремительно возрастает, в том числе — по регуляции транскрипции генов липидного метаболизма.

Для систематизации, обобщения и анализа сведений о регуляции транскрипции генов системы ЛМ создана база данных LM- TRRD (Lipid Metabolism — Transcription Regulatory Regions Database) [ Ananko E.A. et al., 1996 ], являющаяся одним из разделов базы данных TRRD [ Кель А.Э. с соавт., 1997 ].

Источники липидов в организме — их потребление с пищей с последующим всасыванием через стенки тонкого кишечника [ Conigrave A.D. et al., 1996 ] ( рис. 1 ) и кроме того, эндогенные липиды синтезируются из более простых соединений — продуктов метаболизма белков и углеводов [ Murray R.K. et al., 1988 , Jungerman K. et al., 1996 ]. Благодаря транспортным белкам аполипопротеинам липиды перемещаются по лимфо- и кровотоку и перераспределяются между органами и тканями [ V.Breslow J.L., 1988 ] (См. Липидов транспорт ).

Липиды выполняют самые разнообразные функции. Они входят в состав клеточных мембран, служат предшественниками стероидных гормонов , желчных кислот , простагландинов и фосфоинозитидов . В крови содержатся отдельные компоненты липидов ( насыщенные жирные кислоты , мононенасыщенные жирные кислоты и полиненасыщенные жирные кислоты ), триглицериды , холестерин , эфиры холестерина и фосфолипиды . Все эти вещества не растворимы в воде, поэтому в организме имеется сложная система транспорта липидов . Свободные (неэтерифицированные) жирные кислоты переносятся кровью в виде комплексов с альбумином . Триглицериды, холестерин, эфиры холестерина и фосфолипиды транспортируются в форме водорастворимых липопротеидов .

Источник: medbiol.ru

Липиды крови

Содержание в крови различных жиров и их соотношений — важный показатель состояния здоровья человека. В ряде случаев он нуждается в пристальном контроле, а иногда и в коррекции. Разберемся, откуда в крови жиры и как за ними уследить.

Роль жиров в организме

Мембраны всех клеток нашего организма представляют собой двойной липидный слой. Нервные волокна, покрытые слоем миелина (вещества, на 75 % состоящего из жиров), проводят импульс в сотни раз быстрее, чем «голые» волокна.

Без жиров не работают жирорастворимые витамины D, E, K, A (поэтому морковный салат лучше заправлять растительным маслом). На основе молекулы холестерина строятся гормоны — половые, глюкокортикостероидные. И даже жировые складки на теле с точки зрения природы имеют глубокий смысл: это и амортизатор, и утеплитель, и запас на случай голода.

И в то же время избыток жиров является признанным фактором риска для многих болезней, от атеросклероза до сахарного диабета. Физические отложения жира вокруг и внутри органов затрудняют их работу. Кроме того, жир — гормонально активное вещество, и его избыток вмешивается в работу эндокринной системы, нарушая баланс.

Основные жиры, поступающие в организм извне, — это триглицериды (нейтральные жиры) и холестерин. Триглицериды используются в основном как запасное вещество и субстрат для выработки энергии. Холестерин — это база для синтеза стероидных гормонов, желчных кислот и витамина D.

Виды липопротеинов в крови

Жир не может путешествовать в крови в виде обычной капли, как в супе. Транспортируются жиры в организме в виде липопротеинов (ЛП) — соединений жиров с белками. После всасывания жировые молекулы образуют конгломераты с белковыми, причем часть белков является своеобразным ярлыком — адресом, по которому надо доставить жиры. Чем больше в липопротеине белка, тем выше будет его плотность.

Липидный спектр

Если вы сдадите анализ крови на липидограмму (липидный спектр), вы увидите там такие названия:

  • ЛПНП — липопротеины низкой плотности. Белков немного, жиров много, направление движения — от печени к тканям, в которых липиды должны быть использованы. 
  • ЛПОНП — липопротеины очень низкой плотности. Соотношение еще больше сдвинуто в сторону липидов, причем в основном «запасных», а направляются эти частицы в жировую ткань для ее пополнения. 
  • ЛПВП — липопротеиды высокой плотности. В этих частицах много белков, и они несут холестерин «на выход» из организма — его избыток будет выведен через печень. 
  • ОХ — общий холестерин, т. е. содержащийся во всех видах ЛП в сумме. Каждый день холестерин и поступает с пищей, и вырабатывается самим организмом, и выводится с желчью. Поэтому существует термин «холестериновое равновесие» — 5,2–5,5 ммоль/л в крови. При таком уровне и риск атеросклероза минимален, и на строительство всех нужных веществ холестерина хватит. 
  • ТГ — сумма триглицеридов во всех ЛП.

