Гемоглобин 36 что это значит: Железодефицитная анемия — (клиники Di Центр)

Содержание

«Гемоглобин — норма у женщин по возрасту,таблица с расшифровкой» – Яндекс.Кью

Гемоглобин — входящий в состав эритроцитов крови сложный железосодержащий белок. Принимает участие в транспортировке кислорода от легких к клеткам всех органов и выведении углекислого газа в обратном направлении.

Сразу можно отметить, что высокий уровень гемоглобина говорит про повышенное свертывание крови, что не является положительным моментом. В результате увеличения вязкости крови повышается вероятность продуцирования тромбов, помимо этого транспортировка кислорода также затруднена.

Чтобы понимать, стоит ли тревожиться и насколько кардинальные меры принимать, нужно знать, какой показатель считается оптимальным для хорошего здоровья. О чем это говорит повышенный гемоглобин, и что надо делать в такой ситуации мы рассмотрим в этом материале.

Норма

Нормальными показателями уровня гемоглобина в крови для женщин являются 120-140 г/л и для мужчин — 135-160 г/л.

Показатель может колебаться в зависимости от физического и психического состояния. Длительное его понижение или повышение по сравнению с нормальными показателями свидетельствует о неблагополучии в организме. 

Повышенный гемоглобин у мужчин

Может быть как следствие курения, из – за состояния организма, вызванного рядом заболеваний. При таких болезнях как эритроцитоз, пернициозная анемия и гемолитическая анемия, когда меняется состав крови.

При эритроцитозе повышается количество эритроцитов, что может быть вызвано заболеванием почек, легких, сердца. Причинам, которые повышают гемоглобин, могут быть поставленные искусственные клапаны в сердце, желчнокаменная болезнь. Нехватка фолиевой кислоты, витамина В12 из – за заболеваний слизистой желудка, который неспособен всасывать эти необходимые элементы, тоже могут способствовать повышению гемоглобина у мужчин.

Повышенный гемоглобин у женщин

О чем это говорит, и что надо делать? У женщин повышенный гемоглобин наблюдается довольно редко. Как уже говорилось выше, норма у здоровых женщин варьируется между 120 и 140 г/л.

Допускается, чтобы гемоглобин был повышен в пределах 10-20 единиц, если показатели выше 20, следует обследоваться. Причинами могут быть заболевания крови, врожденные дефекты сердца, онкологические заболевания и сердечно-легочная недостаточность.

О чем говорит высокий уровень гемоглобина

Рассматриваемый компонент крови содержится в эритроцитах, вырабатываемых костным мозгом. Эти красные кровяные тельца выполняют функцию переноса кислорода к различным органам.

Поэтому, если повышается гемоглобин, скорее всего, в какой-то области организма имеет место гипоксия (кислородное голодание). Из-за нее костный мозг вырабатывает слишком много эритроцитов, а вязкость крови увеличивается.

Причины высокого гемоглобина

Почему гемоглобин повышен, и что это значит? Изменения такого важного показателя, как уровень гемоглобина, говорит о том, что произошла дисфункция определенных органов и систем.

Хотя в некоторых случаях высокий гемоглобин является нормой – например, у людей, проживающих в горной местности. Это компенсаторная реакция организма на недостаток кислорода высоко в горах.

Основными причинами повышения гемоглобина в крови у взрослого человека, в т. ч. и у женщин, являются:

  1. Не слишком тревожным, хотя и негативным признаком, является повышение гемоглобина у курильщиков (а также людей, недавно побывавших в пожаре). Дело в том, что гемоглобин способен переносить только кислород или углекислый газ, легко замещая их друг другом.
  2. Сильное обезвоживание повышает уровень плазмы, и как результат увеличивается объем циркулирующей крови. Сам процесс обезвоживания не увеличивает уровень содержания красных кровяных телец, однако, последствия выраженные в увеличении объема крови повышают их концентрацию в целом, что так же выражается в повышенном уровне гемоглобина.
  3. Приобретенные пороки сердца, характеризующиеся высоким давлением в легочном круге кровообращения. В наибольшей степени это характерно для митрального стеноза ревматической этиологии.
  4. Врожденные болезни сердца, особенно пороки, которые сопровождаются обогащением легочного кровотока. В данном случае окраска кожи изменяется с раннего детства и носит синюшный оттенок. Ребенка достаточно часто беспокоит одышка, может возникать кашель. Проведение УЗИ сердца позволяет поставить правильный диагноз. Лечение таких заболеваний при выраженной клинике только оперативное.
  5. Увеличение количества эритроцитов в крови (эритроцитоз).
  6. Повышение количества гемоглобина в кровяной плазме (гемоглобинемия).
  7. Нарушенная проходимость кишечника.
  8. Болезни легких и легочная недостаточность.
  9. Переизбыток в организме человека витаминов В6 и В12.
  10. Онкологические заболевания.

Тем не менее, повышенное содержание гемоглобина в крови может быть связано не только с различного рода заболеваниями, а также со средой проживания и образом жизни.

Физиологические причины

Рассмотрим основные причины повышения гемоглобина, которые имеют внешнее происхождение:

  1. Проживание на больших высотах. Чем больше высота, тем ниже уровень кислорода в воздухе. Из-за этого организм производит как можно больше гемоглобина, чтобы связывать максимальное количество кислорода.
  2. Регулярное нахождение на свежем воздухе и занятия спортом повышают уровень гемоглобина.
  3. У женщин внешним фактором, который влияет на увеличение гемоглобина можно считать беременность.
  4. Особенности профессии. Речь о том, что иногда работа проходит в условиях низкого содержания кислорода, и на такое состояние организм реагирует поднятием уровня гемоглобина в крови
  5. Применение анаболических стероидов.

Высокий гемоглобин – это менее опасное явление, чем если уровень понижен, так как при низких показателях этого вещества ставится диагноз анемия. Однако стоит отметить, что повышенный гемоглобин все же является поводом для обращения за медицинской помощью, так как может свидетельствовать о наличии серьезной патологии в организме.

Было подмечено, что гемоглобин выше нормы повышает риск развития сердечно-сосудистых заболеваний, а также нередко приводит к развитию инсультов и инфарктов.

Симптомы и последствия высокого гемоглобина

При высоком гемоглобине, симптомов человек может не испытывать никаких, но при длительном и значительном изменении этого показателя с комплексом сопутствующих заболеваний, у пациента могут быть различные расплывчатые симптомы, которые носят общий характер и не указывают на конкретное заболевание:

  • повышенная утомляемость, вялость;
  • слабый аппетит;
  • сонливость или наоборот проблемы с засыпанием;
  • боли в суставах, костях – в ребрах, бедрах;
  • повышается артериальное давление;
  • головные боли, головокружение;
  • зуд кожи, особенно после душа, ванны;
  • боли в животе.
  • быстрое образование синяков и легкое возникновение кровотечений.

Эти признаки проявляются на внешнем уровне. Но самые опасные процессы происходят внутри организма. Наблюдается загустение кровяной среды, повышение ее вязкости и снижение скорости циркуляции в организме. Из-за этого внутренние органы не получают питания. Самое серьезное последствие – формирование тромбов и бляшек, вызывающих инфаркты и инсульты.

Как понизить гемоглобин в крови

Если то, от чего повышается гемоглобин, не связано с серьезными патологиями, то можно воздействовать на высокий гемоглобин определенным питанием или лекарственными средствами. Среди аптечных препаратов, находящихся в относительно свободном доступе, можно выделить те, которые направлены на разжижение крови: Курантил, Кардиомагнил, Трентал или же заурядный Аспирин. Назначает их только специалист.

Чтобы в домашних условиях снизить уровень гемоглобина необходимо строже подойти к своему рациону и пересмотреть питание:

  1. Повышение уровня жидкости в организме. Для этого достаточно пить больше теплой жидкости. Если это невозможно (к примеру, при тяжелых обширных ожогах), то используют капельницы с физраствором.
  2. Рекомендуется сократить в рационе жиры, кондитерские изделия с кремом и яйца, так как они повышают холестерин и так в густой крови. Нельзя принимать поливитамины и препараты, содержащие медь и железо. Отдавайте предпочтение морепродуктам, белому мясу, бобовым, орехам и овощам.
  3. Следует ограничить употребление продуктов, повышающих гемоглобин. Это продукты, богатые белком и железом — мясо красных сортов, фрукты, овощи и ягоды красного цвета, субпродукты мясные, рыбную икру, сливочное масло, гречневую кашу, сладкое и копченое.

Полезно употреблять в пищу такие продукты:

  1. Рыба любых сортов и морепродукты (кроме мидий).
  2. Куриное мясо.
  3. Некоторые бобовые культуры.
  4. Свежие сырые салаты из овощей и фруктов.
  5. Отваренные и запеченные овощи.

Мы уже говорили о том, что повышенный гемоглобин – это только симптом какого-то заболевания. Поэтому одновременно с его нормализацией необходимо найти и устранить первичную причину.

Материал предоставлен simptomy-lechenie.net

Анемия при беременности

Под анемией понимают снижение уровня гемоглобина в крови.

Во время беременности в организме женщины увеличивается количество жидкости, а значит, и объем циркулирующей крови. За счет этого кровь «разжижается» и доля гемоглобина в ее общем объеме падает. Это считается нормальным явлением, в связи с чем нижняя граница количества гемоглобина при беременности установлена на уровне 110 г/л (при норме для небеременной женщины в 120–140 г/л). Но дальнейшее падение уровня гемоглобина является опасным для здоровья и даже жизни будущей матери.

В зависимости от значений этого показателя анемия при беременности может быть:

  • легкой степени тяжести — 110–90 г/л;
  • умеренно выраженной — 89–70 г/л;
  • тяжелой — 69–40 г/л.

Наиболее частыми осложнениями при анемии во время беременности считаются:

  • угроза прерывания беременности;
  • гестоз;
  • пониженное артериальное давление;
  • преждевременная отслойка плаценты;
  • задержка развития плода;
  • преждевременные роды;
  • анемия в первый год жизни ребенка.

Так что анемия при беременности — отнюдь не безобидное состояние. Оно имеет серьезные последствия и для матери, и для плода.

Во время беременности железо расходуется не только на кроветворение матери, но и на нужды плода. Особенно активно этот расход возрастает на 16–20-й неделях, когда запускается процесс кроветворения у плода. К концу беременности запасы железа истощаются у любой женщины и для их полного восстановления необходимо 2–3 года.

Другими причинами анемии при беременности являются:

  • дефицит железа в пище главным образом из-за недостаточного количества мяса в рационе;
  • дефицит витаминов группы B и C, необходимых для нормального усвоения железа;
  • болезни, при которых возникает недостаток белков, участвующих в обмене железа, включая тяжелый гестоз;
  • ранний гестоз (токсикоз), мешающий полноценно питаться;
  • частые роды с небольшим интервалом.

Если же говорить о группах риска развитии анемии во время беременности, то к ним можно причислить женщин: с многоплодной беременностью и многорожавших; имевших до наступления беременности менструации длительностью более 5 дней; у которых были симптомы анемии во время предыдущей беременности; с гестозом; с хроническими заболеваниями желудочно-кишечного тракта, печени, хроническими инфекциями; вегетарианок. Все, попавшие в группу риска, должны особенно тщательно следить за своим состоянием и по возможности позаботиться о профилактике анемии во время беременности.

Учитывая, что во время беременности потребность организма женщины в микроэлементе возрастает на 15–33%, на передний план обычно выходят симптомы, указывающие на гипоксию: слабость, быстрая утомляемость; нарушение сна: днем — сонливость, ночью — бессонница; головные боли; головокружения, шум в ушах; одышка; сердцебиение; обмороки.

Переносимость симптомов анемии индивидуальна: кто-то падает в обморок при относительно высоких значениях гемоглобина, кто-то отказывается от госпитализации с гемоглобином на уровне около 70 г/л, искренне не понимая всей тяжести анемии и ее опасности при беременности. Именно поэтому клинический анализ крови во время беременности проводится обязательно и несколько раз. Имеет значение и падение значений железа в сыворотке крови и сывороточного ферритина. Снижение количества последнего до 12 мкг/л говорит о дефиците железа, даже если гемоглобин еще в норме.

Лечение анемии в период ожидания малыша включат в себя диетотерапию. Одна из основ как профилактики, так и лечения анемии при беременности — правильное питание. Питание для профилактики анемии при беременности должно содержать в достаточном количестве вещества, необходимые для нормального кроветворения, — это мясо, рыба. В этих продуктах железо изначально двухвалентное, поэтому легко всасывается. Но одной диеты может быть недостаточно даже для профилактики.

Для лечения анемии назначаются препараты железа. Обычно ограничиваются средствами для перорального приема (т.е. внутрь) — препараты железа в инъекциях рекомендуют только в тяжелых случаях и только в условиях стационара.

Как российские, так и зарубежные эксперты отмечают, что профилактика анемии у беременных эффективней, чем ее лечение, и чем выше уровень гемоглобина, тем проще привести его к норме. Впрочем, о том же говорит и здравый смысл. Поэтому, планируя беременность и тем более уже ожидая ребенка, лучше заняться профилактикой анемии не дожидаясь, пока недостаток железа станет заметен.

Врач-гематолог (заведующий),

консультационным отделением                                                    Рачкова Т.А.

Низкий уровень ферритина. Хороший гемоглобин – еще не показатель

Устаете на «ровном месте»? Возможно, вашему организму не хватает железа. Врачи утверждают, что железодефицитные состояния испытывают многие белорусы, но даже не догадываются об этом.

– Есть понятия железодефицитной анемии и латентный дефицит железа, – рассказала корреспонденту 1prof.by заведующая консультационного отделения Минского клинического консультационно-диагностического центра Татьяна Рачкова. – Об анемии говорит низкий уровень гемоглобина, а вот латентное состояние – это когда уровень гемоглобина еще нормальный, а запасы железа уже истощены. Стопроцентное подтверждение такого состояния – низкий уровень ферритина. Развитию железодефицита могут послужить заболевания желудочно-кишечного тракта, а у женщин – гинекологические проблемы. Как показывает практика, скрытой формой железодефицита страдает 30% белорусок репродуктивного возраста, железодефицитная анемия встречается у 10%. Это достаточно большой процент, учитывая, что я не беру в расчет беременных и кормящих женщин.

– Какие симптомы должны заставить человека проверить кровь на ферритин и почему речь идет именно о нем?

– Уровень ферритина всегда отображает реальную картину дел, в то время как сывороточное железо – достаточно субъективный показатель, он может меняться по разным причинам. Что касается симптомов, лучше их не дожидаться: любой из нас должен сдавать обычный анализ крови хотя бы раз в год. Внеурочно выполнить общий анализ крови и уровень ферритина нужно, если вы начали чувствовать не характерную слабость при обычной физической нагрузке. Еще к частым симптомам относятся: одышка, чувство нехватки воздуха в плохо проветриваемом помещении (хотя раньше вы вполне спокойно переносили такую обстановку), предобморочное состояние, ломкость и истощение ногтей, выпадение волос, извращение вкуса: люди хотят есть сухую гречку или мел.

Чтобы определить причину железодефицита, необходимо пройти доступные обследования. Женщинам, в первую очередь, показан осмотр гинеколога, поскольку постепенно истощить запасы железа могут даже обильные менструации. Второй шаг – надо, как говорят в народе, «проглотить зонд». Дело в том, что биопсия, проведенная при этой процедуре, поможет определить проблему, которая нарушает всасывающую способность желудка. Если она снижена, то, разумеется, человек будет недополучать многие полезные вещества, в том числе и железо.

– Получается, что анемия может быть у людей, которые питаются по принципу «ем мясо с мясом»?

Конечно. Если всасывающая способность ЖКТ меняется, сколько бы мы говядины или субпродуктов ни ели, организм получит меньше, чем надо.

– Допустим, первопричину устранили. Можно восполнить запас железа с помощью одних лишь продуктов?

– Ни одна анемия не лечится исключительно диетой, поскольку для лечебного эффекта железа в продуктах недостаточно. Здесь необходим прием специальных препаратов. При пероральном приеме (таблетки) передозировки не будет: организм лишнее выведет сам. Переизбыток железа, что тоже опасно для здоровья, могут вызвать внутримышечные и внутривенные инъекции. Поэтому нельзя заниматься самолечением, делать уколы необходимо строго по назначению и под наблюдением врача.

– Есть ли какие-то особенности развития железодефицита у детей?

– Есть. Например, в группу риска попадают малыши, мамы которых испытывали нехватку элемента во время беременности. Также надо учитывать, что дети первого года жизни растут очень быстро и им требуется больше железа, чем взрослым. Именно поэтому педиатры советуют обязательно вводить прикорм с шестимесячного возраста: как ни странно, но грудное молоко сегодня содержит меньше железа, чем специальные молочные смеси. Еще дефицит могут спровоцировать частые инфекционные заболевания (они требуют большего потребления железа). То есть если ребенок здоровый и находится на адекватном, рациональном питании, то, скорее всего, железодефицитные состояния ему не грозят. Но в любом случае, анализ крови раз в год обязателен и для малышей.

– Вы упомянули об «адекватном» питании. Вегетарианство – это фактор риска или все же норма?

– Отвечу так. Железо всасывается интенсивнее нашим организмом в двухвалентной (гемовой) форме. Продукты животного происхождения содержат именно такое железо, а еще незаменимые аминокислоты и белок, необходимый для того, чтобы железо встроилось именно туда, куда нужно. В растительной пище содержится лишь трехвалентное железо, то есть оно заведомо всасывается гораздо хуже. Если у вегетарианца есть еще и какие-то сопутствующие проблемы со здоровьем, мы обязательно выйдем на железодефицит. Диктовать человеку его рацион питания я не могу. Но как врач я обязана предупредить о таком развитии событий. Понятно, что злоупотреблять белком не нужно, но и полный отказ от него – тоже плохо. Постоянно восполнять железо за счет синтетических препаратов – не выход. Железо в виде таблеток и витаминов в каком-то смысле чужеродно для организма. По сути это агрессивный химический элемент, который может вызывать микроэрозии при всасывании. Одно дело, когда его назначают в лечебных целях и совсем другое, когда человек сам решил поиздеваться над организмом, заменяя еду препаратом.