Хорошо, плохо и слишком хорошо

 Контролируйте липидограмму ежегодно

Кажется, надо бороться за то, чтобы ЛПВП было много, а всех остальных — поменьше. Тогда холестерин и триглицериды будут двигаться в сторону выхода через желчь, а не в сторону накопления в виде атеросклеротических бляшек и жировых складок. В популярной литературе часто называют ЛПВП «хорошим холестерином», а ЛПНП и ЛПОНП — «плохим» (хотя, строго говоря, это и не совсем холестерин).

Холестерин: лечениеЧитайте также:
Холестерин: лечение

Но существует парадоксальная, казалось бы, ситуация, когда чрезмерно высокий уровень ЛПВП говорит не об отличной защите от атеросклероза, а о серьезной угрозе здоровью.

Представьте липопротеин в виде вагончика, который нагружен холестерином и везет его в печень для выброса через желчь. Когда вагончик добирается до печени, его должен кто-то разгрузить. «Грузчиком» в печени работает белок SR-B1, который кодируется геном SCARB1.

При недостаточной работе этого гена «грузчиков» не хватает, и выведение холестерина из организма тормозится. Хорошего ЛПВП становится много, очень много — в два-три раза выше максимальной нормы, и теперь уже он не столько выводится, сколько накапливается в организме. В итоге состояние сосудов прогрессивно ухудшается.

Поэтому следует иметь в виду, что у каждого лабораторного показателя не зря существуют верхняя и нижняя границы. И если чего-то — даже «хорошего» — больше нормы, это может быть небезопасно. Контролируйте липидограмму ежегодно и будьте здоровы!

Лидия Куликова

Фото istockphoto.com

Липиды — это… Что такое Липиды?

        жироподобные вещества, входящие в состав всех живых клеток и играющие важную роль в жизненных процессах. Будучи одним из основных компонентов биологических мембран (См. Биологические мембраны), Л. влияют на проницаемость клеток и активность многих ферментов, участвуют в передаче нервного импульса, в мышечном сокращении, создании межклеточных контактов, в иммунохимических процессах. Др. функции Л. — образование энергетического резерва и создание защитных водоотталкивающих и термоизоляционных покровов у животных и растений, а также защита различных органов от механических воздействий.          Большинство Л. — производные высших жирных кислот, спиртов или альдегидов. В зависимости от химического состава Л. подразделяют на несколько классов (см. схему). Простые Л. включают вещества, молекулы которых состоят только ив остатков жирных кислот (или альдегидов) и спиртов, к ним относятся Жиры (триглицериды и др. нейтральные глицериды), Воски (эфиры жирных кислот и жирных спиртов) и диольные Л. (эфиры жирных кислот и этиленгликоля или др. двухатомных спиртов). Сложные Л. включают производные ортофосфорной кислоты (Фосфолипиды) и Л., содержащие остатки сахаров (Гликолипиды). Молекулы сложных Л. содержат также остатки многоатомных спиртов — глицерина (глицеринфосфатиды) или сфингозина (сфинголипиды). К фосфатидам относятся лецитины, кефалины, полиглицерофосфатиды, фосфатидилинозит, сфингомиелины и др.; к гликолипидам — гликозилдиглицериды, цереброзиды, ганглиозиды (сфинголипиды, содержащие остатки сиаловых кислот). К Л. относят также некоторые вещества, не являющиеся производными жирных кислот, — Стерины, Убихиноны, некоторые Терпены. Химические и физические свойства Л. определяются наличием в их молекулах как полярных группировок ( —COOH, —OH, —NH2 и др.), так и неполярных углеводородных цепей. Благодаря такому строению большинство Л. является поверхностно-активными веществами, умеренно растворимыми в неполярных растворителях (петролейном эфире, бензоле и др.) и очень мало растворимыми в воде.          В организме Л. подвергаются ферментативному гидролизу под влиянием липаз (См. Липазы). Освобождающиеся при этом жирные кислоты активируются взаимодействием с аденозинфосфорными кислотами (См. Аденозинфосфорные кислоты) (главным образом с АТФ) и коферментом А (См. Кофермент А) и затем окисляются. Наиболее распространённый путь окисления состоит из ряда последовательных отщеплений двууглеродных фрагментов (так называемое β-окисление). Выделяющаяся при этом энергия используется для образования АТФ (см. Жировой обмен, Окисление биологическое). В клетках многих Л. присутствуют в виде комплексов с белками (липопротеидов (См. Липопротеиды)) и могут быть выделены лишь после их разрушения (например, этиловым или метиловым спиртом). Исследование извлечённых Л. обычно начинают с их разделения на классы с помощью хроматографии. Каждый класс Л. — смесь многих близких по строению веществ, имеющих одну и ту же полярную группировку и различающихся составом жирных кислот. Выделенные Л. подвергают химическому или ферментативному гидролизу. Освободившиеся жирные кислоты анализируют методом газожидкостной хроматографии, остальные соединения — с помощью тонкослойной или бумажной хроматографии. Для установления структуры продуктов гидролитического расщепления Л. применяют также масс-спектрометрию, ядерный магнитный резонанс и др. методы физико-химического анализа.

        

         Лит.: Черкасова Л. С., Мережинский М. Ф., Обмен жиров и липидов, Минск, 1961; Маркман А. Л., Химия липидов, в. 1—2, Таш., 1963—70; Тютюнников Б. Н., Химия жиров, М., 1966; Малер Г., Кордес К)., Основы биологической химии, пер. с англ., М., 1970; Progress in the chemistry of fats and other lipids, v. 1—13, L.,1952—72; Hanah anD. J., Lipide chemistry, N. Y. — L., 1960; Advances in lipid research, v. 1—8, N. Y. — L., 1963—70; Ansell G. B., Hawthorne J. N., Phospholipids. Chemistry, metabolism and function, Arnst., 1964; Michalec C., Biochemistry of sphingolipids, Praha, 1967.

         Л. Д. Бергельсон.

        Важнейшие классы липидов.

        Важнейшие классы липидов.

Липиды (жиры)

Липиды — это обширная группа природных органических соединений, включающая жиры и жироподобные вещества, в состав которых входят триглицериды, холестерин и липоидные вещества (фосфолипидовы, стерины).

Триглицериды – это эфирные соединения глицерина и жирных кислот.

Холестерин (холестерол) — органическое соединение, природный жирный (липофильный) спирт, относящийся к липидам. По химической структуре холестерин относится к стероидам.

Жирные кислоты являются основными компонентами липидов (порядка 90%), именно их структура и характеристики определяют свойства различных видов пищевых жиров.

По природе пищевые жиры бывают животными и растительными.

Растительные масла отличаются от животного жира жирнокислотным составом. Высокое содержание в растительных маслах ненасыщенных жирных кислот придает им жидкое агрегатное состояние и определяет их пищевую ценность. Растительные жиры (масла) находятся при обычных условиях в жидком агрегатном состоянии за исключением пальмового масла.

Жирообразные вещества входят в состав всех живых клеток и имеют важное значение в жизненных процессах. Содержание жира в организме составляет 10—20%, при наличии его более 50% наступает тяжелая патология — ожирение.

Физиологическая роль жиров (липидов) в организме человека следующая:

  • Структурно-пластическая — являются одним из основных компонентов биологических мембран, оказывают влияние на проницаемость клеток и активность большого количества ферментов.
  • Энергетическая — образуют энергетический резерв орга­низма.
  • Принимают участие в создании межклеточных контактов.
  • Участвуют в передаче нервного импульса, обеспечивая направленность нервных сигналов.
  • Являются растворителями витаминов А, D, Е и К.
  • С липидами в организм поступают биологически активные вещества.
  • Из них синтезируются некоторые стероидные гормоны (подовые, коры надпочечников) и витамин D.
  • Принимают участие в сокращении мышц.
  • Участвуют в имунно-химических процессах.
  • Выполняют защитную роль (от переохлаждения, механических повреждений, предохраняют кожу от высыхания и растрескивания).

Значение жиров и липидов в организме человека

Большое биологическое значение в организме имеет незаменимая жирная кислота — линолевая. Как-то ее даже называли витамином F, поскольку она не синтезируется в организме и непременно должна поступать с пищей. В целом полинеиасыщенные жирные кислоты (составляют значительную часть растительных масел) способствуют удалению холестерина из организма. Однако их избыток приводит к заболеваниям почек и печени.

При чрезмерном потреблении жиров нарушается обмен холестерина, усиливаются свертывающие свойства крови, возника­ют ожирение, желчнокаменная болезнь, атеросклероз. На послед­нем хочется остановиться особенно, поскольку оно является типичным заболеванием обмена веществ, хотя медицина относит его к сердечно-сосудистым заболеваниям.