– Сейчас зачастую врачи назначают общий анализ крови с развернутой лейкоцитарной формулой. Что это такое?

– Общий анализ включает в себя лишь показатели гемоглобина, тромбоцитов, лейкоцитов и эритроцитов. И они могут быть вполне нормальными благодаря адаптационным возможностям организма. А в лейкоцитарной формуле определяется процентное соотношение различных видов лейкоцитов, что позволяет заподозрить даже предпосылки к какой-то проблеме или болезнь в начальной стадии. Поэтому я настаиваю именно на таком, развернутом, анализе.

– Мы говорили с вами о низком гемоглобине. А о чем свидетельствует повышенный показатель?

– О том, что надо обратить на себя внимание. Многие радуются, видя в анализах очень высокий уровень и напрасно. Такое состояние называется симптоматическим эритроцитозом. В первую очередь ему подвержены курильщики (из-за постоянного недостатка кислорода в тканях), люди с высоким артериальным давлением. Кроме того, высокий гемоглобин сопряжен с риском опасных тромботических ситуаций. Поэтому даже при высоком уровне гемоглобина необходимо обратиться к специалисту.

Также необходимо упомянуть о таком важном показателе как тромбоцитах, отмечу, что раньше этот показатель в обычный анализ крови не входил. Сейчас такие исследования обязательны. И это очень хорошо. Например, низкий уровень тромбоцитов (выше 50 тыс.) в обычной жизни никак себя не проявляет. Но это первый показатель риска кровотечений, который может обнаружить себя только при оперативном вмешательстве. Поэтому еще раз повторюсь: не пренебрегайте профилактическими анализами и берегите себя.

Беседовала Елена ОРЛОВА

Эритроцитарные индексы

Эритроцитарные индексы определяют размер эритроцита и содержание в нем гемоглобина и включают в себя средний объем эритроцита (MCV), среднее содержание гемоглобина в эритроците (MCHC), среднюю концентрацию гемоглобина в эритроцитах (MCHC), а также распределение эритроцитов по величине (RDW).

Определение вышеуказанных показателей является неотъемлемой частью общего анализа крови и отдельно не производится.

Синонимы русские

Средний объем эритроцита, среднее содержание гемоглобина в эритроците, средняя концентрация гемоглобина в эритроцитах, распределение эритроцитов по величине, индекс морфологии эритроцитов.

Синонимы английские

Red Cell Indicies, Red Blood Indicies, Red Blood Cell Indices, Blood indicies МСV, MCH, MCHC, Mean cell hemoglobin, Mean Cell Volume, Mean cell hemoglobin concentration, Mean corpuscular volume, Mean corpuscular hemoglobin concentration, Mean corpuscular hemoglobin, RDW, RDW-CS, RDW-SD, Red cell distribution of width.

Общая информация об исследовании

Эритроциты – это красные кровяные клетки, являющиеся основными форменными элементами крови. В их составе есть гемоглобин – белок, который переносит кислород от легких к тканям и органам. Он состоит из белка глобина и гемма-комплекса, содержащего железо, способное связываться с кислородом. У некоторых людей процесс «сборки» гемоглобина может нарушаться, что отражается на внешнем виде и размере эритроцитов.

Изменение количества эритроцитов обычно сопряжено с изменениями уровня гемоглобина. Когда количество эритроцитов и уровень гемоглобина снижены – у пациента анемия, когда они повышены – полицитемия.

Эритроцитарные индексы позволяют оценить размер эритроцитов и содержание в них гемоглобина. Они характеризуют сами клетки, а не их количество, вследствие чего являются относительно стабильными параметрами.

Средний объем эритроцита (MCV)

MCV – средний объем одного эритроцита. Он может измеряться анализатором непосредственно путем оценки многих тысяч эритроцитов или вычисляться по формуле как отношение гематокрита к количеству эритроцитов.

Этот показатель измеряется в фемтолитрах (10-15/л). Один фемтолитр равен одному кубическому микрометру (одна миллионная часть метра).

При большом количестве аномальных эритроцитов (например, при серповидно-клеточной анемии) подсчет MCV является недостоверным.

Среднее содержание гемоглобина в эритроците (MCH)

MCH отражает, сколько гемоглобина в среднем содержится в одном эритроците. Измеряется в пикограммах (одна триллионная часть грамма, 10-12) на эритроцит и рассчитывается как отношение гемоглобина к количеству эритроцитов. Он соответствует цветному показателю, который использовался ранее для отражения содержания гемоглобина в эритроцитах. Обычно MCH в эритроците является основой для дифференциальной диагностики анемий.

Средняя концентрация гемоглобина в эритроцитах (MCHC)

MCHC – показатель насыщения эритроцита гемоглобином, в отличие от MCH характеризует не количество гемоглобина в клетке, а «плотность» заполнения клетки гемоглобином. Рассчитывается как отношение общего гемоглобина к гематокриту – объему, который занимают эритроциты в кровяном русле. Он измеряется в граммах на литр и является наиболее чувствительным показателем при нарушениях образования гемоглобина. Кроме того, это один из самых стабильных гематологических показателей, так что MCHC используется как индикатор ошибок анализатора.

Распределение эритроцитов по объему (RDW)

RDW – степень разброса эритроцитов по объему. Существуют разные варианты подсчета этого показателя. RDW-CV измеряется в процентах и показывает, насколько объем эритроцитов отклоняется от среднего. RDW-SD измеряется в фемтолитрах, так же как средний объем эритроцитов (MCV), и показывает разницу между самым маленьким эритроцитом и самым большим.

В целом RDW соответствует анизоцитозу, который определяется на основании микроскопии мазка крови, однако является значительно более точным параметром.

Для чего используется исследование?

Оценка эритроцитарных индексов позволяет получить представление о характеристиках эритроцитов, что очень важно в определении вида анемии. Эритроцитарные индексы зачастую быстро реагируют на лечение анемий и могут использоваться для оценки эффективности терапии.

Когда назначается исследование?

Как правило, эритроцитарные индексы входят в рутинный общий анализ крови, который назначается как планово, так и при различных заболеваниях, перед хирургическими вмешательствами. Повторно этот анализ назначают пациентам, проходящих лечение от анемии.

Что означают результаты?

Средний объем эритроцита (MCV)

Пол

Возраст

Референсные значения

 

Меньше 1 года

71 — 112 фл

1-5 лет

73 — 85 фл

5-10 лет

75 — 87 фл

10-12 лет

76 — 94 фл

 

 

 

 

Женский

12-15 лет

73 — 95 фл

15-18 лет

78 — 98 фл

18-45 лет

81 — 100 фл

45-65 лет

81 — 101 фл

Больше 65 лет

81 — 102 фл

 

 

 

 

Мужской

12-15 лет

77 — 94 фл

15-18 лет

79 — 95 фл

18-45 лет

80 — 99 фл

45-65 лет

81 — 101 фл

Больше 65 лет

81 — 102 фл

На основании MCV, размера эритроцитов, анемии подразделяются на следующие виды:

  • Микроцитарные – при MCV меньше нормы в крови преобладают эритроциты маленького размера. Чаще всего причиной микроцитарной анемии является дефицит железа. Он может возникать из-за длительных кровопотерь, нарушения усвоения железа, недостаточного употребления мясных продуктов, а также из-за некоторых нарушений «сборки» гемоглобина, например при талассемии или при различных хронических заболеваниях (длительных инфекциях, онкологиях).
  • Нормоцитарные – когда эритроциты нормального размера. Это бывает при угнетении работы костного мозга – при апластической анемии, недавнем кровотечении, хронических заболеваниях печени и почек.
  • Макроцитарные, когда в крови преобладают эритроциты крупного размера. Чаще всего это происходит при дефиците витамина B12 или фолиевой кислоты. MCV может повышаться и при нормальном уровне гемоглобина – из-за злоупотребления алкоголем, многолетнего курения, снижения функции щитовидной железы

Средний объём эритроцита в норме в течение жизни меняется: максимален он у новорождённых, а затем постепенно снижается.

Что может влиять на результат?

Большое количество ретикулоцитов, выраженный лейкоцитоз, а также значительное увеличение уровня глюкозы завышают показатель среднего объёма эритроцитов.

При одновременном увеличении в крови количества крупных (макроцитарных) и маленьких (микроцитарных) эритроцитов MCV будет в норме. Выявить нарушения в этом случае позволяет микроскопическое исследование мазка крови.

Среднее содержание гемоглобина в эритроците (MCH)

Возраст

Пол

Референсные значения

 

30 — 37 пг

14 дней — 1 мес.

 

29 — 36 пг

1 — 2 мес.

 

27 — 34 пг

2 — 4 мес.

 

25 — 32 пг

4 — 6 мес.

 

24 — 30 пг

6 — 9 мес.

 

25 — 30 пг

9 — 12 мес.

 

24 — 30 пг

1 — 3 года

 

22 — 30 пг

3 — 6 лет

 

25 — 31 пг

6 — 9 лет

 

25 — 31 пг

9-15 лет

 

26 — 32 пг

15-18 лет

 

26 — 34 пг

18-45 лет

 

27 — 34 пг

45-65 лет

 

27 — 34 пг

> 65 лет

женский

27 — 35 пг

> 65 лет

мужской

27 — 34 пг

По MCH анемии делят на нормохромные (когда среднее содержание гемоглобина в эритроците в пределах референсных назначений), гипохромные (когда MCH снижено) и гиперхромные (если среднее содержание гемоглобина в эритроците повышено).

Нормохромия присуща здоровым людям, но также встречается при гемолитических, апластических анемиях, а также после недавнего кровотечения.

Гипохромия, как правило, связана с уменьшением объёма эритроцитов (микроцитозом), однако может возникать и в эритроцитах нормального объёма.

Таким образом, снижение MCH обычно происходит при микро- и нормоцитарных анемиях. Повышение же отмечается при макроцитарных анемиях и у новорождённых.

Что может влиять на результат?

Повышение уровня липидов крови и значительный лейкоцитоз, миеломная болезнь и введение гепарина завышают результаты MCH.

Средняя концентрация гемоглобина в эритроците (MCHC)

Возраст

Референсные значения

Меньше 1 года

290 — 370 г/л

1-3 года

280 — 380 г/л

3-12 лет

280 — 360 г/л

12-19 лет

330 — 340 г/л

Больше 19 лет

300 — 380 г/л

Повышение MCHC отмечается при унаследованном заболевании, когда эритроциты имеют округлую форму – наследственном сфероцитозе, а также у новорождённых.

Снижение MCHC обычно происходит при микроцитарных анемиях.

Что может влиять на результат?

Повышение уровня липидов крови, миеломная болезнь и насыщение крови гепарином ведут к ложноповышенным результатам по MCHC.

RDW-SD (распределение эритроцитов по объёму, стандартное отклонение): 37 — 54.

RDW-CV (распределение эритроцитов по объёму, коэффициент вариации):

Возраст

RDW-CV, %

14,9 — 18,7

> 6 мес.

11,6 — 14,8

Повышение RDW отмечается при значительном разбросе в размерах эритроцитов, что может быть при железодефицитных анемиях, когда увеличивается количество маленьких эритроцитов (микроцитов), или при дефиците витамина В12 или фолиевой кислоты, когда повышается число увеличенных в размере эритроцитов – мегалобластов.

Повышение RDW является одним из наиболее ранних признаков железодефицитной анемии. Уменьшение среднего объёма эритроцитов при нормальном RDW позволяет заподозрить талассемию.

Если большинство эритроцитов уменьшены или увеличены, результат RDW может оставаться в норме.

Патологические причины сниженного RDW неизвестны.

Что может влиять на результат?

Значительное повышение количества ретикулоцитов или лейкоцитов завышает результат RDW.

Важные замечания

  • Полное представление о внешнем виде и размерах эритроцитов можно получить, если подсчёт эритроцитарных индексов проводится совместно с оценкой эритроцитов при микроскопии мазка крови.

Также рекомендуется

Кто назначает исследование?

Врач общей практики, терапевт, гематолог, нефролог, хирург.

Повышен билирубин: причины, последствия, лечение

Билирубин – это желчный пигмент, который образуется при распаде гемоглобина, а точнее гема – железосодержащего белка в составе гемоглобина, содержащегося в эритроцитах. У взрослого человека в течение суток разрушается около 1-2х1011 эритроцитов.

В основном распад эритроцитов происходит в селезенке, костном мозге и в меньшей степени в печени. В процессе разрушения эритроцита высвобождается гемоглобин, который в дальнейшем распадается на гем и глобин. После ряда превращений из гема образуется биливердин (пигмент желтого цвета), а впоследствии – красно-желтый пигмент билирубин. Эту цепочку химических реакций можно увидеть, наблюдая за изменением окраски гематомы (синяка): в зависимости от этапов распада гема синяк несколько раз меняет цвет — «отцветает». Из селезенки билирубин переносится с помощью белка крови альбумина в печень. Эта фракция билирубина (в связке с альбумином) называется непрямой (свободной или неконъюгированной). Так билибурин попадает в печень, где связывается с глюкуроновыми кислотами и попадает в желчь. Эта фракция билирубина называется прямой (конъюгированной). С желчью конъюгированный билирубин попадает в просвет кишечника, где при участии кишечной микрофлоры превращается в бесцветный пигмент уробилиноген, часть которого выводится с калом, а часть всасывается обратно в кровь и выводится с мочой. Кишечный уробилиноген под действием кишечной микрофлоры превращается в стеркобилин – пигмент коричневого цвета.

При преждевременном патологическом разрушении эритроцитов, нарушении процессов связывания билирубина с глюкуроновыми кислотами или высвобождения билирубина из печени в кишечник можно наблюдать желтуху – окрашивание кожных покровов и слизистых в желтый цвет.

Нормы билирубина4:

Нормальные показатели общего билирубина сыворотки крови составляют 3,4–20,4 мкмоль/л, непрямого биллирубина — до 6,5 мкмоль/л1, прямого — до 5,1 мкмоль/л.
Желтуху может наблюдаться при значениях билирубина на уровне 40–70 мкмоль/л.

Повышение уровня билирубина в крови по-медицински называется гипербилирубинемией. Врачу важно знать, какая именно фракция билирубина повышена, так как это может играть решающую роль при постановке диагноза.

Различают несколько видов желтух1:

Надпеченочная желтуха развивается, при ускоренном массивном патологическом разрушении эритроцитов и проявляется, как правило, анемией. Распад эритроцитов может быть связан, например, с дефектом мембраны эритроцитов6, с развитием инфекционного заболевания7, при переливании несовместимых групп крови и т.д. Наблюдается повышение фракции непрямого билирубина.

Печеночная (печеночно-клеточная или паренхиматозная) желтуха связана с повреждением клеток печени, что приводит к невозможности клеток печени как связывать билирубин из крови, так и высвобождать связанный с глюкуроновыми кислотами билирубин в желчь. Среди причин печеночной желтухи выделяют вирусные гепатиты, токсические повреждения печени, в том числе, лекарственные, первичный биллиарный цирроз и т.д. В таком случае гипербилирубинемия наблюдается за счет обеих (непрямого и прямого) фракций билирубина.

Подпеченочная желтуха, как правило, связана с нарушением отхождения желчи из печени в кишечник по желчевыводящим путям. К развитию подпеченочной желтухи может привести закупорка или резкое сужение просвета желчевыводящих путей, например, камнем, опухолью головки поджелудочной железы, метастазами опухоли. При полной закупорке билирубин не поступает в кишечник, при этом полностью всасывается в кровь. Концентрация прямого билирубина в крови может значительно превышать норму.

Особенно часто диагностируется у недоношенных детей3, однако по некоторым данным наблюдается у 60% доношенных детей9. Симптомы желтухи обычно появляются на 2-е сутки с рождения ребенка и сохраняются до 3-х недель у недоношенных детей и до 2-х недель у доношенных3. Стоит отметить, что затянувшаяся желтуха может свидетельствовать о развитии некоторых заболеваний, например, патологии щитовидной железы (вторичного гипотиреоза)5 или инфекционных заболеваний3.

В норме при желтухе новорожденных концентрация билирубина в крови не превышает 205 мкмоль/л3. Когда уровень свободного (непрямого) билирубина превышает 340 ммол/л, возникает опасность развития билирубиновой энцефалопатии, так как непрямой билирубин способен проникать через гематоэнефалический барьер и оказывать токсическое воздействие на головной мозг1. По другим источникам концентрация билирубина выше 250 мкмоль/л уже может приводить к развитию глухоты, церебрального паралича, судорогам и задержке умственного развития3. С целью своевременной диагностики патологии врачи проводят мониторинг за состоянием новорожденных, оценивают динамику симптомов и, при необходимости, принимают срочные меры по снижению уровня билирубина. Ранняя диагностика и своевременное лечение неонатальных желтух у детей способствуют профилактике развития билирубиновой энцефалопатии8.

Диагностика повышенного билирубина: анализы и результаты

Концентрация общего, прямого и непрямого билирубина оценивается при проведении биохимического анализа крови. Наиболее распространены и широко используются для количественного определения общего и прямого билирубина химические колориметрические и спектрофотометрические методы. Актуально применение неинвазивных (чрескожных) методов определения билирубина, так как в сравнении с привычным инвазивным методом помогает избежать проколов и возможного инфицирования8,9.

При развитии печеночной и подпеченочной желтух может наблюдаться потемнение мочи, а кал, наоборот, может стать менее окрашенным и даже бесцветным, что объясняется повышением уровня уробилина и конъюгированного билирубина в моче и отсутствии уробилиногена в кале1.

Так как обычно повышение билирубина – это симптом определенного заболевания, то в первую очередь, необходимо определить причину гипербилирубинемии. Гипербилирубинемия может являться симптомом цитолиза2 (повреждения и разрушения печеночных клеток) и синдрома печеночно-клеточной недостаточности2 (нарушение функций печени). Кроме специфического лечения, направленного на устранение причины гипербилирубинемии (например, противовирусные препараты при лечении гепатита С или оперативное лечение при выявлении опухоли или метастазов), может применяться патогенетическая терапия: так у новорожденных в лечении желтухи применяется фототерапия для выведения билирубина из кожных покровов, так как под действием ультрафиолета пигмент разрушается.

Если причина гипербилирубинемии – в заболевании печени (например, при хронических гепатитах, циррозе), в составе комплексной терапии этих заболеваний могут применяться препараты эссенциальных фосфолипидов, которые помогают восстанавливать клетки печени10.

Дата публикации материала: 17 ноября 2020 года

MAT-RU-2003445-1.00-11/2020

особенности, необходимость и возможность коррекции. Обзор литературы. – Вестник интенсивной терапии имени А.И. Салтанова

Ю.П. Орлов1, Н.В. Говорова1, Ю.А. Ночная1, В.А. Руднов2

1 ФГБОУ ВО «Омский государственный медицинский университет» МЗ РФ

2 ФГБОУ ВО «Уральский государственный медицинский университет» МЗ РФ

Для корреспонденции: Орлов Юрий Петрович, д-р мед. наук, профессор кафедры анестезиологии и реаниматологии ФГБОУ ВО «Омский государственный медицинский университет» Минздрава России, Омск; e-mail: [email protected]

Для цитирования: Орлов Ю.П., Говорова Н.В., Ночная Ю.А., Руднов В.А. Анемия воспаления: особенности, необходимость и возможность коррекции. Обзор литературы. Вестник интенсивной терапии имени А.И. Салтанова. 2019;1:20–35. DOI: 10.21320/1818-474X-2019-1-20-35


Реферат

Цель написания обзора. Анализ публикаций в поисковых системах о физиологии и патологии метаболизма железа, патогенезе анемии воспаления у пациентов в отделении реанимации и интенсивной терапии для определения показаний и противопоказаний для терапевтического вмешательства.

Методы. Проанализированы статьи в базах данных медицинской литературы Pubmed, Medline, EMBASE. Для стратегии поиска использовали слова: «анемия воспаления», «железо и инфекции», «анемия и сепсис», «свободный гемоглобин», «обмен железа» — в период с 1990 по 2018 г. включительно и доступные работы в отечественной (e-library) литературе. Использованы материалы ведущих мировых организаций: World Health Organization, Cochrane Reviews, WSACS, ARDS Clinical Trials Network, European Society of Intensive Care Medicine, European Society of Anesthesiologists, Socety of Critical Care Medicine.

Заключение. Анемия как симптом при критическом состоянии в первую очередь требует определения ее роли в генезе гипоксии. Это должно подтверждаться не только уровнем гемоглобина, как носителя кислорода, но и конкретными критериями гипоксии: анализом газов крови, оценки высоты зубца ST по данным ЭКГ и, конечно, уровня лактата крови (более 2 ммоль/л). Анемия же при сепсисе обусловлена внутрисосудистым гемолизом, а гипоферремия — это следствие природной компенсаторной защиты от возможной манифестации инфекции. Введение таким пациентам препаратов железа или донорской крови сопряжено с обеспечением доступа бактерий к железу. В условиях сепсиса и продолжающегося гемолиза целесообразно использование хелаторов, если выявлены высокий уровень ферритина, низкая концентрация гаптоглобина и трансферрина. Решения о переливании крови или введении препаратов железа должны быть индивидуализированы с учетом конкретных факторов пациента, а любые потенциальные преимущества терапии препаратами железа должны быть сбалансированы с риском побочных эффектов.

Ключевые слова: анемия воспаления, железо, метаболизм железа

Поступила: 24.12.2018

Принята к печати: 01.03.2019

Читать статью в PDF


Введение

Анеми́я (от др.-греч. ἀν- — приставка со значением отрицания + αἷμα — «кровь»), или малокровие, — группа клинико-гематологических синдромов, общим моментом для которых является снижение концентрации гемоглобина в крови, чаще при одновременном уменьшении числа эритроцитов (или общего объема эритроцитов). Термин «анемия» без уточнения не определяет конкретного заболевания, т. е. анемию следует считать одним из симптомов различных патологических состояний.

Анемия воспаления является наиболее распространенным гематологическим расстройством и рассматривается сегодня как неспецифическая анемия, которая может вызвать не только диагностические трудности, но и терапевтические проблемы, особенно у пациентов отделений реанимации и интенсивной терапии (ОРИТ). В обсервационном когортном исследовании CRIT был проведен анализ 4892 больных, которые находились в критическом состоянии в реанимационных отделениях [1, 2], где было показано, что анемия воспаления развивается у тяжелобольных в течение 30 дней. Средний уровень гемоглобина у тяжелобольных прогрессивно снижался за 30-дневный период, несмотря на переливание крови, и являлся независимым предиктором увеличения смертности и продолжительности пребывания у тяжелобольных пациентов [2].

В недавнем исследовании Joosten E., Lioen P. среди госпитализированных пожилых пациентов с анемией (191 человек) в 70 % случаев отмечалась анемия воспаления. Развитие анемии у 16 % больных было неразрывно связано с хронической почечной недостаточностью.

Но из числа всех больных с воспалительной анемией 71 % страдали острой инфекцией, 12 % — раком, 16 % — хронической инфекцией [3].

В классическом исследовании Cartwright G.E. было показано, что анемия воспаления — это анемия тяжелых пациентов, длительно находящихся в ОРИТ по различным причинам (политравма, сепсис, острые расстройства мозгового кровообращения, пневмония) и подвергающихся постоянной бактериальной агрессии. Анемия воспаления обычно легкой или средней степени тяжести, и эритроциты, как и уровень общего гемоглобина, не могут показать какие-либо стигмы дефицита железа, т. к. именно дефицит железа в данном случае отсутствует или часто несущественный, а в ряде случаев, напротив, выявляется высокий уровень железа [4].

Целью для написания настоящего обзора являлся анализ публикаций о физиологическом и патологическом метаболизме железа, патогенезе анемии воспаления, развивающейся у пациентов в ОРИТ, для определения возможных показаний и противопоказаний для терапевтического вмешательства. Проанализированы статьи в базах данных медицинской литературы Pubmed, Medline, EMBASE. Для стратегии поиска использовались запросы по ключевым словам: «анемия воспаления», «железо и инфекции», «анемия и сепсис», «свободный гемоглобин», «обмен железа» в период с 1990 по 2018 г. включительно и доступные работы в отечественной (e-library) литературе. Также использовались материалы ведущих мировых организаций: World Health Organization, Co- chrane Reviews, WSACS, ARDS Clinical Trials Network, Eu- ropean Society of Intensive Care Medicine, European Society of Anesthesiologists, Society of Critical Care Medicine.

Физиология метаболизма железа

Гемоглобин (от др.-греч. αἷμα — кровь + лат. globus — шар) (Hb или Hgb) — сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. Если слышишь слово «анемия», то следующее слово — «гемоглобин». Большой вклад в исследование структуры и функционирования гемоглобина внес Макс Фердинанд Перуц, получивший за это в 1962 г. Нобелевскую премию и показавший структуру гемоглобина, который является сложным белком класса хромопротеинов, т. е. в качестве простетической группы здесь выступает гем — порфириновое ядро, содержащее железо.

У здоровых людей количество железа в организме поддерживается в пределах 4–5 г (80–95 мг/кг у женщин и 120–125 мг/кг у мужчин) [5]. Сегодня хорошо изучены процессы поглощения и рециркуляции железа, которые обеспечивают ежедневную потребность в синтезе гемоглобина. Деградация стареющих эритроцитов с помощью селезеночных макрофагов составляет 90 % от общей переработки железа, чем обеспечиваются основные потребности в железе, а остальные 10 % поступают из пищевого рациона [6].

Из-за высокой токсичности общее количество железа в организме строго отрегулировано, что создает фактически закрытую систему. Универсальность железа для организма обусловлена его способностью активно участвовать в окислительно-восстановительных реакциях за счет перехода между Fe3+ и Fe2+ валентным состоянием [7], что позволяет ионам Fe2+ реагировать с пероксидами и образовывать разрушительные гидроксильные и липидные радикалы [8]. Поэтому гомеостаз железа жестко регулируется на клеточном, тканевом и системном уровнях [9].

В организме взрослого человека большая часть железа присутствует в клетках: 2,6 г (57 %) в гемоглобине эритроцитов, 0,4 г (9 %) в миоглобине, 1,5 г приходится на негемовые запасы — ферритин и трансферрин, гемосидерин. Принципиально, что у млекопитающих нет известных активных систем для выведения железа [10]. Выделение железа в организме человека практически отсутствует, не превышая 32–285 мкг с мочой и калом и посредством шелушения кожи. И наоборот, употребление железа из рациона млекопитающих строго регламентировано. Оно происходит в двенадцатиперстной кишке и только в двухвалентной форме (Fe2+). В пище железо может присутствовать в двух видах: (Fe3+) — окисная форма и (Fe2+), или закисная форма. Из поступающих с пищей ежедневно 10–20 мг железа абсорбируется только 1–2 мг, но у беременных абсорбция может достигать и 3–5 мг [10].

В проксимальном отделе двенадцатиперстной кишки железо связывается с белком-транспортером (DMT- 1). DMT-1 — это специальный белок-носитель, который переносит железо (Fe3+) через мембрану энтероцита в кровоток один раз, и на его синтез требуется 4–6 ч, по- этому при частом приеме препаратов железа адсорбция снижается, а количество железа в кишечнике, напротив увеличивается  [10].

Транспорт и депонирование железа осуществляются трансферрином (Fe3+) c помощью трансферринового рецептора и ферритином (Fe3+) [10]. В крови оно окисляется до Fe3+ церулоплазмином и присоединяется к апотрансферрину.  Трансферрин пиноцитируется клетками ретикулоэндотелиальной системы и оказывается внутри лизосом, где от него отщепляется железо и восстанавливается до Fe2+ эндогенными восстановителями: НАДН, аскорбатом, цистеином, глутатионом. Апотрансферрин выводится обратно в кровь, образуя свободный пул железа (или «транзиторный пул»), которое транспортируется в места синтеза железосодержащих белков (печень) либо попадает в так называемый «медленно обменивающийся пул» [10].

В сыворотке крови и лимфе железо полностью и прочно связано с белком (Fe3+), и общее его количество не превышает обычно 7 мг. Содержание свободного железа в различных средах организма не превышает 10−18 мкмоль, что можно рассматривать как нулевой уровень [11]. Степень связи столь тесна, что при достаточном синтезе трансферрина в печени исключается (даже теоретически) факт присутствия 1 атома железа в литре крови [11–12]. Константа связывания железа трансферрином составляет 1030, а количество свободного железа в равновесии с трансферрином — 6 × 10−9 мкмолей, что в 108 раз меньше, чем требуется для роста бактерий [11]. Свойства трансферрина тесно связаны с присутствием другого белка сыворотки — церулоплазмина, обладающего ферроксидазной активностью [13]. В окислительных реакциях с участием ионов Fe2+ церулоплазмин является основным антиоксидантом плазмы крови, или своеобразной «ловушкой» для активных форм кислорода [13]. Поэтому увеличение концентрации церулоплазмина приводит к усилению антиоксидантной защиты [10, 13].

Запасы железа наилучшим образом отражает ферритин, и сегодня он является одним из немногих маркеров расстройств обмена железа. Из ферритина железо может вернуться в свободный пул. Но для этого необходимо, чтобы внутрь ферритина проник восстановитель, способный восстановить Fe3+ из гидроокиси [10]. В форме Fe2+ оно выходит из ферритина и попадает в транзиторный пул только в кислой среде [10].

Регуляция железа в сыворотке крови осуществляется с участием ряда белков, гепсидина, церулоплазмина, ферритина, трансферрина, гаптоглобина, гемопексина, лактоферрина и других. Физиологическая роль присутствия указанных белков в сыворотке заключается в том, чтобы сводить до минимума количество свободного (ионизированного) Fe2+ железа, содержащегося как внутри клетки, так и во внеклеточных жидкостях [9]. Они всегда находятся в железодефицитном состоянии (Fe3+), и это имеет глубокий физиологический смысл. В клетках тканей железо сконцентрировано в митохондриях, где оно включено в состав ферментов цитохромов (Fe3+), ответственных за процессы тканевого дыхания [13].

Железо также включено в состав различных ферментов, сконцентрированных в многочисленных клетках, как крови, так и различных тканей. Клетки эритроидного ряда костного мозга, тучные клетки, макрофаги, нейтрофилы ретикулоэндотелиальной системы всегда находятся в только в восстановленном (Fe3+) состоянии [13].

Контроль за постоянным физиологическим гемолизом стареющих эритроцитов опять же осуществляет целый блок белков. Как отмечено в работе J.D. Belcher,

«…Несмотря на важность гема для аэробной жизни, организм делает все возможное, чтобы защитить себя от гема, который сбежал из своего нормального клеточного отсека. Внеклеточный и внутриклеточный механизмы защиты эволюционировали так, чтобы защитить организм от гема, создав гаптоглобин, гемопексин, альбумин, α1-микроглобулин, гемоксигеназу-1, ферритин, трансферрин и лактоферрин» [14]. На рис. 1 показано, что в процессе жизни нарушения гомеостаза железа связаны с различными патофизиологическими состояниями, которые включают анемии (iron deficiency) и перегрузки железа (iron overload). В частности, непрерывно возрастает накопление тканевого железа с возрастом (aging), которое играет важную роль при воспалении и инфекции (inflammation & infection), раковых (cancer), генетических (genetic disorders), сердечно-сосудистых (cardiovascular diseases) и нейродегенеративных заболеваниях (neurodegenerative diseases).

Рис. 1. Важность железа в патофизиологических условиях (пояснение в тексте). Адаптировано по Gozzelino R., Arosio P. [10]

Баланс железа жестко регулируется для предотвращения пагубных последствий, не столько его дефицита, сколько перегрузки железом. Гепсидин (или «антимикробный пептид», как он назывался первоначально) является ключевой фигурой в регуляции гомеостаза системного железа [15]. Он подавляет поглощение железа из кишечника и его освобождение из эритроцитов и макрофагов. Гепсидин изменяет общее количество железа, хранимого в организме, и регулирует доступность железа не только для эритропоэза, но и для бактерий [16]. Производство гепсидина в печени модулируется множественными физиологическими стимулами, включая загрузку железа, его блокаду при воспалении и эритропоэтическую активность при гипоксии [17, 18].

Таким образом, большинство авторов постулируют:

  • анемия при воспалении имеет место всегда, и это обусловлено наличием классических признаков воспаления (где ведущими являются отек, ишемия), приводящих к расстройствам микроциркуляции, гипоксии, ацидозу повреждению мембраны эритроцита;
  • метаболизм железа строго контролируется, что обусловлено его высоким восстановительно- окислительным потенциалом, его токсичностью для любых клеточных структур;
  • наличие свободного от связей железа (Fe2+) в организме исключается полностью, что обеспечивает некий вариант «стерильности» тканей и не позволяет манифестировать бактериальной агрессии;
  • железо всегда доступно только для основных биологических функций, это не позволяет железу проявлять его цитотоксические эффекты;
  • механизмов для экскреции железа в организме человека нет, и это общебиологическая тенденция для всех зависимых от кислорода живых существ.

Патологические аспекты метаболизма железа и их реализация в условиях воспаления

Самые тяжелые окислительные повреждения клеточных мембран генерируются только с участием железа в окислительно-восстановительных реакциях (реакция Фентона, Хабера—Вайса, Осипова) с продукцией гидроксильного и липидного радикалов. Как было показано во многих исследованиях, это является основной причиной запрограммированной гибели клеток и повреждения тканей, которое может быть повышено только за счет неправильной компартментализации этого металла, а не его общего накопления [19].

Метаболизм железа в условиях активации процессов свободнорадикального окисления

В условиях развития воспаления (ишемия, гипоксия, ацидоз, инфекция), массивного повреждения тканей, развития шока на уровне клетки создаются условия для реализации процессов свободнорадикального окисления (СРО). Ишемия, гипоксия и ацидоз индуцируют чрезмерный синтез свободных радикалов (О2 и Н2О), что при несостоятельности системы антиоксидантной защиты приводит к активации перекисного окисления липидов (ПОЛ) [10, 13]. Именно СРО и ПОЛ создают условия для повреждения клеточных мембран (в первую очередь эритроцитов и эндотелиоцитов) и мембран митохондрий [20, 21]. Гемолиз эритроцитов и выход свободного гемоглобина в кровоток, как и появление цитохромов в цитозоли клетки, способствует развитию реакций Фентона, Хабера—Вайса и Осипова даже в условиях минимального количества кислорода:

Fe 2+ + O → Fe 3+ + O 2 (реакция Фентона).

Дальнейшее превращение супероксидного радикала может пойти разными путями. Супероксид под действием супероксиддисмутазы (СОД) превращается в перекись водорода или разлагается нерадикальным путем под действием каталазы и глутатионпероксидазы [21]. Однако при взаимодействии О 2 с окисью азота образуется пероксинитрит (мощный вазоконстриктор), повреждающий эпителий и нарушающий регуляцию сосудистого тонуса и артериального давления [22]. Некоторые исследования указывают на факт инактивации СОД в очаге повреждения даже при сравнительно небольшом снижении уровня рН [21].

Во втором случае мощный гидроксильный ради- кал образуется при наличии в биологической системе (клетке) перекиси водорода и опять же Fe 2+:

Fe 2+ + H2O2 Fe 3+ + OH + OH· (реакция Хабера-Вайса).

Третий путь окислительного повреждения биомолекул связан с появлением новых  свободных радикалов в результате взаимодействия несвязанных ионов железа с органическими гидроперекисями:

Fe 2+ + LOOH → Fe 3+ + OH· + LO· (реакция Осипова).

Образующийся при этом липоксидрадикал (LO·) дает начало новым цепям окисления липидов [21].

Три перечисленные выше реакции являются универсальным физиологическим процессом, характерным для любого вида клеток и тканей [12]. При любом критическом состоянии универсальный процесс синтеза свободных радикалов принимает катастрофические размеры и скорости. Причиной тому является избыток ионов Fe 2+ [20].