Холестерин — важный структурный компонент нервной и других тканей. Он содержится во всех клетках. Причем его общее количество в организме остается примерно на одном уровне даже после длительного голодания. Незначительная часть холестерина поступает с пищей, но большая синтезируется в организме. Холестерин имеет способность связывать и обезвреживать ядовитые вещества образующиеся в организме, и попадающие в него из вне. Принимает участие в создании желчных кислот, витамина D, гормонов коры надпочечников и половых гормонов. Является жизненно важным компонентом организма, и нарушение его обмена приводит к возникновению очень серьезного заболевания — атеросклероза, а также желчнокаменной болезни, поражений кожи, а по некоторым данным — даже злокачественных опухолей.

Мужчины страдают от атеросклероза в 3—5 раз чаще, чем женщины. Основные факторы, нарушающие холестериновый обмен,— психоэмоциональное напряжение, наследственное предрасположение, ряд сопутствующих заболеваний, таких как сахар­ный диабет, подагра, ожирение, желчнокаменная болезнь и др.

Следует учитывать, что при хранении жиры окисляются. Это сопровождается ухудшением их органолептических свойств и образованием токсичных продуктов окисления (перекиси, полимерные соединения). При использовании жиров в пищу следует четко сознавать, что биологическую потребность в них и некоторых других компонентах можно удовлетворить только за счет рациональной смеси жиров животного и растительного происхождения. Сравнительно недавно было установлено, что полиненасыщенные жирные кислоты, которые, как уже указывалось, содержатся лишь в жирах растительного происхождения и явля­ются незаменимыми, стимулируют защитные функции организма, повышают его сопротивляемость против инфекционных, заболеваний и влияния радиации.

Употребление жиров (липидов)

Если в течение длительного времени поступление растительных жиров сократится или в организм будет поступать только сливочное масло, то он теряет способность правильно использовать избыток его и становится менее стойким против развития атеросклеротического процесса. Поэтому не менее 30 % суточного жирового рациона должны составлять растительные жиры и около 70%—животные. С возрастом это соотношение должно изменяться в сторону использования преимущественно растительных жиров.

Липиды (жиры) — ZDRAVBUD.NET ZDRAVBUD.NET

ЛИПИДЫ — это… Что такое ЛИПИДЫ?