Следует отметить, что трансферрин, лактоферрин и церулоплазмин являются белками острой фазы воспаления и способны быстро и значительно повышать свою концентрацию в результате нарушения гомеостаза при воспалении [23]. Авторы также отмечают, что снижение уровня сывороточного железа при развитии многих воспалительных  процессов объясняет существенное снижение концентрации трансферрина и, напротив, рост концентрации лактоферрина. Kruzel M.L. et al. отмечают важную роль лактоферрина в межклеточной кооперации фагоцитирующих клеток, что выражается в способности мононуклеарных фагоцитов поглощать лактоферрин. Это, в свою очередь, приводит к угнетению образования гидроксильного радикала и тем самым к защите клетки от аутопероксидации мембран [24].

Роль гемолиза и свободного гемоглобина при воспалении

Исследования многих авторов указывают на параллелизм между степенью сосудистой агрегации эритроцитов и тяжестью течения основного заболевания, будь то геморрагический или травматический шок или перитонит [25], что в дальнейшем приводит к полной закупорке капилляров, остановке капиллярного кровообращения и, естественно, к внутрисосудистому гемолизу эритроцитов [26].

Гемолиз приводит к высвобождению гемоглобина, а катаболизм гемоглобина продуцирует гем, который является высокоцитотоксическим прооксидантом [27]. В устойчивом состоянии белок-поглотитель гаптоглобин связывает гемоглобин, а гем катаболизируется ферментом гемоксигеназой-2 (НО-2). Но когда этот гомеостатический процесс перегружен (выраженный гемолиз или массивное повреждение тканей с выходом в кровоток миоглобина), свободный гем нейтрализуется гемопексином и деградирует до моноксида углерода, железа и биливердина, индуцируемого изоформой гемоксигеназы HO-1 [28]. Поэтому высокая исходная концентрация билирубина (как продукта метаболизма гема) отмечается у большинства пациентов с политравмой, с сепсисом и является следствием массивного гемолиза, сопряженного с высоким уровнем сывороточного железа [29, 30].

Роль гемолиза и свободного гемоглобина при реперфузии

Именно свободному гемоглобину принадлежит отдельная, если не основная, роль в инициации воспалительного каскада и развития эндотелиальной дисфункции [31]. За сутки система транспорта и депонирования железа может перенести и депонировать только от 50 до 98 мг железа [10]. Выход же большого количества свободного железа (свободный гемоглобин в условии ацидоза быстро окисляется до конечного этапа — Fe 2+) происходит при отсутствии должного кровотока и должного количества железосвязывающих и железотранспортирующих белков в локальном участке кровообращения [31–33]. Количество разрушенных эритроцитов можно представить, например, с учетом интенсивности кровообращения в кишечнике, протяженности капиллярного русла кишечника c постоянным наличием в капилляре как минимум 30–40 эритроцитов [34]. Недостаточность «трансферриновой емкости» способствует циркуляции свободного гемоглобина и ионов Fe 2+ в кровотоке (что подтверждается увеличением концентрации свободного гемоглобина в период реперфузии), поступлению в микроциркуляторное русло печени, кишечника и поджелудочной железы, где железо оказывает прямое токсическое действие на мембраны клеток [31–33], свидетельствующих в первую очередь о тяжести тканевой гипоксии [35].

Роль гемолиза и свободного гемоглобина при сепсисе

Свободный гемоглобин все больше и больше играет центральную роль в патогенезе сепсиса, будучи мощным предиктором исхода пациента. Поэтому ряд авторов подчеркивает необходимость продолжения изучения механизмов гемолиза, вызванного сепсисом, с целью определения возможных терапевтических принципов. Сегодня уже известны наиболее важные и ранние триггеры гемолиза при сепсисе. Это сочетание ряда факторов: реакция активации комплемента; диссеминированная внутрисосудистая коагуляция; остановка потока крови в капиллярах; ограничение глюкозы в эритроцитах; изменение свойств мембраны красных кровяных клеток; наличие гемолитических патогенов и апоптоз эритроцитов [36].

В исследовании Brauckmann S. et al. проверили гипотезу центральной роли свободного гемоглобина в патогенезе сепсиса и выяснили, что как токсичный липополисахарид (LPS), так и нетоксичный (RS-LPS) вызывают гемолиз с помощью прямых мембранных эффектов. При этом гемолиз не зависит от системы комплемента и активации толл зависимых рецепторов (TLR-4). Авторами было установлено, что инкубация эритроцитов с LPS приводит к выраженному и зависимому, как по времени, так и по концентрации, повышению уровня свободного гемоглобина и активности лактатдегидрогеназы как в цельной крови, так и в промытых эритроцитах. Изменение целостности и уменьшение жесткости мембран эритроцитов были обусловлены уменьшением их осмотического сопротивления [37].

Говоря о роли железа в развитии сепсиса, нужно отметить, что все бактерии нуждаются в железе для своего развития [38]. Более того, существует строгая корреляция между доступностью ионов железа и вирулентностью микроорганизма [38–41]. Патогенные микробы эволюционировали и создали специализированные механизмы для получения железа от хозяина во время инфекции (некое «железное пиратство»). Железо и содержащие его белки представляют прямой интерес для всех патогенных бактерий, и в данном случае снижение общего гемоглобина без наличия активного кровотечения является следствием конкуренции бактерий с макроорганизмом за ионы железа [42]. В связи с этим вполне закономерно, что снижение концентраций сывороточного железа, ферритина и уменьшение степени насыщения трансферрина при сепсисе трактуется авторами как проявление защитного природного механизма [38–41].

В исследовании Yamaguchi M. было обнаружено, что S. pneumoniaе уклоняются от агрессивного влияния антибиотиков, нейтрофилов и h3O2 в присутствии эритроцитов человека. Общепризнано, что вторжение в эритроциты обеспечивает бактериальные патогены рядом преимуществ, включая защиту от иммунной системы, снижение эффективности лечения антибиотиками и питательную ценность. Таким образом, эритроциты предоставляют приют для S. pneumoniaе. Кроме того, вполне возможно, считают авторы, что эта способность к вторжению связана с фактом — пенициллин G не убивает S. pneumoniaе после того, как они вторглись в эритроциты [43].

В этом же случае ферритин, депонированный в кишечнике и вышедший в кровоток с целью связывания железа, в условиях ацидоза и при воздействии супероксидного радикала меняет свою валентность (Fe 3+ → Fe 2+) и становится «легкой добычей» для бактерий [13]. Доступность железа для бактерий обеспечивается за счет собственных гемолитических свойств [39] или за счет активации процессов СРО, повреждения активными радикалами кислорода мембран эритроцитов, последующего гемолиза, выхода свободного гемоглобина и его метаболизма по пути «гем → гемин → Fe 2+». Данная ситуация усугубляется тем, что в очаге воспаления отсутствуют нормальный кровоток и должное количество железосвязывающих белков, за исключением лактоферрина, сконцентрированного в нейтрофилах [39].

Компенсаторные механизмы при анемии воспаления

Острая или хроническая анемия приводит к включению компенсаторных реакций, налагающих дополнительную нагрузку на тяжелобольных пациентов, многие из которых имеют ранее существовавшие сердечно-легочные заболевания. Да, острое изоволемическое уменьшение концентрации гемоглобина ниже 50 г/л среди здоровых людей приводит к прогрессивным повышениям «цены» сердечной деятельности в виде снижения доставки и потребления кислорода и снижения сердечного индекса, но без доказательств гипоксии тканей [44]. В исследовании Weiskopf R.B. у добровольцев до и после удаления 900 мл крови измеряли сердечно-сосудистые параметры, артериальное и смешанное венозное содержание кислорода, насыщение оксигемоглобином и уровень лактата в артериальной крови. Оказалось, что острое изоволемическое снижение концентрации Hb в крови до 50 г/л у здоровых людей не дает признаков недостаточной доставки кислорода, что подтверждается отсутствием изменений концентрации кислорода в артериальной и венозной крови и уровня лактата в плазме. Анализ мониторинга показывает, что при данной концентрации гемоглобина в этой здоровой популяции ишемия миокарда будет происходить крайне нечасто [44].

Даже более тяжелая анемия может быть «терпима» в хроническом ее варианте (анемия воспаления) вследствие изменений на клеточном уровне, обусловленных транскрипцией генов и увеличением гипоксического выживания [45]. У пациентов с хронической обструктивной болезнью легких есть более высокая минутная вентиляция при наличии анемии [46] и, наоборот, меньшая вентиляция — у пациентов с полицитемией во время физических упражнений [47]. Однако в какой степени эти впечатляющие компенсаторные изменения могут произойти у тяжелобольных пациентов, неизвестно.

Причины анемии у больных отделений реанимации и интенсивной терапии

Как было описано более чем 60 лет назад, заметное снижение концентрации сывороточного железа в организме человека и у собак отмечалось уже в течение первых нескольких дней после развития системной инфекции или воспаления [48, 49].

Сегодня роль железа в интенсивности бактериального роста и увеличение риска заражения при введении препаратов железа являются биологически обоснованным и доказанным фактом [50–54]. Развитие гипоферремии наблюдалось у мышей с экспериментальной менингококковой инфекцией или воспалением — в ответ на введение разных агрессивных сред [55–58]. Гипоферремия, вероятно, способствует защите организма-хозяина от инфекции за счет уменьшения доступности железа для микробов [59, 60], т. к. обычно большая часть железа, поставляемого в плазму (около 20–25 мг/сут), утилизируется макрофагами, участвующими в переработке старых эритроцитов. И только 1–2 мг/сут поступает при абсорбции железа из двенадцатиперстной кишки, с дополнительными малыми количествами, получаемыми из железа, хранящегося в гепатоцитах [61]. Оказалось, что воспаление или инфекция приводили к задержке появления радиоактивного железа не только в микроциркуляции, но и в костном мозге. И напротив, накопление железа было отмечено в макрофагах (ретикулоэндотелиальная система), как у пациентов, так и у экспериментальных животных [62, 63].

В исследовании Spitalnik S.L. было отмечено, что экстраваскулярный гемолиз, обусловленный поглощением эритроцитов клетками мононуклеарной системы фагоцитов (например, клетками Купфера в печени и селезеночными макрофагами), является особенно важным механизмом для очистки как нормально стареющих эритроцитов, так и патологически поврежденных. Макрофаги, как пишут авторы, поглощают эритроциты через сигналы «найди меня» и сигналы «съешь меня» [64].

Исходя из этих представлений, авторы разработали «железную гипотезу» (рис. 2), которая постулирует, что общая концепция роли железа при воспалении связана с быстрым внесосудистым гемолизом, происходящим в результате любого повреждающего процесса. В здоровых условиях (steady stat) единственными эритроцитами, удаляемыми из циркуляции, являются те, которые проходят через нормальное старение (~1 % всех эритроцитов в день). При патологическом фагоцитозе (pathological phagocitosis) метаболизм большого количества гемоглобина из «проглоченных» эритроцитов быстро повышает внутриклеточные «свободные» уровни железа (голубые круги, рис. 2) в лабильном внутриклеточном бассейне. Через сигнальный канал трансдукции усиливаются выработка и секреция провоспалительных цитокинов (inflammatory cytokines; зеленые круги, рис. 2), что приводит к выраженности синдрома системного воспалительного ответа (exacerbation of SIRS). Кроме того, избыточное «свободное» железо экспортируется из клетки через ферропортин (голубой цилиндр), или физиологический канал экспорта железа. Если же количество экспортируемого железа превышает связывающую способность трансферрина, то синтезируется специальный трансферрин (non-transferrin bound iron — NTBI) — неспособный связать железо, что вызывает окислительный стресс (oxidative demage) и усиливает пролиферацию патогена (infection risk) [64]. В моделях животных было показано, что размножение бактерий может быть управляемым процессом достаточности для них железа и, напротив, подавления размножения путем железного «голода» [65]. Кроме того, железо-перегруженные мыши имели тенденцию к развитию более тяжелых кишечных инфекций [66].

Рис. 2. Схематическое представление «железной гипотезы» (пояснение в тексте). Адаптировано по Noyes W.D., Bothwell T.H., Finch C.A. [64]

LIP — лабильный пул железа; NTBI — трансферрин, не способный связать железо; ССВР — синдром системной воспалительной реакции

Главным «режиссером» анемии воспаления оказался гепсидин (или «антимикробный пептид»). Именно с его подачи при манифестации воспаления происходит угнетение синтеза эритроцитов с достаточным уровнем гемоглобина, что приводит к развитию анемии воспаления (рис. 3). Анемия воспаления характеризуется недостаточной выработкой эритроцитов в условиях низкого уровня сывороточного железа и низкой связывающей способности железа (т. е. низкого уровня трансферрина), несмотря на сохраненные или даже увеличенные запасы железа в макрофагах и в костном мозге.

Рис. 3. Гепсидин в ответ на воспаление обеспечивает гипоферремию путем блокировки главных путей поступления железа в плазму (главным образом железа от селезеночных и печеночных макрофагов, но также и железа, адсорбируемого из двенадцатиперстной кишки). Длительная гипоферремия ограничивает доступность железа для синтеза гемоглобина и эритропоэза, вызывая анемию воспаления. Адаптировано по Butt A.T., Thomas M.S. [40]

Только гепсидин тормозит недостаточное поступление железа для синтеза молодых эритроцитов [40]. Воспаление стимулирует повышение выработки железорегулирующего пептида — гепцидина в гепатоцитах и синтез провоспалительного цитокина интерлейкина-6 (ИЛ-6), что подавляет эритропоэз. Гепсидин уменьшает поставку железа от макрофагов к «новорожденным» эритроцитам. Это ухудшает развитие всего эритроидного ростка костного мозга и приводит к анемии. Когда же воспаление разрешается, уровни гепсидина и ИЛ-6 уменьшаются, что позволяет железу быть экспортированным от макрофагов к эритроцитам и повышать эритропоэз [40]. Анемия воспаления, без сомнения, является признаком критического заболевания и возникает у 95 % пациентов, находящихся в ОРИТ [67, 68]. Причиной анемии у этих пациентов часто является многофакторность, включая кровопотерю, низкое потребление питательных веществ, а также ятрогенные факторы, такие как гемодилюция и частый забор крови для лабораторного исследования. По мнению Sihler K.C и Napolitano L.M., анемия воспаления характеризуется снижением у пациентов выработки эритроцитов, сокращением продолжительности жизни красных клеток крови, что является следствием изменений в метаболизме железа, которые оказывают прямое влияние на эритропоэз [69].

Но дефицита железа при этом в организме нет! Так, по данным M. Piagnerelli, несмотря на одинаковый общий анализ крови (лейкоциты, лейкоцитарная формула) в 1-й день пациенты с сепсисом имели достоверные более низкие концентрации в сыворотке железа, трансферрина, коэффициент насыщения трансферрина, но высокие концентрации ферритина, основного показателя железного депо, чем пациенты без септического процесса [70]. Эти изменения были связаны с более низким количеством ретикулоцитов. Примечательно, что в 1-й день уровень С-реактивного белка отмечался выше у септических, чем у не септических больных и при этом был напрямую связан с высокими концентрациями ферритина и обратно коррелировал с концентрацией трансферрина и коэффициентом насыщения трансферрина. Через 3 дня концентрации в сыворотке железа и трансферрина были идентичны как у больных с сепсисом, так и у не септических и не изменялись до 5 суток пребывания в ОРИТ [70]. Авторы также заявляют, что выявленные изменения являются следствием расстройств в метаболизме железа, которые оказывают прямое влияние на эритропоэз.

Экспериментальные исследования среди добровольцев, которым вводили умеренные дозы липополисахарида, показали примерно 50%-е уменьшение сывороточного железа уже через 24 ч [61]. В другой группе добровольцев введение в течение 3 ч ИЛ-6 сопровождалось падением уровня железа в сыворотке крови в среднем на 30 % уже спустя 2 ч [71]. Сегодня известен факт влияния воспалительных цитокинов на обмен железа, что может препятствовать дифференциации эритроидных предшественников и вообще, по мнению Weiss G., может сократить продолжительность жизни зрелых эритроцитов. Так, например, инкубация эритроцитов здоровых доноров плазмы с кровью от пациентов с септическим шоком привела к увеличению объема эритроцитов, т. е. к изменениям, которые могут сократить выживаемость эритроцитов за счет угрозы гемолиза [72].

Наличие почечной недостаточности также может усугубить последствия воспаления, и этот факт снова связан с метаболизмом железа [73]. Уремия способствует накоплению активных форм кислорода и окислению мембранных белков эритроцитов. Считается, что эти изменения не только ускоряют разрушение эритроцитов, но и способствуют прямому повреждению тканей [74]. Например, по данным Brookhart M.A. et al., результаты клинических данных от 117 050 пациентов, находящихся на хроническом диализе, выявили связи между дозой железа и манифестацией инфекции. Это не явилось для авторов неожиданным, т. к. был выявлен риск инфекции, связанный с различными методами дозирования железа у пациентов, проходящих хронический гемодиализ [75]. Хотя относительный риск был мал, но абсолютный риск — большой, предполагающий, что введение болюсом препаратов железа может потенцировать дополнительные 25 случаев госпитализированных инфекций в год на 1000 диализных пациентов. Авторы также наблюдали увеличенный риск инфекции, связанный с ежемесячным приемом железа в дозе бо́ль- шей, чем 200 мг в сутки [75, 76].

Как показали  данные  некоторых  исследований, у большинства пациентов с анемией воспаления ферритин сыворотки имеет нормальный уровень или высокий, что отражает стимулирование синтеза ферритина как воспалением, так и нагрузкой железом макрофагов [59]. Давно известно, что для провокации латентного пиелонефрита рекомендуется введение 50 мг железа, а по истечении 3 ч собирается моча и исследуется содержание лейкоцитов. Проба считается положительной, если за 1 ч выделение лейкоцитов с мочой превышает 19 000 клеток и увеличивается на 100 % по сравнению с исходными данными. Это все написано в доступной литературе  [77].

По данным О.Ф. Лыковой и соавт., в ликворе у больных с гнойным менингитом регистрируется резкое (в 220 раз!) увеличение концентрации лактоферрина. Индивидуальные колебания варьировали в пределах, превышавших данные контроля в 790 раз [78]! В норме лактоферрин в ликворе вообще отсутствует!

Как правило, пациенты ОРИТ, особенно септические пациенты, сталкиваются с катаболическим состоянием, которое снижает  потребление  железа и увеличивает его выделение путем разрушения эритроцитов и других клеточных структур в различных тканях. И этот эффект дополнительно усиливается путем проведения частых переливаний крови [79]. Результаты исследования F. Tacke показывают, что параметры метаболизма железа, особенно насыщение трансферрина, которые отражают доступность железа в сыворотке, являются сильными предсказателями исхода у пациентов в ОРИТ. Сывороточное железо очень тесно коррелирует с летальным исходом, и полученные новые результаты должны инициировать будущие клинические исследования, оценивающие полезность железохелатирующей терапии при критических заболеваниях и сепсисе [79].

Заслуживает внимания исследование Lan Р. et al., куда были включены данные больных с диагнозом сепсиса по критериям «Сепсис-3» — 1891 человек, из них у 324 пациентов был диагностирован септический шок. Авторы с помощью ROC-анализа показали, что более высокий квартиль сывороточного железа был связан с увеличением 90-дневной смертности в этой большой когорте пациентов с сепсисом [80].

Варианты регуляции и оценка эффективности вмешательства в метаболизм железа при критических состояниях
Трансфузии крови

Конечно, переливание крови! Но как тогда ответить на вопрос: когда переливать? Уровень гемоглобина становится причиной и показанием (и даже конечной точкой) для переливания независимо от клинического состояния пациента. Конкретный уровень гемоглобина — это всего лишь лабораторное значение, склонное к погрешности при измерении [81]. Однако совершен- но ясно, что нет универсального уровня содержания гемоглобина или гематокритного триггера в диапазоне 60–100 г/л, однозначно указывающего на необходимость гемотрансфузии. Кроме того, при одном и том же уровне гемоглобина у некоторых пациентов по совокупности клинико-лабораторных параметров и течения основного заболевания можно констатировать различную тяжесть общего состояния или органной дисфункции. Не каждому пациенту необходимо переливание крови на уровне гемоглобина 70 г/ л, в то время как некоторым пациентам может потребоваться переливание крови и при более высоких уровнях гемоглобина [82].

В литературе можно найти публикации, где озвучиваются опасения, что острая доставка железа, либо в растворимой форме, либо в структуре эритроцита, предрасполагает пациентов к новым инфекциям, преобразует «доброкачественную» бактериальную колонизацию в вирулентную инфекцию или усиливает вирулентность уже существующих инфекций. Особенно это касается переливания эритроцитов длительного периода хранения. Названия публикаций говорят сами за себя: Youssef L.A., Spitalnik S.L. Iron: a double-edged sword — «Железо — обоюдоострый меч» [83]. Необходимо учитывать не только уровень гемоглобина, но и симптомы тканевой гипоксии (стенокардия, когнитивная дисфункция, диагностированная с помощью нейропсихологических тестов), отмечают Weiskopf R.B. et al. [84]. Vallet B., Robin E., Lebuffe G. обращают внимание на увеличение уровня лактата в крови [85] и снижение сатурации в смешанной венозной крови (ScvO2  < 70 %) или электро кардиографические изменения (подъем интервала ST на электрокардиограмме), указывающие, по мнению Vincent J.L., на миокардиальную ишемию [86].

В экспериментальной работе Hod E.A. et al. [87] по- казали, что переливание эритроцитов после хранения (более 5 суток) оказывает вредное воздействие, которое опосредуется железом и воспалением [87]. Между тем вполне вероятно, что данный факт характерен не только для экспериментальных животных, но и для пациентов в критическом состоянии. Дело в том, что, во-первых, у мышей и людей существует связь между уровнем внутриклеточного железа в макрофагах и уровнем цитокинов, выделяемых в ответ на различные воспалительные стимулы [87, 88]. Например, при гемохроматозе макрофаги снижают уровень внутриклеточного железа, что приводит к снижению продукции цитокинов, и наоборот, увеличение внутриклеточного железа способно усугубить синдром системного воспалительного ответа, что может привести к пагубным последствиям [89]. Во-вторых, увеличение циркуляции железа увеличивает пролиферацию некоторых патогенов [90, 91].

Тем не менее с момента публикации многоцентрового рандомизированного контролируемого клинического исследования (TRICC) Hebert et al. в 1999 г. [92], где были представлены доказательства того, что концентрации гемоглобина в диапазоне 70–90 г/л относительно хорошо переносятся большинством пациентов ОРИТ, других исследований, опровергающих данные эти, нет. А возрастающие требования к рестриктивной, ограничительной тактике переливания крови, наоборот, присутствуют [93].

Кроме уровня гемоглобина, есть другие косвенные показатели оксигенации, такие как снижение венозной сатурации кислорода (ScvO2), что также должно рассматриваться в качестве триггера для переливания крови.

Это возвращает нас к вопросу о том, что мы лечим — число гемоглобина или болезнь у конкретного больного?

Препараты железа

Имеющиеся клинические рекомендации по внутривенной терапии железом у критических пациентов с анемией воспаления на данный момент подвергаются критическим замечаниям и широко обсуждаются, потенцируя новые исследования с целью определения эффективности препаратов.

Так, результаты исследования Litton Е. могут только указать путь будущих исследований, где звучит призыв взвесить все факторы за и против [94]. В этом небольшом, но двойном слепом рандомизированном клиническом исследовании у реанимационных пациентов без подтвержденного сепсиса введение внутривенного железа не уменьшило требования к количеству трансфузий, которое рассматривалось как основной исход. Тем не менее при выписке наблюдалось статистически значимое, хотя и скромное, но повышение уровня гемоглобина (107 г/л в группе, где вводились препараты железа, vs 100 г/л в группе, где использовалось плацебо), которое рассматривалось в качестве вторичного результата. Хотя уровень внутрибольничной инфекции был довольно высок в обеих группах (28,6 и 22,9 % в железе vs плацебо соответственно), разница по этому показателю не была статистически значимой [94].

В целом исследования по эффективности лечения препаратами железа у больных в критическом состоянии показали противоречивые результаты [95, 96]. Вызывает сомнение дозирование препаратов железа. В работе Brookhart M.A. et al. авторы наблюдали риск инфекции, связанный с внутривенным ежемесячным введением железа в дозе, превышающей 200 мг [75]. В результате возникает вопрос: если из принятого внутрь железа усваивается только максимум 5 мг, то может ли усвоиться 200 мг введенных внутривенно? Ведь это железо не включается в метаболизм — он  вообще исключает подобные объемы поступления. При физиологическом гемолизе трансферрин всей крови может связать одномоментно от 7 до 14,5 мг железа. Но время полураспада комплекса трансферрин–железо составляет 70–140 мин, что позволяет утилизировать 2,1–4,5 мг железа в час, а за сутки максимально — до 100 мг [12].

Недавний обзор Litton Е. et al. в гетерогенной группе критически больных пациентов, включивший в общей сложности 665 пациентов, из которых 368 получили железо различными путями и 297 не получили железа (плацебо), показал, что трудно повлиять на гепсидин [97]. Авторы одних исследований также не нашли достоверных доказательств того, что добавление железа (либо внутривенное, либо энтеральное) для лечения анемии у тяжелобольных пациентов снижает требования к переливанию крови или увеличивает концентрацию гемоглобина. Авторы же других публикаций отмечают, что в настоящее время полученные данные не поддерживают какую-либо конкретную стратегию планового введения железа для лечения пациентов с анемией в критическом состоянии [97–100].

Эритропоэтин

Эффективность эритропоэтина при анемии воспаления сегодня также часто обсуждается, однако единой позиции не сформировалось. Как следует из рис. 3, длительная гипоферремия ограничивает доступность железа для синтеза гемоглобина и эритропоэза из-за активной регуляции гепсидином всего метаболизма желе- за при наличии воспаления [40, 56, 59]. При взвешивании за и против многими специалистами делается вывод об отсутствии убедительных доказательств в поддержку концепций общего применения эритропоэтина у пациентов с системным воспалением [101].

Например, в исследовании van Iperen et al. введение высокой дозы эритропоэтина (300 МЕ/кг) через день в течение 9 дней вызвало только увеличение ретикулоцитов, в то время как концентрация гемоглобина оставалась неизменной [102], и не оказало существенного влияния на общую смертность, продолжительность пребывания в стационаре [103]. Авторы полагают, что эритропоэтин действует медленно, вызывая увеличение ретикулоцитов в крови через 3–4 дня. Дозы эритропоэтина, используемые для пациентов с сепсисом, очень высоки (40 000 МЕ 3 раза в неделю) и заметно удорожают терапию [104]. Только при крайне высокой концентрации эритропоэтина (от 36 000 до 160 000 МЕ) он может преодолеть тормозящее действие гепсидина, провоспалительных цитокинов и оказать стимулирующие влияние на пролиферацию эритроцитарных предшественников у больных в критическом состоянии [105].

Перспективы в лечении анемии воспаления

В плане потенциальных перспектив коррекции анемии воспаления хотелось бы обратить внимание на три субстанции.

Лактоферрин

Оказалось, что вполне вероятен и клинически удобен не вариант введения препаратов железа или трансфузий крови, а путь с учетом природного механизма метаболизма железа в организме. Наверное, излишне приводить пример, кто болеет чаще — дети на искусственном вскармливании или на грудном. Конечно, болеют меньше на грудном вскармливании, т. к. в грудном молоке мало железа, но много лактоферрина, а в коровьем — наоборот, железа много, а лактоферрина мало. Поэтому интерес к лактоферрину с целью его использования при воспалении сегодня высок, но не для лечения анемии, а для противостояния инфекции [106]. На основании результатов предварительных клинических наблюдений авторы предполагают благотворное влияние добавки лактоферрина при некротическом энтероколите у новорожденных с весом при рождении ниже 1250 г [106]. Иммуномодулирующий характер этого белка проистекает из его уникальной способности «осмысливать» иммунный активационный статус организма и действовать соответственно ситуации [107, 108]. Это приводит к ослаблению патологического повреждения за счет иммунных функций лактоферрина.

Гаптоглобин

Гаптоглобин связывает  внеклеточный  гемоглобин с высоким сродством и поэтому может потенциально уменьшить наличие железа и его оксидативную деятельность [40]. Как показали недавние исследования Remy K.E., гаптоглобин связывает свободный гемоглобин, компартментирует его молекулу во внутрисосудистое пространство, быстро очищает из циркуляции и уменьшает количество внутрисосудистого железа, доступного для бактерий [109]. Сегодня гаптоглобин даже предложен как маркер сепсиса, утверждающий его наличие при низких концентрациях гаптоглобина в плазме пациентов [110].

По мнению Immenschuh S., противоокислительные протеины, такие как гаптоглобин и гемопексин, надежно связывают и нейтрализуют внеклеточный гемоглобин и свободный гем в плазме соответственно. Гемоксигеназа ферментативно деградирует внутриклеточный гем для получения железа, моноксида углерода и биливердина, который преобразуется в билирубин биливердиновой редуктазой. Гаптоглобин и гемопексин могут быть вариантом потенциальной гем-нейтрализующей терапии [111].

Хелатор железа DIBI

Антибиотикорезистентность некоторых возбудителей — сегодня достаточно актуальная тема и имеет тесную связь с генераций активных форм кислорода, которые являются важной частью воспалительного каскада при сепсисе за счет генерации радикалов. Это может быть подавлено или предотвращено с помощью хелаторов железа. В не- давнем исследовании Thorburn T. et al. было изучено влияние нового хелатора DIBI — в сочетании с антибиотиками или на фоне стандартного лечения перитонита при экспериментальном сепсисе [112]. Авторы наблюдали снижение адгезии лейкоцитов на 55 % после введения DIBI и снижение на 40 % — после лечения имипенемом по сравнению с нелечеными животными (p < 0,05). Дальнейшее снижение количества ядерных лейкоцитов в венулах наблюдалось после комбинированного лечения с DIBI и имипенемом (66 %). Снижение количества колоний бактерий с 2200 до 100 колоний отмечалось в комбинированной группе, где использовали DIBI и имипенем. Число бактерий в перитонеальной жидкости также было меньше в группе с имипенемом, и в группе комбинации DIBI, и при сравнении с нелечеными животными [112].

DIBI, железо-хелатный полимер, по данным Ang M.T.C. et al., оказался сильным ингибитором для S. aureus — независимо от их источника (человека, крупного рогатого скота или собак) и от их характеристик устойчивости к антибиотикам. У больных с инфекцией метициллин-устойчивого золотистого стафилококка (MRSA) была сходная чувствительность. DIBI также подавлял воспаление, связанное с S. aureus, при местном применении на раны кожи или при интраназальном введении. Наблюдалось зависимое от дозы DIBI снижение бактериальной популяции и выраженности воспаления, связанного с раневой инфекцией [113].

Заключение

Как следует из данных обзора, анемия как симптом и анемия воспаления не всегда имеют единую природу и являются спутниками недостаточного количества железа, требуя переливания эритроцитарной массы или введения препаратов железа для увеличения уровня гемоглобина. Анемия как симптом при критическом состоянии вследствие тяжелой травмы в первую очередь требует определения ее роли в генезе гипоксии. Это должно подтверждаться не уровнем гемоглобина (свидетелем кровопотери) как носителя кислорода, а конкретными критериями гипоксии: анализом газов крови с обязательным определением ScvO2 (< 70 %), оценки высоты зубца ST на ЭКГ и, конечно, уровня лактата крови (более 2 ммоль/л). При наличии таких показаний нужна коррекция газотранспортной функции за счет дополнительных носителей кислорода в лице эритроцитов, но только при низком уровне гемоглобина. При этом нужен анализ метаболизма железа с выявлением возможной причины его недостатка.

Анемия же при сепсисе обусловлена внутрисосудистым гемолизом, а имеющаяся гипоферремия не является показателем истощения запасов железа в организме, это скорее следствие природной компенсаторной защиты от возможной манифестации инфекции. Введение таким пациентам препаратов железа или донорской крови сопряжено с обеспечением доступа бактерий к железу. Оценить запасы железа в организме можно посредством определения концентрации ферритина, рецепторов трансферрина и его насыщения. В условиях сепсиса и продолжающегося гемолиза целесообразно использование хелаторов, если выявлен высокий уровень ферритина, низкая концентрация гаптоглобина и трансферрина, тем более в случаях панрезистентной бактериальной флоры. У пациентов в критическом состоянии с анемией воспаления может и не быть эритропоэтического ответа на введение железа, а чаще и не бывает, потому что есть природный барьер, защищающий от манифестации инфекции.

Пациенты в ОРИТ очень «неоднородны» и по-разному реагируют на одно и то же вмешательство. Как таковые решения о переливании крови или введении препаратов железа должны быть индивидуализированы с учетом конкретных факторов пациента, таких как возраст и сопутствующие патологии, физиологические переменные, адаптация к анемии, оценка параметров обмена железа, и только в последнюю очередь — значение гемоглобина. Любые потенциальные преимущества терапии препаратами железа должны быть сбалансированы с риском побочных эффектов.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов. Орлов Ю.П. — литературный поиск, подготовка обзора литературы; Говорова Н.В. — подготовка обзора литературы, редактирование обзора литературы; Ночная Ю.А. — литературный поиск, оформление в соответствии с правилами журнала; Руднов В.А. — подготовка концепции обзора литературы, редактирование обзора литературы.