(от греч. lipos — жир), жироподобные в-ва, входящие в состав всех живых клеток. Определение понятия липидов неоднозначно. Иногда к Л. относят любые прир. в-ва, извлекаемые из организмов, тканей или клеток такими неполярными орг. р-рителями, как хлороформ, диэтиловый эфир или бензол. В нек-рых случаях Л. рассматривают как производные жирных к-т и родственных им соед. или как любые прир. амфифильные в-ва (их молекулы содержат как гидрофильные, так и гидрофобные группировки). Ни одно из этих определений не является исчерпывающим. Следует ли причислять к Л. терпеноиды, жирорастворимые витамины и гормоны, остается спорным.
Исторический очерк. Нек-рые Л. ( жиры животные, растительные масла) используют с древнейших времен как продукты питания, для приготовления лек. и косметич. препаратов, лакокрасочных материалов, а также для освещения. С нач. 18 в. Л. стали использовать для мыловарения, а в 20 в. — для приготовления моющих ср-в, эмульгаторов, детергентов, пластификаторов и технол. смазок. Первый элементный анализ Л. выполнен в нач. 19 в. А. Лавуазье, а первые исследования по выяснению хим. строения Л. принадлежат К. Шееле и М. Шеврёлю. Впервые синтезы триглицеридов осуществили М. Бертло в 1854 и Ш. Вюрц в 1859. Фосфолипиды выделены М. Гобли в 1847, а затем получены в более чистом виде Ф. А. Хоппе-Зейлером в 1877. К этому времени уже было установлено строение ряда важнейших жирных к-т. Дальнейшую историю изучения Л. можно разделить на три периода, различающиеся по методич. уровню исследований. На первом этапе (1880-1950) Л. исследовали традиционными методами орг. химии, второй этап (1950-1970) характеризуется широким применением методов хроматографии, а последний (70-80-е гг.) — использованием таких физ.-хим. методов, как масс-спектрометрия, оптич. спектроскопия и радиоспектроскопия, флуоресцентный анализ и др.
Классификация Л. В соответствии с хим. строением различают три осн. группы Л.: 1) жирные к-ты и продукты их ферментативного окисления, 2) глицеролипиды (содержат в молекуле остаток глицерина), 3) Л., не содержащие в молекуле остаток глицерина (за исключением соед., входящих в первую группу). В первую группу входят наряду с жирными к-тами простагландины и др. гидроксикислоты; во вторую — моно-, ди- и триглицериды и их алкил- и 1-алкенил (плазмалогены )замещенные аналоги, а также гликозилдиглицериды и большинство фосфолипидов; в третью группу входят сфинголипиды, стерины и воски. По др. классификации (она приведена на схеме), Л. подразделяют на нейтральные Л., фосфолипиды и гликолипиды. В организмах встречаются также многочисл. типы минорных Л. — фосфатидилглицерин, липопептиды, липополисахариды, диольные липиды и др. В липидных экстрактах часто присутствуют продукты частичного гидролиза Л. — лизофосфолипиды и своб. жирные к-ты, а также продукты автоокисления и ферментативного окисления последних, в т. ч. разнообразные продукты превращ. арахидоновой к-ты — т. наз. эйкозаноиды (простагландины, лепкотриены и др.).
Структура. Наиб. распространенные типы Л. — глицеролипиды и производные сфингозина СН 3 (СН 2)12 СН=CHCH(OH)CH(NH2)CH2OH. В нейтральных глицеролипидах гидроксильные группы глицерина замещены остатками жирных к-т, алифатич. спиртов или альдегидов. В полярных глицеролипидах две гидроксильные группы глицерина замещены чаще всего жирными к-тами, а третья связана либо с остатком ортофосфорной к-ты (свободной или этерифицированной холимом, этаноламином, серином, глицерином или миоинозитом), либо с остатками сахаров, как у гликозиллиглицеридов.
580_600-28.jpg
Положение заместителей в молекуле глицерина обозначают по т. наз. системе стереоспецифич. нумераций: если в фишеровской проекции вторичная гидроксигруппа глицеринового остатка находится слева, то углеродным атомам, расположенным выше и ниже этой группы, присваивают соотв. номера 1 и 3, снабдив их индексом sn (напр., sn-1-ацил-3-глицерофосфохолин, см. ф-лу). Наряду с диацилглицерофосфолипидами распространены глицсрофосфолипиды, содержащие в положении sn-1-алкильные или 1-алкенильные заместители. В водных средах Л. образуют бислойные, гексагональные или мицеллярные структуры. В бислоях (см. Липидный бислой) насыщ. углеводородные цепи Л., как правило, находятся в зигзагообразной конформации и расположены параллельно друг другу.
580_600-29.jpg
Ось sn-1-ацильной цепи совпадает с осью глицеринового остатка, тогда как sn-2-цепь на начальном СОЧСН 2 -участке отходит от глицеринового остатка под прямым углом и, резко изгибаясь у a-углеродного атома, становится далее параллельной sn-1-цепи. Ненасыщ. углеводородные цепи Л. содержат одну или неск. этиленовых связей, к-рые, как правило, имеют цис -конфигурацию. При наличии двойных связей зигзагообразная конформация нарушается. В молекулах цвиттерионных фосфолипидов (напр., фосфатидилхолина и фосфатидилэтаноламина) полярная группировка («головка») расположена перпендикулярно осям ацильных цепей, а в молекулах отрицательно заряженных фосфолипидов (напр., фосфатидилсерина) полярные головки направлены параллельно оси ацильных цепей. У фосфосфинголипидов оси ацильных цепей и сфингозинового остатка также расположены параллельно друг другу. В случае сфингомиелина амидная группа, соединяющая эти остатки, расположена перпендикулярно к ним, а жирно-кислотная цепь изгибается у a-углеродного атома, подобно sn-2-цепи фосфоглицеридов. Иную пространственную структуру имеют гликосфинголипиды. У цереброзидов параллельное расположение алифатич. цепей обеспечивается в результате изгибов цепи сфингозина при первом и шестом атомах С, а кольцо остатка моносахарида ориентировано почти перпендикулярно к углеводородным цепям. У гликосфинголипидов с олигосахаридной цепью последняя ориентирована преим. по направлению осей углеводородных цепей.