ORCID авторов

Орлов Ю.П. — 0000-0002-6747-998X

Говорова Н.В. — 0000-0002-0495-902X

Ночная Ю.А. — 0000-0003-4204-4979Х

Руднов В.А. — 0000-0003-0830-786X


Литература
  1. Poggiali E., Migone De Amicis M., Motta I. Anemia of chronic disease: a unique defect of iron recycling for many different chronic diseases. Eur. J. Intern. Med. 2014; 25(1): 12–7. DOI: 10.1111/ggi.12371:10.1016/j.ejim
  2. Corwin H.L., Gettinger A., Pearl R.G., et al. The CRIT Study: Anemia and blood transfusion in the critically ill-current clinical practice in the United States. Crit. Care Med. 2004;32(1): 39–52. DOI: 10.1097/01.CCM.0000104112.34142.79
  3. Joosten E., Lioen P. Iron deficiency anemia and anemia of chronic disease in geriatric hospitalized patients: How frequent are comorbidities as an additional explanation for the anemia? Geriatr Gerontol Int. 2015; 15(8): 931–935. DOI: 10.1111/ggi.12371
  4. Cartwright G.E. The anemia of chronic disorders. Semin Hematol. 1966; 3: 351–375.
  5. Zhang D.L., Ghosh M.C., Rouault T.A. The physiological functions of iron regulatory proteins in iron homeostasis — an update. Front. Pharmacol. 2014; 5: 124. DOI: 10.3389/fphar.2014.00124
  6. Andrews N.C., Schmidt P.J. Iron homeostasis. Annu Rev. Physiol. 2007; 69: 69–85. DOI: 10.1146/annurev.physiol.69.031905.164337
  7. Pantopoulos K., Porwal S.K., Tartakoff A., Devireddy L. Mechanisms of mammalian iron homeostasis. Send to Biochemistry. 2012; 51(29): 5705–5724. DOI: 10.1021/bi300752r
  8. Schaer D.J, Buehler P.W., Alayash A.I, et al. Positive Iron Balance in Chronic Kidney Disease: How Much is Too Much and How to Tell? Send to Am. J. Nephrol. 2018; 47(2): 72–83. DOI: 10.1159/000486968
  9. Philpott C.C., Jadhav S. The ins and outs of iron: Escorting iron through the mammalian cytosol. Free Radic Biol. Med. 2018; S0891–5849(18)32167–1. DOI: 10.1016/j.freeradbiomed.2018.10.411
  10. Gozzelino R., Arosio P. Iron Homeostasis in Health and Disease. Int. J. Mol. Sci. 2016; 17(1): 130. DOI: 10.3390/ijms17010130
  11. Bullen J.J. The signifi cance of iron in infection. Rev. Infect. Dis. 1981; 3: 1127–1138.
  12. Зайчик А.Ш., Чурилов Л.П. Основы патохимии. Учебник для студентов медицинских вузов. СПб.: ЭЛБИ-СПб. 2001: 688.
  13. [Zajchik A.Sh., CHurilov L.P. Osnovy patohimii. Uchebnik dlya studentov medicinskih vuzov). SPb.: EHLBI-SPb. 2001: 688. (In Russ)]
  14. Abbaspour N., Hurrell R., Kelishadi R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014; 19(2): 164–174. PMCID PMC3999603
  15. Belcher J.D., Beckman J.D., Balla G., Balla J., Vercellotti G. Heme degradation and vascular injury. DOI: 10.1089/ars.2009.2822
  16. Park C.H., Valore E.V., Waring A.J., Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 2001; 276: 7806–7810. DOI: 10.1074/jbc.M008922200
  17. Krause A., Neitz S., Mägert H.J., et al. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 2000; 480: 147–150. DOI.org/10.1016/S0014–5793(00)01920–7
  18. Finberg K.E. Unraveling mechanisms regulating systemic iron homeostasis. Hematology Am. Soc. Hematol. Educ. Program. 2011; 2011:532–537. DOI: 10.1182/asheducation-2011.1.532
  19. Martins A.C., Almeida J.I., Lima I.S., et al. Iron Metabolism and the Inflammatory Response. DOI: 10.1002/iub.1635
  20. Madua Anazoeze J., Ughasoro Maduka D. Anaemia of Chronic Disease: An In-Depth Review. DOI: 10.1159/000452104
  21. Kell D.B. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med. Genomics. 2009; 2: 2. DOI: 10.1186/1755-8794-2-2
  22. Wardman P., Candeias L.P. Fenton chemistry: An introduction. Rad. Res. 1996; 145: 523–531.
  23. Kehrer J.P. The Haber-Weiss reaction and mechanisms of toxicity. Toxicology. 2000; 149: 43–50. PMID 10963860
  24. Nadadur S.S., Srirama K., Mudipalli A. Iron transport & homeostasis mechanisms: their role in health & disease. Indian J. Med. Res. 2008;128(4): 533–544. PMID 19 106445
  25. Kruzel M.L., Zimecki M., Actor J.K. Lactoferrin in a Context of Inflammation-Induced Pathology. Front Immunol. 2017; 8: 1438. DOI: 10.3389/fimmu.
  26. Dutra F.F., Bozza M.T. Heme on innate immunity and inflammation. Front Pharmacol. 2014; 5: 115. DOI: 10.3389/fphar.
  27. Belcher J.D., Chen C., Nguyen J., et al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood. 2014: 123377–390. DOI: 10.1182/blood-2013-04-495887
  28. Gozzelino R., Jeney V., Soares M.P. Mechanisms of cell protection by heme oxygenase-1. Annu Rev. Pharmacol Toxicol. 2010; 50: 323–354. DOI: 10.1146/annurev.pharmtox.010909.105600
  29. Larsen R., Gozzelino R., Jeney V., et al. A central role for free heme in the pathogenesis of severe sepsis. Sci Transl. Med. 2010; 2(51): 51ra71. DOI: 10.1126/scitranslmed.3001118
  30. Иванов А.В., Долгих В.Т., Лукач В.Н., Орлов Ю.П. Критические состояния как логическая и закономерная цепь событий в нарушении метаболизма железа (обобщение экспериментальных исследований). Биомедицинская химия. 2013; 59(6): 700–709.
  31. [Ivanov A.V., Dolgih V.T., Lukach V.N., Orlov Yu.P. Kriticheskie sostoyaniya kak logicheskaya i zakonomernaya cepʼ sobytij v narushenii metabolizma zheleza (obobshchenie ehksperimentalʼnyh issledovanij). Biomedicinskaya himiya. 2013; 59(6): 700–709. (In Russ)]
  32. Vinchi F., Tolosano E. Therapeutic approaches to limit hemolysis-driven endothelial dysfunction: scavenging free heme to preserve vasculature homeostasis. Oxid Med. Cell. Longev. 2013; 2013: 396527. DOI: 10.1155/2013/396527
  33. Li S., Fujino M., Takahara T., Li X.K. Protective role of heme oxygenase-1 in fatty liver ischemia-reperfusion injury. Med. Mol. Morphol. 2018; Aug 31. DOI: 10.1007/s00795-018-0204-0
  34. Zhang F.H., Sun Y.H., Fan K.L., et al. Protective effects of heme oxygenase-1 against severe acute pancreatitis via inhibition of tumor necrosis factor-α and augmentation of interleukin-10. BMC Gastroenterol. 2017; 17(1): 100. DOI: 10.1186/s12876-017-0651-4
  35. Орлов Ю.П., Лукач В.Н., Долгих В.Т., Соболева Е.Л., Иванова А.М. Роль ионов железа в нарушении микроциркуляции и реологических свойств крови при ишемии/реперфузии в эксперименте. Вестник анестезиологии и реаниматологии. 2012; 9(3): 51–54.
  36. [Orlov Yu.P., Lukach V.N., Dolgih V.T., Soboleva E.L., Ivanova A.M. Rolʼ ionov zheleza v narushenii mikrocirkulyacii i reologicheskih svojstv krovi pri ishemii/reperfuzii v ehksperimente. Vestnik anesteziologii i reanimatologii. 2012; 9(3): 51–54. (In Russ)]
  37. Мчедлишвили Г.И. Гемореология в системе микроциркуляции: ее специфика и практическое значение. Тромбоз, гемостаз и реология. 2002; 4(12): 18–24.
  38. [Mchedlishvili G.I. Gemoreologiya v sisteme mikrocirkulyacii: ee specifika i prakticheskoe znachenie. Tromboz, gemostaz i reologiya. 2002; 4(12): 18–24. (In Russ)]
  39. Шидловский А.С., Салтанов А.И. Варианты механизмов изменения активности трансаминаз: клиническая интерпретация. Вестник интенсивной терапии, 2015, 1: 22–32.
  40. [Shidlovskij A.S., Saltanov A.I. Varianty mekhanizmov izmeneniya aktivnosti transaminaz: klinicheskaya interpretaciya. Vestnik intensivnoj terapii, 2015, 1: 22–32. (In Russ)]
  41. Effenberger-Neidnicht K., Hartmann M. Mechanisms of Hemolysis During Sepsis. Send to Inflammation. 2018; 41(5): 1569–1581. DOI: 10.1007/s10753-018-0810-y
  42. Brauckmann S., Effenberger-Neidnicht K., de Groot H., et al. Lipopolysaccharide-induced hemolysis: Evidence for direct membrane interactions. Sci Rep. 2016; 6: 35508. DOI: 10.1038/srep35508
  43. Gomes A.C., Moreira A.C., Mesquita G., Gomes M.S. Modulation of Iron Metabolism in Response to Infection: Twists for All Tastes. Send to Pharmaceuticals (Basel). 2018; 11(3): E84. DOI: 10.3390/ph21030084
  44. Butt A.T., Thomas M.S. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front. Cell. Infect. Microbiol. 2017; 7: 460. DOI: 10.3389/fcimb.2017.00460
  45. Ganz T. Iron and infection. Int. J. Hematol. 2018; 107(1): 7–15. DOI: 10.1007/s12185-017-2366-2. Epub 2017 Nov 16
  46. Barber M.F., Elde N.C. Buried treasure: evolutionary perspectives on microbial iron piracy. Trends Genet. 2015; 31: 627–36. DOI: 10.1016/j.tig.2015.09.001
  47. Бухарин О.В., Усвяцов Б.Я., Щуплова Е.А. Антигемоглобиновая активность бактерий при взаимодействии с эритроцитами и ее роль в патогенезе анемии. Журнал микробиологии, эпидемиологии и иммунобиологии. 2011; 4: 25–29.
  48. [Buharin O.V., Usvyacov B.Ya., Shchuplova E.A. Antigemoglobinovaya aktivnostʼ bakterij pri vzaimodejstvii s ehritrocitami i ee rolʼ v patogeneze anemii. Zhurnal mikrobiologii, ehpidemiologii i immunobiologii. 2011; 4: 25–29. (In Russ)]
  49. Yamaguchi M., Terao Y., Mori-Yamaguchi Y., et al. Streptococcus pneumoniae invades erythrocytes and utilizes them to evade human innate immunity. PLoS One. 2013; 8(10): e77282. DOI: 10.1371/journal.pone.0077282
  50. Weiskopf R.B., Viele M.K., Feiner J., et al. Human cardiovascular and metabolic response to acute, severe isovolemic anemia. JAMA. 1998; 279(3): 217–221.
  51. Semenza G.L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda). 2009;24: 97–106. DOI: 10.1152/physiol.00045.2008
  52. Schönhofer B., Wenzel M., Geibel M., Köhler D. Blood transfusion and lung function in chronically anemic patients with severe chronic obstructive pulmonary disease. Crit. Care Med. 1998; 26: 1824–1828.
  53. Winslow R.M., Monge C.C., Brown E.G., et al. Effects of hemodilution on O2 transport in high-altitude polycythemia. J. Appl. Physiol. 1985; 59: 1495–1502.
  54. Cartwright G.E., Lauritsen M.A., Jones P.J., et al. The anemia of infection. I. Hypoferremia, hepercupremia, and alteration in porphyrin metabolism in patient. J. Clin Invest. 1946; 25: 65–80.
  55. Cartwright G.E., Lauritsen M.A., Humphreys S., et al. The anemia of infection. II. The experimental production of Hypoferremia and anemia in dogs. J. Clin. Invest. 1946; 25: 81–86.
  56. Besarab A., Frinak S., Yee J. An indistinct balance: The safety and efficacy of parenteral iron therapy. J. Am. Soc. Nephrol. 1999; 10: 2029–2043.
  57. Cieri E. Does iron cause bacterial infections in patients with end stage renal disease? ANNA J. 1999; 26: 591–596.
  58. Fishbane S. Review of issues relating to iron and infection. Am. J. Kidney Dis. 1999; 34(Suppl. 2): S47–S52.
  59. Hoen B. Iron and infection: Clinical experience. Am. J. Kidney Dis. 1999; 34(Suppl. 2): S30–S34.
  60. Patruta S.I., Hörl W.H. Iron and infection. Kidney Int. Suppl. 1999; 69: S125–S130.
  61. Holbein B.E. Iron-controlled infection with Neisseria meningitidis in mice. Infect Immun. 1980; 29: 886–891.
  62. Beaumier D.L., Caldwell M.A., Holbein B.E. Inflammation triggers hypoferremia and de novo synthesis of serum transferrin and ceruloplasmin in mice. Infect Immun. 1984; 46: 489–494.
  63. Bertini R., Bianchi M., Erroi A., et al. Dexamethasone modulation of in vivo effects of endotoxin, tumor necrosis factor, and interleukin-1 on liver cytochrome P-450, plasma fibrinogen, and serum iron. J. Leukoc. Biol. 1989; 46: 254–262.
  64. Schaible U.E., Collins H.L., Priem F., Kaufmann S.H. Correction of the iron overload defect in beta-2-microglobulin knockout mice by lactoferrin abolishes their increased susceptibility to tuberculosis. J. Exp. Med. 2002; 196: 1507–1513. PMCID PMC2194267
  65. Ganz T., Nemeth E. Iron sequestration and anemia of inflammation. Semin. Hematol. 2009; 46:387–393. DOI: 10.1053/j.seminhematol.2009.06.001
  66. Holbein B.E. Enhancement of Neisseria meningitidis infection in mice by addition of iron bound to transferrin. Infect Immun. 1981; 34: 120–125.
  67. Kemna E., Pickkers P., Nemeth E., van der Hoeven H., Swinkels D. Time-course analysis of hepcidin, serum iron, and plasma cytokine levels in humans injected with LPS. Blood. 2005; 106: 1864–1866. DOI: 10.1182/blood-2005-03-1159
  68. Fillet G., Cook J.D., Finch C.A. Storage iron kinetics. VII. A biologic model for reticuloendothelial iron transport. J. Clin. Invest. 1974; 53: 1527–1533.
  69. Noyes W.D., Bothwell T.H., Finch C.A. The role of the reticulo-endothelial cell in iron metabolism. Br. J. Haematol. 1960; 6: 43–55.
  70. Spitalnik S.L. Stored RBC Transfusions: Iron, Inflammation, Immunity, Infection 2013 Emily Cooley Lecture. Transfusion. 2014; 54(10): 2365–2371. DOI: 10.1111/trf.12848
  71. Freidank H.M., Billing H., Wiedmann-Al-Ahmad M. Influence of iron restriction on Chlamydia pneumoniae and C. trachomatis. Journal of medical microbiology. 2001; 50: 223–227. DOI: 10.1099/0022-1317-50-3-223
  72. Nairz M, et al. Genetic and Dietary Iron Overload Differentially Affect the Course of Salmonella Typhimurium Infection. Front. Cell. Infect. Microbiol. 2017; 7: 110. DOI: 10.3389/fcimb.2017.00110
  73. Prakash D. Anemia in the ICU: anemia of chronic disease versus anemia of acute illness. Crit. Care Clin. 2012; 28: 333–343. DOI: 10.1016/j.ccc.2012.04.012
  74. Pieracci F.M., Barie P.S. Diagnosis and management of iron-related anemias in critical illness. Crit. Care Med. 2006; 34: 1898–1905. DOI: 10.1097/01.CCM.0000220495.10510.C1
  75. Sihler K.C., Napolitano L.M. Anemia of inflammation in critically ill patients. J. Intensive Care Med. 2008; 23: 295–302. DOI: 10.1177/0885066608320836
  76. Piagnerelli M., Cotton F., Herpain A., et al. Time course of iron metabolism in critically ill patients. Acta Clin. Belg. 2013; 68(1): 22–27. DOI: 10.2143/ACB.68.1.2062715
  77. Nemeth E., Rivera S., Gabayan V., et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Invest. 2004; 113: 1271–1276. DOI: 10.1172/JCI20945
  78. Weiss G., Goodnough L.T. Anemia of chronic disease. N. Engl. J. Med. 2005; 352(10): 1011–1023. DOI: 10.1056/NEJMra041809
  79. Dinkla S., van Eijk L.T., Fuchs B., et al. Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane. BBA Clin. 2016; 5: 186–192. DOI: 10.1016/j.bbacli.2016.03.007
  80. Georgatzakou H.T., Antonelou M.H., Papassideri I.S., Kriebardis A.G. Red blood cell abnormalities and the pathogenesis of anemia in end-stage renal disease. Proteomics Clin. Appl. 2016; 10(8): 778–790. DOI: 10.1002/prca.201500127
  81. Brookhart M.A., Freburger J.K., Ellis A.R., et al. Infection Risk with Bolus versus Maintenance Iron Supplementation in Hemodialysis Patients. J. Am. Soc. Nephrol. 2013; 24(7): 1151–1158. DOI: 10.1681/ASN.2012121164
  82. Collins A.J., Ebben J., Ma J.Z., Xia H. Iron dosing patterns and mortality [Abstract] J. Am.Soc. Nephrol. 1998; 9: 250A.
  83. Кремлинг Х., Лутцайер В., Хайнтц Р. Гинекологическая урология и нефрология: пер. с нем. М.: Медицина, 1985.
  84. [Kremling H., Lutcajer V., Hajntc R. Ginekologicheskaya urologiya i nefrologiya: per. s nem. M.: Medicina, 1985. (In Russ)]
  85. Лыкова О.Ф., Захарова Е.В., Конышева Т.В., Хохлова З.А. Содержание лактоферрина в сыворотке крови и ликворе больных менингитом. Журнал микробиологии эпидемиологии и иммунобиологии. 2007; 2: 80–84.
  86. [Lykova O.F., Zaharova E.V., Konysheva T.V., Hohlova Z.A. Soderzhanie laktoferrina v syvorotke krovi i likvore bolʼnyh meningitom. Zhurnal mikrobiologii ehpidemiologii i immunobiologii. 2007; 2: 80–84. (In Russ)]
  87. Tacke F., Nuraldeen R., Koch A., et al. Iron Parameters Determine the Prognosis of Critically Ill Patients. Crit. Care Med. 2016; 44(6): 1049–1058. DOI: 10.1097/CCM.0000000000001607
  88. Lan P., Pan K.H., Wang S.J., et al. High Serum Iron level is Associated with Increased Mortality in Patients with Sepsis. Sci Rep. 2018; 8(1): 11072. DOI: 10.1038/s41598-018-29353-2
  89. Giraud B., Frasca D., Debaene B., et al. Comparison of haemoglobin measurement methods in the operating theatre. Br. J. Anaesth. 2013; 111: 946–54. DOI: 10.1093/bja/aet252
  90. Lelubre C., Vincent J.L. Red blood cell transfusion in the critically ill patient. Ann. Intensive Care. 2011; 1: 43. DOI: 10.1186/2110-5820-1-43
  91. Youssef L.A., Spitalnik S.L. Iron: a double-edged sword. Transfusion. 2017; 57(10): 2293–2297. DOI: 10.1111/trf.14296
  92. Weiskopf R.B., Kramer J.H., Viele M., et al. Acute severe isovolemic anemia impairs cognitive function and memory in humans. Anesthesiology. 2000; 92: 1646–1652.
  93. Vallet B., Robin E., Lebuffe G. Venous oxygen saturation as a physiologic transfusion trigger. Crit. Care. 2010; 14: 213. DOI: 10.1186/cc8854
  94. Yalavatti G.S., DeBacker D., Vincent J.L. Assessment of cardiac index in anemic patients. Chest. 2000; 118: 782–787.
  95. Hod E.A., Zhang N., Sokol S.A., et al. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood. 2010; 115(21): 4284–42892. DOI: 10.1182/blood-2009-10-245001
  96. Wang L., Johnson E.E., Shi H.N., et al. Attenuated inflammatory responses in hemochromatosis reveal a role for iron in the regulation of macrophage cytokine translation. J. Immunol. 2008; 181(4): 2723–2731. PMC 2561261
  97. Nixon A.M., Neely E., Simpson I.A., Connor J.R. The role of HFE genotype in macrophage phenotype. J. Neuroinflammation. 2018; 15(1): 30. DOI: 10.1186/s12974-018-1057-0.
  98. Gordeuk V.R., Ballou S., Lozanski G., Brittenham G.M. Decreased concentrations of tumor necrosis factor-alpha in supernatants of monocytes from homozygotes for hereditary hemochromatosis. Blood. 1992; 79(7): 1855–1860.
  99. von Bonsdorff L., Sahlstedt L., Ebeling F., et al. Apotransferrin administration prevents growth of Staphylococcus epidermidis in serum of stem cell transplant patients by binding of free iron. FEMS Immunol. Med. Microbiol. 2003; 37(1): 45–51. DOI: 10.1016/S0928–8244(03)00109–3
  100. Hebert P.C., Wells G., Blajchman M.A., et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. N. Engl. J. Med. 1999; 340: 409–417.
  101. García-Roa M., Del Carmen Vicente-Ayuso M., Bobes A.M., et al. Review Red blood cell storage time and transfusion: current practice, concerns and future perspectives. Blood Transfus. 2017; 15(3): 222–231. DOI: 10.2450/2017.0345–16
  102. Litton E., Baker S., Erber W.N., et al. Intravenous iron or placebo for anaemia in intensive care: the IRONMAN multicentre randomized blinded trial: A randomized trial of IV iron in critical illness. Intensive Care Med. 2016; 42(11): 1715–1722. DOI: 10.1007/s00134-016-4465-6
  103. Garrido-Martín P., Nassar-Mansur M.I., de la Llana-Ducrós R., et al. The effect of intravenous and oral iron administration on perioperative anaemia and transfusion requirements in patients undergoing elective cardiac surgery: a randomized clinical trial. Interact Cardiovasc Thorac Surg. 2012; 15(6): 1013–1038; DOI: 10.1093/icvts/ivs344
  104. Pieracci F.M., Henderson P., Rodney J.R., et al. Randomized, double-blind, placebo-controlled trial of effects of enteral iron supplementation on anemia and risk of infection during surgical critical illness. Surg. Infect. (Larchmt). 2009; 10(1): 9–19. DOI: 10.1089/sur.2008.043
  105. Shah A., Roy N.B., McKechnie S., et al. Iron supplementation to treat anaemia in adult critical care patients: a systematic review and meta-analysis. Crit Care. 2016; 20: 306. DOI: 10.1186/s13054-016-1486-z
  106. Litton E., Xiao J., Ho K.M. Safety and efficacy on intravenous iron therapy in reducing requirement for allogeneic blood transfusion: a systematic review and meta-analysis of randomised clinical trials. BMJ. 2013; 347: f4822. DOI: 10.1136/bmj.f4822
  107. Pasricha S.R., Atkinson S.A., Armitage A.E., et al. Expression of the Iron Hormone Hepcidin Distinguishes Different Types of Anemia in African Children. Sci Transl. Med. 2014; 6: 235re3. DOI: 10.1126/scitranslmed.3008249
  108. Bregman D.B., Morris D., Koch T.A., et al. Hepcidin levels predict nonresponsiveness to oral iron therapy in patients with iron deficiency anaemia. Am. J. Hematol. 2013; 88: 97–101. DOI: 10.1002/ajh.23354
  109. Jelkmanna I., Jelkmannb W. Impact of Erythropoietin on Intensive Care Unit Patients. Transfus Med Hemother. 2013; 40(5): 310–318. DOI: 10.1159/000354128
  110. van Iperen C.E., Gaillard C.A., Kraaijenhagen R.J., et al. Response of erythropoiesis and iron metabolism to recombinant human erythropoietin in intensive care unit patients. Crit. Care Med. 2000; 28(8): 2773–2778.
  111. Vincent J.L., Spapen H.D., Creteur J., et al. Pharmacokinetics and pharmacodynamics of once-weekly subcutaneous epoetin alfa in critically ill patients: results of a randomized, double-blind, placebo-controlled trial. Crit. Care Med. 2006;34(6): 1661–1667. DOI: 10.1097/01.CCM.0000217919.22155.85
  112. Georgopoulos D., Matamis D., Routsi C., et al. Recombinant human erythropoietin therapy in critically ill patients: a dose-response study. Crit Care. 2005; 9(5): R508–R515. DOI: 10.1186/cc3786
  113. Zarychanski R., Turgeon A.F., McIntyre L., Fergusson D.A. Erythropoietin-receptor agonists in critically ill patients: a meta-analysis of randomized controlled trials. CMAJ. 2007; 177(7): 725–734. DOI: 10.1503/cmaj.071055
  114. Pammi M., Suresh G. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2017; 6: CD007137. DOI: 10.1002/14651858.CD007137.pub5
  115. Lauterbach R., Kamińska E., Michalski P., Lauterbach J.P. Lactoferrin — a glycoprotein of great therapeutic potentials. Dev. Period. Med. 2016; 20(2): 118–125.
  116. Kruzel M.L., Zimecki M., Actor J.K. Lactoferrin in a Context of Inflammation-Induced Pathology. Front. Immunol. 2017; 8: 1438. DOI: 10.3389/fimmu.2017.01438
  117. Remy K.E., Cortés-Puch I., Solomon S.B., et al. Haptoglobin improves shock, lung injury, and survival in canine pneumonia. JCI Insight. 2018; 3(18). DOI: 10.1172/jci.insight.123013
  118. Kelly B.J., Lautenbach E., Nachamkin I., et al. Combined biomarkers discriminate a low likelihood of bacterial infection among surgical intensive care unit patients with suspected sepsis. Diagn. Microbiol. Infect. Dis. 2016; 85(1): 109–115. DOI: 10.1016/j.diagmicrobio.2016.01.003
  119. Immenschuh S., Vijayan V., Janciauskiene S., Gueler F. Heme as a Target for Therapeutic Interventions. Front. Pharmacol. 2017; 8: 146. DOI: 10.3389/fphar.2017.00146
  120. Thorburn T., Aali M., Kostek L., et al. Anti-inflammatory effects of a novel iron chelator, DIBI, in experimental sepsis. Clin. Hemorheol. Microcirc. 2017; 67(3–4): 241–250. DOI: 10.3233/CH-179205
  121. Ang M.T.C., Gumbau-Brisa R., Allan D.S., et al. A 3-hydroxypyridin-4-one chelator iron-binding polymer with enhanced antimicrobial activity. Medchemcomm. 2018; 9(7): 1206–1212. DOI: 10.1039/c8md00192h

Что можно узнать из обычного анализа крови

Общий объем крови составляет в среднем у взрослого человека 4-6 литров. На плазму из них приходится около 55 %, на долю эритроцитов 44%. В одном кубическом миллиметре крови содержится около 3,7-5 000 000 эритроцитов (в пересчете на литр 3,7-5х1012), количество эритроцитов — один из первых показателей крови.

Второй определяемый показатель — гемоглобин (Hb), он находится в эритроците и осуществляет перенос кислорода в ткани и углекислого газа в обратном направлении. Средние нормы Hb – 115-160 г/л. Снижение количества эритроцитов и гемоглобина – это, как раз, то состояние, которое именуется анемией. Значительное снижение количества эритроцитов в 4-5 раз может возникать при лейкозе и метастазах злокачественных опухолей. Повышение числа эритроцитов (эритроцитоз) может быть связано с заболеванием системы крови, а может быть следствием кислородного голодания тканей, например, при врожденных пороках сердца, при легочных заболеваниях, при курении.

Гематокрит (Ht) определяет соотношение объема плазмы и форменных элементов крови, составляет в среднем 36-54%.

Цветовой показатель (ЦП) показывает относительное содержание гемоглобина в эритроците. Нормальные его значения 0,86- 1,05.

Ретикулоциты (Rt) – это новообразованные эритроциты. Их норма 0,5-0,15% общего числа эритроцитов. Повышение их количества может наблюдаться при кровопотере, при лечении анемии (как критерий правильного лечения). Снижение числа ретикулоцитов может наблюдаться при анемиях, при приеме цитостатических препаратов, лучевой болезни.

СОЭ (скорость оседания эритроцитов)
Норма 1-15 мм/час. Повышение СОЭ может указывать на различные острые и хронические воспалительные процессы, а может также встречаться при инфаркте миокарда, опухолях, после кровопотерь, оперативных вмешательств, при пониженном количестве эритроцитов в крови. Особенно активно она возрастает при заболеваниях крови, злокачественных новообразованиях, хроническом гепатите, циррозе печени, туберкулезе и других заболеваниях. Понижение может быть при вирусных гепатитах, желтухах, приеме салицилатов, хлорида кальция.

Тромбоциты (Tr)
Основная функция этих элементов крови – участие в свертывании крови. Нормальное их количество 200-400х109/л. Повышение количества Tr может быть при различных заболеваниях, связанных с нарушением образования тромбоцитов, при хронических заболеваниях, таких как: ревматоидный артрит, туберкулез, саркоидоз, колит, энтерит. А также при острых заболеваниях: кровотечении, анемии, при ожоге, кровопотере, травме мышц и др. В норме повышение количества Tr может встречаться у спортсменов и людей, занятых тяжелым физическим трудом. Снижение числа Tr наблюдается при заболеваниях крови, алкоголизме, как возможная реакция на лекарства.

Лейкоциты
Их нормальное количество – 4-9 х 109/л. Повышение числа лейкоцитов может быть физиологическим, т.е. характерным для здорового человека, например, после приема пищи (до 10-12х109), после физической работы, приема горячих и холодных ванн, в период беременности, родов, в предменструальный период. Патологическое повышение числа L может быть при различных воспалительных процессах, при инфарктах различных органов (миокарда, легких, селезенки, почек), при обширных ожогах, злокачественных заболеваниях, при заболеваниях системы крови, обширных кровопотерях и других процессах. Понижение числа L может быть при заболеваниях селезенки, воздействии облучения, приеме некоторых лекарственных препаратов, при заболеваниях щитовидной железы, при ряде инфекционных заболеваний в т.ч. при краснухе, кори, гриппе, вирусном гепатите и др.

Лейкоциты в процентном соотношении подразделяются на: базофилы (0,5-1%), эозинофилы (0,5-5%), нейтрофилы (палочкоядерные 1-6%, сегментоядерные -47-72%), лимфоциты (19-37%), моноциты (3-11%).

Основная функция нейтрофильных гранулоцитов — обнаружить, захватить и переварить чужеродный материал. Повышение их числа может быть при острых воспалительных заболеваниях, интоксикации, инфаркте миокарда и др. Снижение их количества отмечается при анемиях, вирусных инфекциях.

Эозинофилы
Повышение числа эозинофилов может быть при аллергических реакциях, бронхиальной астме, гельминтозах, опухолях, скарлатине, приеме некоторых лекарств и др.

Базофилы
Основная их функция – участие в иммунологических реакциях. Повышение их количества встречается редко.

Моноциты
Циркулируют в крови, а затем переходят в ткани, превращаясь в макрофаги. Повышенное количество моноцитов характерно для туберкулеза, сифилиса, бруцеллеза, протозойных и вирусных заболеваний (краснуха, скарлатина, паротит, мононуклеоз).

Лимфоциты
Повышение количества лимфоцитов наблюдается при коклюше, инфекционном мононуклеозе, ветрянке, краснухе при заболеваниях системы крови, бронхиальной астме, тиреотоксикозе, туберкулезе, при приеме наркотиков, диабете и др.

Гемоглобин и гематокрит — клинические методы

Определение

Гемоглобин (Hb) — это белок, содержащийся в красных кровяных тельцах, который отвечает за доставку кислорода к тканям. Чтобы обеспечить адекватную оксигенацию тканей, необходимо поддерживать достаточный уровень гемоглобина. Количество гемоглобина в цельной крови выражается в граммах на децилитр (г / дл). Нормальный уровень гемоглобина для мужчин составляет от 14 до 18 г / дл; что для женщин составляет от 12 до 16 г / дл. При низком уровне гемоглобина у больного анемия .Эритроцитоз — следствие слишком большого количества эритроцитов; это приводит к повышению уровня гемоглобина выше нормы.

Гематокрит измеряет объем эритроцитов по сравнению с общим объемом крови (эритроциты и плазма). Нормальный гематокрит для мужчин составляет от 40 до 54%; для женщин — от 36 до 48%. Это значение может быть определено непосредственно центрифугированием микрогематокрита или рассчитано косвенно. Автоматические счетчики клеток рассчитывают гематокрит путем умножения количества эритроцитов (в миллионах / мм 3 ) на средний объем клеток (MCV, в фемтолитрах).При таком анализе он подвержен капризам, присущим получению точного измерения MCV (см. Главу 152).

И гемоглобин, и гематокрит основаны на цельной крови и, следовательно, зависят от объема плазмы. Если у пациента сильное обезвоживание, гемоглобин и гематокрит будут выше, чем если бы у пациента была нормоволемия; если у пациента имеется перегрузка жидкостью, они будут ниже их фактического уровня. Чтобы оценить истинную массу эритроцитов, необходимо провести независимую радионуклидную оценку эритроцитов и плазмы (по 51 Cr и 131 I соответственно).

Методика

Гематокрит

Если гематокрит необходимо определить быстро, как это часто бывает при кровотечении у пациента, может потребоваться измерить гематокрит напрямую, без использования автоматического счетчика. Необходимые материалы:

  • Ланцеты

  • Салфетки для приготовления спирта

  • Марлевые прокладки

  • Пробирки для микрогематокрита (гепаринизированные)

  • Герметик («Seal-Ease», «Crit-Seal» и т. Д.)

    4
  • Центрифуга для микрогематокрита

  • Считыватель микрогематокрита

  • Если требуется венепункция: жгут, шприц, пробирка с антикоагулянтом (ЭДТА, цитрат)

Для гематокрита, полученного с помощью пальца , протрите подушечку четвертого пальца. не доминирующая рука с салфеткой для приготовления спирта.Убедитесь, что область высыхает. Проколите кончик пальца ланцетом. Поместите гематокритную пробирку рядом с местом разреза и позвольте крови течь через капиллярное действие в гематокритную пробирку до тех пор, пока она не заполнится на две трети до трех четвертей или до заранее обозначенной отметки на пробирке. По возможности избегайте «доения» пальца; это вызывает экспрессию тканевых жидкостей и может привести к ложно низкому гематокриту. Всегда заполняйте не менее трех пробирок. Для гематокритов, полученных с помощью венепункции , отбирают образец крови в пробирку, содержащую антикоагулянт, и хорошо перемешивают.Окуните гематокритную пробирку в кровь и дайте крови подняться до желаемого уровня от двух третей до трех четвертей. Поскольку клетки крови естественным образом осаждаются, необходимо предварительное тщательное перемешивание крови в пробирке для обеспечения точных показаний.

После очистки внешней поверхности пробирок гематокрита от избытка крови, медленно переворачивайте пробирку так, чтобы кровь не доходила до нижнего конца пробирки. Закройте дно трубки герметиком. Убедитесь, что в столбе крови мало или совсем нет воздуха.Если уплотнение неполное, во время центрифугирования произойдет утечка и будут получены ложные показания.

Поместите пробирки в центрифугу для микрогематокрита и вращайте 3-5 минут на высокой скорости. Более короткий отжим не приведет к полному осаждению.

Используя гематокрит-ридер или любой линейчатый прибор, измерьте длину столбца с упакованными эритроцитами и разделите ее на длину всего столбца крови (клеток и плазмы), как в. Чтобы получить гематокрит, умножьте это число на 100%.Усредните все показания, полученные из различных микрогематокритных пробирок.

Рисунок 151.1

Пробирка для микрогематокрита после осаждения. Гематокрит — это отношение упакованных клеток к общему объему.

Пример: Если размер колонки эритроцитов составляет 20 мм, а колонки цельной крови — 50 мм, гематокрит составляет 20/50 = 0,4 или (0,4 × 100%) = 40%.

Гемоглобин

Определение гемоглобина обычно выполняется автоматическим счетчиком клеток из пробирки с хорошо перемешанной ЭДТА-антикоагулированной кровью, наполненной до заданного уровня.В этом анализе все формы гемоглобинов превращаются в окрашенный белок цианометгемоглобин и измеряются колориметром. Неадекватный образец из-за недостаточного объема или недостаточной антикоагуляции может дать ложные показания. Если необходимо быстро определить уровень анемии, гематокрит — более простой и удобный тест.

Электрофорез гемоглобина

Электрофорез гемоглобина измеряет подвижность гемоглобина в электрическом поле; поэтому он может обнаруживать только те аномалии гемоглобина, которые изменяют заряд.Электрофоретическая подвижность зависит от pH и среды, в которой проводится тест. В скрининговых тестах обычно используется гемолизат антикоагулированной крови, подвергнутой электрофорезу на ацетате целлюлозы при pH от 8,6 до 8,8. При необходимости проводят дополнительный электрофорез в крахмальном геле при pH от 6,2 до 6,8. На этом этапе работу обычно выполняет специализированная лаборатория.

Электрофорез гемоглобина не позволяет быстро оценить ситуации, когда есть нейтральные аминокислотные замены или где гемоглобин нормален, но составляющие цепи не образуются в равных количествах (талассемии).Диагноз альфа-талассемии от легкой до умеренной степени не может быть поставлен с помощью электрофореза гемоглобина; Диагноз бета-талассемии может быть сделан на основании увеличения Hb A 2 .

Стандартный электрофорез выглядел бы так.

Рисунок 151.2

Стандартный электрофорез гемоглобина (ацетат целлюлозы, pH 8,6).