Получение Л. Прир. Л. выделяют из животных или микробных источников, комбинируя экстракцию орг. р-рителями с хроматографич. методами очистки. При этом отдельные группы Л. получают в виде смеси однотипных в-в, имеющих одинаковые полярные головки, но различающихся по длине и степени ненасышенности алифатич. цепей. Широко распространены полусинтетич. методы — переацилирование прир. Л. и превращ. одних классов Л. в другие. В первом случае прир. Л., напр. фосфатидилхолины, подвергают деацилированию или ферментативному гидролизу с помощью фосфолипазы А 2, а затем полученный глицерофосфохолин 580_600-30.jpg или лизофосфатидилхолин реацилируют индивидуальными жирными к-тами. При использовании для реацилирования синтетич. к-т, несущих флуоресцентные, спиновые, фотореактивные группировки или радиоактивные метки, получают липидные зонды. Для превращ. одних групп прир. глицерофосфолипидов в другие используют реакцию трансфосфатидилирювания с помощью фосфолипазы D. Этим путем из фосфатидилхолина в присут. воды, избытка этаноламина, серина или глицерина получают соотв. фосфатидовую к-ту, фосфатидилэтаноламин, фосфатидилсерин или фосфатидилглицерин. Фосфатидовая к-та, в свою очередь, м. б. этерифицирована холином, этаноламином или серином в присут. разл. конденсирующих агентов. По др. схеме осуществляется неполный синтез сфинголипидов. Напр., для превращ. доступных сфингомиелинов в гликосфинголипиды исходный сфингомиелин гидролизуют в цсрамид CH3(CH2)12CH=CHCH(OH)CH[NH(О)CR’]CH2OH, к-рый превращают в 3-О-бензоильное производное. Последнее затем гликозилируют с помощью соответствующих бромзамещенных ацетилсахаров, после чего защитные бензоильную и ацетильные группы удаляют метанолизом в щелочной среде. Получение индивидуальных фосфолипидов и сфинголипидов обычно осуществляют полным хим. синтезом. Таким же путем получают также простагландины и др. эйкозаноиды.
Биосинтез глицеролипидов и сфинголипидов. Центр. промежут. продукты биосинтеза глицеролипидов — 1,2-диглицериды и фосфатидовые к-ты. Последние образуются гл. обр. двумя путями: ацилированием sn-глицеро-3-фосфата с участием ацилкофермента А и ферментативным ацилированием дигидроксиацетонфосфата с послед. восстановлением его коферментом никотинамидадениндинуклеотидом (НАДН) с образованием лизофосфатидовой к-ты, к-рая далее ацилируется до фосфатидовой к-ты. Гидролиз последней под влиянием фосфатазы приводит к 1,2-диглицеридам, реагирующими с ацилкоферментом А с образованием триглицеридов или с АТФ с образованием фосфатидовой к-ты. Диглицериды вступают во взаимод. с цитидинтрифосфатом, цитидиндифосфохолином или цитидиндифосфоэтаноламином, образуя соотв. фосфатидовую к-ту, фосфатидилхолин или фосфатидилэтаноламин, напр.:
580_600-31.jpg
Фосфатидилэтаноламин, в свою очередь, может превращ. в фосфатидилхолин путем метилирования S-аденозилметионином или реагировать с серином, образуя в результате переэтерификации фосфатидилсерин. У бактерий осуществляется др. путь биосинтеза фосфатидилсерина и фосфатидилэтаноламина; фосфатидовая к-та, взаимодействуя с цитидинтрифосфатом, образует цитидиндифосфодиацилглицерин, к-рый реагирует с серином, образуя фосфатидилсерин. Его декарбоксилирование приводит к фосфатидилэтаноламину, а р-ция с глицерофосфатом — к фосфатидилглицерину Последний вновь может взаимод. с цитидиндифосфодиацилглицерином, превращаясь в дифосфатидилглицерин. В биосинтезе сфинголипидов ключевое соед. — церамид, образующийся в результате N-ацилирования сфингозина ацилкоферментом А. Р-ция церамида с цитидиндифосфохолином приводит к сфингомиелину, а его взаимод. с производными уридина (уридиндифосфоглюкозой или уридиндифосфогалактозой) — к цереброзидам. Возможен и др. путь биосинтеза цереброзидов, основанный на р-ции производных уридина со сфингозиновыми основаниями с образованием психозина (галактозид сфингозина) и его последующем N-ацилировании ацилкоферментами А. Из цереброзидов путем последоват. присоединения остатков моносахаридов и сиаловой к-ты под влиянием соответствующих гликозилтрансфераз образуются гликосфинголипиды с более длинными сахарными цепями.
Биологические функции Л. В полной мере биол. роль Л. еще не выяснена. Нейтральные Л. (жиры) представляют собой форму депонирования метаболич. энергии. Фосфолипиды, гликолипиды и стерины — структурные компоненты мембран биологических; оказывают влияние на множество мембранных процессов, в т. ч. на транспорт ионов и метаболитов, активность мембраносвязанных ферментов, межклеточные взаимод. и рецепцию. Нек-рые гликолипиды -рецепторы или корецепторы гормонов, токсинов, вирусов и др. Фосфатидилинозиты участвуют в передаче биол. сигналов. Эйкозаноиды — высокоактивные внутриклеточные регуляторы, межклеточные медиаторы и иммуномодуляторы, участвующие в развитии защитных р-ций и воспалит. процессов. Лит.: Кейтс М., Техника липидологии, пер. с англ., М., 1975; Крепc Е. М., Липиды клеточных мембран. Л., 1981; Химия липидов, М., 1983; Препаративная биохимия липидов, под ред. Л. Д. Бергельсона, М., 1981. Л. Д. Бергельсон.

Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.

липиды — урок. Биология, Общие биологические закономерности (9–11 класс).

Липиды — обширная группа жироподобных веществ (сложных эфиров жирных кислот и трёхатомного спирта глицерина), нерастворимых в воде. К липидам относят жиры, воски, фосфолипиды и стероиды (липиды, не содержащие жирных кислот).

Липиды состоят из атомов водорода, кислорода и углерода.

Липиды присутствуют во всех без исключения клетках, но их содержание в разных клетках сильно варьирует (от \(2\)–\(3\) до \(50\)–\(90\) %).

Липиды могут образовывать сложные соединения с веществами других классов, например с белками (липопротеины) и с углеводами (гликолипиды).

Функции липидов:

  • запасающая — жиры являются основной формой запасания липидов в клетке.
  • Энергетическая — половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров (при окислении они дают более чем в два раза больше энергии по сравнению с углеводами).
  • Жиры используются и как источник воды (при окислении \(1\) г жира образуется более \(1\) г воды).
  • Защитная — подкожный жировой слой защищает организм от механических повреждений.
  • Структурная — фосфолипиды входят в состав клеточных мембран.
  • Теплоизоляционная — подкожный жир помогает сохранить тепло.
  • Электроизоляционная — миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов.
  • Гормональная (регуляторная) — гормон надпочечников (кортизон) и половые гормоны (прогестерон и тестостерон) являются стероидами.
  • Смазывающая — воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налётом покрыты листья многих растений, воск используется при строительстве пчелиных сот.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

Липопротеины — Википедия

Материал из Википедии — свободной энциклопедии

Липопротеины. Структура

Липопротеи́ны (липопротеиды) — класс сложных белков, простетическая группа которых представлена каким-либо липидом. Так, в составе липопротеинов могут быть свободные жирные кислоты, нейтральные жиры, фосфолипиды, холестериды.

Липопротеины представляют собой комплексы, состоящие из белков (аполипопротеинов; сокращенно — апо-ЛП) и липидов, связь между которыми осуществляется посредством гидрофобных и электростатических взаимодействий.

Липопротеины подразделяют на свободные, или растворимые в воде (липопротеины плазмы крови, молока и др.), и нерастворимые, т. е. структурные (липопротеины мембран клетки, миелиновой оболочки нервных волокон, хлоропластов растений).

Среди свободных липопротеинов (они занимают ключевое положение в транспорте и метаболизме липидов) наиболее изучены липопротеины плазмы крови, которые классифицируют по их плотности. Чем выше содержание в них липидов, тем ниже плотность липопротеинов. Различают липопротеины очень низкой плотности (ЛОНП), низкой плотности (ЛНП), высокой плотности (ЛВП) и хиломикроны. Каждая группа липопротеинов очень неоднородна по размерам частиц (наиболее крупные — хиломикроны) и содержанию в ней апо-липопротеинов. Все группы липопротеинов плазмы содержат полярные и неполярные липиды в разных соотношениях.

Вид Размеры Функция
Липопротеины высокой плотности (ЛВП) 8-11 нм Транспорт холестерина от периферийных тканей к печени
Липопротеины низкой плотности (ЛНП) 18-26 нм Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям
Липопротеины промежуточной (средней) плотности ЛПП (ЛСП) 25-35 нм Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям
Липопротеины очень низкой плотности (ЛОНП) 30-80 нм Транспорт холестерина, триацилглицеридов и фосфолипидов от печени к периферийным тканям
Хиломикроны 75-1200 нм Транспорт холестерина и жирных кислот, поступающих с пищей, из кишечника в периферические ткани и печень

Нековалентная связь в липопротеинах между белками и липидами имеет важное биологическое значение. Она обусловливает возможность свободного обмена липидов и модуляцию свойств липопротеинов в организме.

Липопротеины являются:

Метаболизм липопротеинов

Хиломикроны образуются в лимфатической системе ворсинок кишечника. Они переносят до половины всех триацилглицеролов и холестерина лимфы. Новосинтезированные хиломикроны содержат интегральный белок В-48. Апопротеин В встраивается в липопротеины в гЭПР, где синтезируются триацилглицеролы. В аппарате Гольджи к белкам добавляются углеводы. Они высвобождаются из клеток кишечника обратным пиноцитозом. После этого хиломикроны поступают в лимфатические сосуды ворсинок и уносятся лимфой. Попадая в кровоток, они получают апопротеины С и Е от ЛВП. На стенках капилляров находится липопротеинлипаза (ЛПЛ) (прикрепляется к ним протеогликановыми цепями гепарансульфата). В печени также есть своя липаза, но она менее эффективно атакует хиломикроны. Апопротеин С2 активирует липопротеинлипазу, которая расщепляет триглицериды хиломикрона до ди- и моноглицеридов, а затем — до свободной жирной кислоты и глицерола. Жирные кислоты транспортируются в мышечные и жировые ткани или связываются с альбумином в крови. По мере липолиза хиломикроны теряют большинство своих триацилглицеролов, относительное содержание холестерина и его эфиров увеличивается. Диаметр остатка хиломикрона уменьшается. Апопротеин С2 возвращается на ЛВП, апопротеин Е сохраняется. Остатки хиломикронов поглощаются печенью. Поглощение осуществляется через рецепторный эндоцитоз, с помощью рецепторов апопротеина Е. В печени эфиры холестерина и триацилглицеролы окончательно гидролизуются.

ЛОНП переносят триацилглицеролы, а также фосфолипиды, холестерин и его эфиры из печени в другие ткани. Метаболизм ЛОНП похож на метаболизм хиломикронов. Интегральным белком их является другой апопротеин В, В-100. ЛОНП высвобождаются из клеток печени обратным пиноцитозом, после чего через слой эпителиальных клеток поступают в капилляры печени. В крови на них переносятся апопротеины С2 и Е с ЛВП. Триацилглицеролы ЛОНП, как в случае с хиломикронами, расщепляются при активации ЛПЛ с помощью апопротеина С2, свободные жирные кислоты поступают в ткани. По мере расщепления триацилглицеролов диаметр ЛОНП уменьшается, и они превращаются в ЛПП. Эфир-холестерин-переносящий белок (апопротеин D в составе ЛВП) переносит на ЛОНП эфиры холестерина от ЛВП в обмен на фосфолипиды и триглицериды.

Половина ЛПП поглощается печенью с помощью рецепторного эндоцитоза через рецепторы апопротеина Е и B-100. Триацилглицериды ЛПП гидролизуются печёночной липазой. Апопротеины С2 и Е возвращаются на ЛВП. частица превращается в ЛНП. Относительное содержание холестерина в ЛНП значительно увеличивается, диаметр частицы сокращается. (Они также переносят триглицериды, каротиноиды, витамин Е и др.) ЛНП поглощаются клетками печени (70%) и внепечёночных тканей с помощью рецепторного эндоцитоза. Однако лигандом теперь, в основном, служит белок В-100. Рецептор называется «рецептором ЛНП».

ЛВП обеспечивают обратный транспорт холестерина из внепечёночных тканей к печени. ЛВП синтезируются в печени. В новообразованных ЛВП содержатся апопротеины А1 и А2. Апопротеин А1 синтезируется также в кишечнике, где входит в состав хиломикронов, но при липолизе в крови быстро переносятся на ЛВП. Апопротеин С синтезируется в печени, выделяется в кровоток и уже в кровотоке переносится на ЛВП. Новообразованный ЛВП похож на диск: фосфолипидный бислой, включающий свободный холестерин и апопротеин. Апопротеин А1 — активатор фермента лецитинхолестеринацилтрансферазы (ЛХАТ). Этот фермент связан с поверхностью ЛВП в плазме крови. ЛХАТ катализирует реакцию между фосфолипидом ЛВП и свободным холестерином частицы. При этом образуются эфиры холестерина и лизолецитин. Неполярные эфиры холестерина перемещаются внутрь частицы, освобождая место на поверхности для захвата нового холестерина, лизолецитин — на альбумин крови. Неполярное ядро раздвигает бислой, ЛВП приобретает сферическую форму. Этерифицированный холестерин переносится с ЛВП на ЛОНП, ЛНП и хиломикроны специальным белком ЛВП — переносчиком эфиров холестерола (апопротеин D), в обмен на фосфолипиды и триглицериды. ЛВП поглощается клетками печени с помощью рецепторного эндоцитоза через рецептор апопротеина Е.

Специфичности рецепторов апопротеинов Е и В-100 частично пересекаются. Они находятся на поверхности мембран клеток в клатриновой кавеоле. При соединении с лигандами кавеола замыкается в везикулу и липопротеин эндоцитируется. В лизосомах эфиры холестерина гидролизуются и холестерин поступает в клетку.

  1. Кольман Я., Рём К.-Г., «Наглядная биохимия», пер.с нем., М., «Мир», 2009.
  2. Марри Р., Греннер Д., Мейес П., Родуэлл В. «Биохимия человека», в 2 т. М., «Мир», 2003.

Отправить ответ

avatar
  Подписаться  
Уведомление о