Фундаментальная наука

Молекулярная масса гемоглобина составляет примерно 64 500 дальтон. Hb состоит из двух пар разнородных цепей, α и β, каждая из которых определяется определенной аминокислотной последовательностью и включает железосодержащую гемовую группу.Два α – β димера объединяются, образуя тетрамер гемоглобина. Это обеспечивает взаимодействие «гем-гем», необходимое для эффективного поглощения кислорода (дезоксигемоглобин → оксигемоглобин) и доставки (оксигемоглобин → дезоксигемоглобин). Сродство гемоглобина к кислороду является функцией этого взаимодействия гем-гем и pH (эффект Бора) и является мерой того, сколько молекул гемоглобина имеет кислород, связанный с ними для данного уровня напряжения кислорода. У нормального человека основным гемоглобином является Hb A, составляющий примерно 97% от общего гемоглобина.Существуют вариации и / или аминокислотные замены в этих цепях. Некоторые из них вредны для нормальной функции гемоглобина, тогда как другие могут иметь относительно нормальное сродство к кислороду и стабильность. Гемоглобины, содержащие различные типы цепей, составляют остаток гемоглобина в эритроцитах (α 2 δ 2 = Hb A 2 примерно 2%; α 2 γ 2 = Hb F примерно 1% ).

Замены в аминокислотной последовательности нормального гемоглобина могут привести к образованию гемоглобинов, которые имеют различные взаимодействия субъединиц и различное сродство к кислороду.Например, замена шестой аминокислоты в бета-цепи вызывает Hb S или серповидный гемоглобин. Hb S имеет более низкое сродство к кислороду и легче отдает свой кислород. Hb F, нормальный второстепенный компонент гемоглобина, имеет более высокое сродство к кислороду.

Если кривая диссоциации кислорода отклоняется от нормы, организм регулирует уровень гемоглобина, чтобы обеспечить адекватное распределение кислорода в тканях. Таким образом, при таком редком заболевании, как гемоглобин Hotel Dieu, трудности с извлечением кислорода из варианта гемоглобина с повышенным сродством к кислороду могут привести к нехватке кислорода для тканей (тканевая гипоксия) и компенсаторному эритроцитозу.Таким образом, меньшая часть кислорода, выделяемого гемоглобином, компенсируется увеличением количества молекул гемоглобина. Точно так же при серповидно-клеточной анемии пониженное сродство к кислороду позволяет этим пациентам получать больше кислорода в тканях при любом заданном уровне гемоглобина.

Клиническая значимость

Многие анемии выявляются при рутинном лабораторном обследовании до того, как у пациента появятся симптомы. Когда у пациента действительно наблюдаются симптомы нарушения уровня гемоглобина, симптомами часто являются неспецифическая слабость или утомляемость.Единственным обнаружением при физикальном осмотре может быть бледность; дополнительные изменения ногтевого ложа (например, ложечка), глоссит (красный язык) или гепатоспленомегалия (увеличение печени или селезенки) могут дать ключ к разгадке этиологии анемии. Симптомы обычно связаны с уровнем гемоглобина, его внезапностью и продолжительностью. Пациент с злокачественной анемией может чувствовать себя хорошо при таком же уровне гемоглобина, который вызывает сильную слабость у пациента с острым желудочно-кишечным кровотечением. Это происходит из-за компенсации объема плазмой и сдвигов кривой диссоциации кислорода, происходящих с течением времени.

При первом обнаружении аномального уровня гемоглобина или гематокрита следующим шагом является оценка показателей эритроцитов (см. Главу 152), периферического мазка (глава 155) и количества ретикулоцитов (глава 156) в свете истории болезни пациента. и физический осмотр.

Ссылки

  1. Adamson JW, Finch CA. Функция гемоглобина, сродство к кислороду и эритропоэтин. Annu Rev Physiol. 1975; 37: 351. [PubMed: 235878]
  2. Bunn HF. Гемоглобин I. Строение и функции.В: Beck WS, Гематология. Кембридж, Массачусетс: MIT Press, 1981; 129.

Причины низкого / высокого уровня гемоглобина и способы его улучшения

Гемоглобин является важной частью красных кровяных телец, доставляющих кислород во все части тела. И низкий, и высокий уровень могут отрицательно сказаться на нашем здоровье. В этом посте мы рассмотрим симптомы высокого и низкого гемоглобина, а также проблемы со здоровьем и заболевания, которые увеличивают или уменьшают его уровень.

Высокий гемоглобин

Обычно гемоглобин (Hb) считается высоким, если он превышает нормальный диапазон 15.5 г / дл у женщин или 17,5 г / дл у мужчин [1, 2].

Одного теста недостаточно для постановки диагноза. Врачи обычно интерпретируют этот тест с учетом истории болезни человека и других тестов, таких как эритроциты (эритроциты), гематокрит и показатели эритроцитов.

Кроме того, существует некоторая вариабельность нормальных значений от лаборатории к лаборатории из-за различий в оборудовании, методах и используемых химикатах. Кроме того, нормальные диапазоны могут незначительно отличаться в разных популяциях. Вот почему результат, который немного выше, может не иметь медицинского значения.

Почему высокий гемоглобин — это плохо?

Высокий уровень гемоглобина, сопровождающийся увеличением количества эритроцитов, может быть признаком состояния, называемого полицитемией. Полицитемия возникает, когда в крови больше эритроцитов, и поэтому кровь становится более густой (более вязкой).

Связь между гемоглобином и толщиной крови линейна до 16 г / дл. Выше этого соотношение становится экспоненциальным — небольшое увеличение гемоглобина приводит к большему увеличению толщины крови [3].

Когда уровень гемоглобина превышает 18 г / дл, толщина крови достигает уровня, который может нарушить кровообращение в мелких кровеносных сосудах, и в результате к тканям поступает недостаточное количество кислорода [3].

Это часто проявляется в виде посинения кожи и нарушения психической функции в результате нарушения мозгового кровообращения [3]. Признаки напоминают признаки тяжелой анемии (низкий гемоглобин).

Кроме того, из-за плохого кровотока существенно возрастает риск образования тромбов [3].

Исследование людей с хронической горной болезнью, вызванной сочетанием высокогорного проживания и плохой функции легких, показало, что долгосрочное выживание при уровне гемоглобина выше 20 г / дл невозможно [3].

Высокий гемоглобин связан с различными проблемами безопасности, включая повышенное кровяное давление, дефицит железа, образование тромбов, сердечную дисфункцию и инсульт.

Повышенный гемоглобин имеет несколько причин, но обычно он является результатом этих двух механизмов:

  • Увеличение производства красных кровяных телец.Это может произойти как компенсация, когда кровь несет меньше кислорода [3].
  • Уменьшение объема плазмы. Плазма — это жидкая часть крови [3].

Симптомы, связанные с высоким гемоглобином

Признаки и симптомы высокого гемоглобина включают [3, 4, 5, 6]:

  • Посинение кожи
  • Нарушение психической функции
  • Усталость
  • Тяжелые или тяжелые дыхание
  • Бессонница
  • Головокружение
  • Головная боль
  • Затуманенное зрение
  • Жжение, покалывание или покалывание или онемение в конечностях

Факторы и состояния, повышающие гемоглобин

Показанные здесь причины обычно связаны с высоким уровнем гемоглобина .Проконсультируйтесь со своим врачом или другим медицинским работником, чтобы поставить точный диагноз. Ваш врач интерпретирует повышение гемоглобина вместе с другими тестами, такими как эритроциты, гематокрит и показатели эритроцитов.

1) Большая высота

Находясь на большой высоте, повышается гемоглобин. Это связано с тем, что низкий уровень кислорода на больших высотах сигнализирует организму о необходимости вырабатывать больше красных кровяных телец. Чем больше эритроцитов, тем больше гемоглобина доставляет кислород к тканям [3, 7].

Например, исследование с участием 21 здорового мужчины и женщины показало, что гемоглобин увеличился в течение семи дней после подъема до более чем 5000 метров (16500 футов), но также вернулся к норме в течение семи дней после спуска на 1500 метров (5000) [7 ].

Хорошо известно, что спортсмены часто используют большую высоту, чтобы повысить уровень гемоглобина и улучшить свои спортивные результаты. Увеличение гемоглобина связано с повышенной выносливостью, что является результатом более высокой способности крови переносить кислород [8].

Более длительное пребывание на высоте от 2100 до 2500 метров (от 7 до 8000 футов) необходимо для повышения уровня гемоглобина, и исследования показывают, что эффекты сохраняются в течение примерно двух-трех недель после спуска до уровня моря, прежде чем уровни в конечном итоге вернутся к исходному уровню [ 9, 7].

Повышение гемоглобина с помощью высотных тренировок — это легальная манипуляция в спорте на выносливость, в отличие от незаконного использования эритропоэтина (ЭПО), андрогенов (подробнее об этих двух ниже) и переливания аутологичной крови [10].

Гемоглобин также увеличивается при хронической горной болезни [11].

Интересный факт: жители Гималаев, а не Анд, адаптировались к большой высоте благодаря более низкому уровню гемоглобина. Из-за этого они редко болеют хронической горной болезнью. Эти различия в адаптации объясняются тем, что этим людям пришлось адаптироваться к большой высоте. Жители высокогорья населяли Анды примерно от 9000 до 12000 лет, но люди жили на Гималайском плато более 50 000 лет [ 11 , 12 ].

Исследование, проведенное с участием более 1,7 тыс. Тибетских женщин, показало, что более низкий уровень гемоглобина увеличивает их выносливость и снижает риск образования тромбов, хронической горной болезни, преэклампсии во время беременности и детской смертности [ 13 , 14 ].

2) Курение сигарет

Курение сигарет приводит к тому, что часть гемоглобина становится нефункциональной. Это связано с тем, что окись углерода (CO) из табачного дыма связывает гемоглобин в 210 раз эффективнее, чем кислород [3].

Чтобы компенсировать это, у курильщиков повышается общий уровень эритроцитов и гемоглобина (полицитемия курильщиков) [15].

3) Обезвоживание

Меньший объем плазмы (жидкой части крови) приводит к относительному повышению уровня гемоглобина [3].

Любое состояние, вызывающее потерю жидкости, такое как диарея или тяжелые ожоги, приводит к относительно высокому уровню гемоглобина [2].

В краткосрочной перспективе упражнения также могут временно повысить уровень гемоглобина, когда жидкости не восполняются в достаточной степени.Но уровень гемоглобина обычно возвращается к норме в течение следующих 24 часов [16, 17].

Острое обезвоживание может повысить концентрацию гемоглобина на 10–15% [3].

4) Респираторные и сердечные заболевания

Проблемы с легкими и сердцем, которые снижают количество кислорода в крови, также увеличивают выработку эритроцитов и уровень гемоглобина [3].

Высокий гемоглобин развивается как реакция организма на состояние постоянного низкого содержания кислорода, обнаруживаемое при таких состояниях, как хроническая обструктивная болезнь легких (ХОБЛ) или апноэ во сне [10].

Взрослые с некоторыми врожденными пороками сердца могут иметь высокий уровень гемоглобина [18].

5) Истинная полицитемия

Истинная полицитемия — это заболевание костного мозга. По сути, это тип опухоли, которая вызывает перепроизводство эритроцитов и в результате увеличивает гемоглобин [2].

Во многих случаях это состояние вызвано мутацией в гене JAK2. Поскольку это заболевание часто является наследственным, у родственников первой степени родства риск развития заболевания в 5–7 раз выше по сравнению с населением в целом [19].

Однозначного лекарства от этого состояния нет. Однако можно вылечить симптомы и увеличить продолжительность жизни [10].

6) Заболевание почек

Поликистоз почек и некоторые виды рака почек могут увеличивать эритроциты и гемоглобин. То же самое и с трансплантацией почки [10].

Обычно это происходит из-за повышенной выработки эритропоэтина, гормона, стимулирующего выработку красных кровяных телец.

7) Эритропоэтин

Эритропоэтин (ЭПО) увеличивает уровень гемоглобина двумя механизмами [20]:

  • Путем увеличения производства эритроцитов
  • Путем уменьшения объема плазмы (жидкой крови) , что, вероятно, связано с снижение функции реннин-ангиотензин- альдостерон ось

Эритропоэтин в качестве лекарственного средства используется для лечения некоторых типов анемии.Кроме того, он иногда используется спортсменами в качестве допинга для увеличения количества эритроцитов, что увеличивает их запасы кислорода [10].

8) Тестостерон и другие гормоны

Тестостерон стимулирует выработку эритроцитов и увеличивает гемоглобин, особенно в высоких дозах [21].

Андрогены стимулируют выработку красных кровяных телец. Они делают это за счет увеличения высвобождения ЭПО, стимуляции активности костного мозга и увеличения включения железа в эритроциты [17].

Другие гормоны, которые увеличивают производство красных кровяных телец, включают кортизол, гормон роста и инсулиноподобные факторы роста [17].

9) Некоторые редкие генетические заболевания

У некоторых людей высокое количество эритроцитов и уровень гемоглобина могут быть вызваны редкими наследственными заболеваниями (например, первичной семейной и врожденной полицитемией) [22].

Низкий уровень гемоглобина

Гемоглобин обычно снижается при уменьшении количества эритроцитов. Низкий уровень гемоглобина может означать, что ваша кровь менее эффективно переносит кислород.Это состояние называется анемией [23].

Но имейте в виду, что одного теста недостаточно для диагностики анемии. Врачи интерпретируют значение гемоглобина с учетом истории болезни человека и других результатов анализов, таких как эритроциты, гематокрит и показатели эритроцитов. Немного заниженный результат может не иметь медицинского значения, поскольку этот тест часто меняется ото дня к дню и от человека к человеку.

Немного более низкий уровень гемоглобина обычно не сопровождается какими-либо симптомами .Однако во время тренировок любая потеря гемоглобина или эритроцитов приводит к снижению переносимости упражнений, даже в пределах нижних нормальных значений [3].

Согласно Всемирной организации здравоохранения (ВОЗ), анемия определяется как гемоглобин < 12,0 г / дл у женщин и < 13,0 г / дл у мужчин [24].

Хотя способность переносить кислород зависит от уровня циркулирующего гемоглобина, у людей с хронической анемией может развиться компенсаторный механизм, улучшающий разгрузку тканей кислородом.Этот механизм поддерживает адекватную доставку кислорода тканям до уровня гемоглобина 7-8 г / дл [3].

Тяжелая анемия определяется как уровень гемоглобина ниже 7 г / дл [3].

Симптомы низкого гемоглобина

Признаки низкого гемоглобина / анемии включают [25, 26, 27]:

  • Усталость и общая слабость
  • Раздражительность
  • Головокружение
  • Головные боли
  • Низкая концентрация
  • Одышка
  • Сердцебиение (учащенное или нерегулярное сердцебиение)
  • Непереносимость физических упражнений
  • Холодные руки и ноги (нарушение способности поддерживать внутреннюю температуру тела)

Исходя исключительно из симптомов, может быть нелегко понять, что у человека анемия.Это потому, что у людей с низким гемоглобином одновременно будет относительно мало симптомов. Более того, они часто привыкают к своим симптомам и считают их нормальными [26].

Факторы и условия, снижающие гемоглобин

Показанные здесь причины обычно связаны с низким гемоглобином. Проконсультируйтесь со своим врачом или другим медицинским работником, чтобы поставить точный диагноз. Ваш врач интерпретирует падение гемоглобина вместе с другими тестами, такими как эритроциты, гематокрит и показатели эритроцитов.

1) Дефицит железа

Эритроцитам требуется большое количество железа для выработки гемоглобина . Фактически, более половины всего железа в организме содержится в гемоглобине [28]!

Дефицит железа снижает уровень гемоглобина и приводит к анемии, когда запасы железа в организме истощаются [28].

При отсутствии большого кровотечения железодефицитная анемия обычно развивается медленно в течение месяцев или лет [28].

Излечение железодефицитной анемии может происходить столь же медленно, в зависимости от количества железа в рационе и состояния функции кишечника [28].

В развитых странах от 4 до 20% населения страдают железодефицитной анемией, тогда как в развивающихся странах эти цифры колеблются от 30 до 48% [29].

2) Другой дефицит витаминов и минералов

Помимо недостатка железа, анемия также является следствием нехватки других микронутриентов, таких как витамины B12 и B9 (фолиевая кислота) или, реже, витамин A, витамин B6 или медь [30 ].

Эти витамины и минералы важны для производства красных кровяных телец.

Витамины группы В и анемия

Дефицит витамина B12 (кобаламина) обычно вызван мальабсорбцией в развитых странах и недостаточным потреблением с пищей в развивающихся странах [31].

Дефицит витамина B12 встречается почти у 6% людей в возрасте 60 лет и старше, тогда как маргинальный (легкий) дефицит встречается почти у 20% людей в более старшем возрасте [32].

Пониженное всасывание витамина B12 часто связано с злокачественной анемией, аутоиммунным заболеванием, которое вызывает воспаление желудка, которое препятствует всасыванию витамина B12.Распространенность злокачественной анемии в европейских странах составляет примерно 4%, и она чаще встречается у пожилых людей [32].

Дефицит фолиевой кислоты (витамина B9) — еще одна важная причина анемии [33].

Анемия, вызванная недостаточностью фолиевой кислоты, возникает из-за плохого питания, нарушения всасывания в кишечнике, повышенной потребности в этом витамине (например, во время беременности), истощения запасов некоторых лекарств или наследственных заболеваний [34, 35].

Дефицит витамина А и анемия

Дефицит витамина А может вызвать анемию , потому что это питательное вещество важно как для производства клеток крови, так и для мобилизации железа из запасов железа [36, 37].

Витамин А также увеличивает выработку эритропоэтина (ЭПО), стимулятора выработки красных кровяных телец [37].

Дефицит витамина А распространен в развивающихся странах, но редко встречается в США.

Медь и анемия

Дефицит меди вызывает нарушение производства клеток крови и медно-дефицитную анемию [38]. Дефицит меди обычно возникает из-за проблем со здоровьем.

3) Кровопотеря

Кровопотеря может произойти в результате ран и язв, обильных менструальных кровотечений или частой сдачи крови.

Пилотное исследование с участием 44 женщин показало, что у женщин с обильными менструальными кровотечениями уровень гемоглобина был ниже, а у них чаще была анемия [39].

Нестероидные противовоспалительные препараты (НПВП) известны тем, что вызывают повреждение кишечника и кровотечение из верхних отделов кишечника. Даже низкие дозы аспирина или НПВП, таких как ибупрофен, могут увеличить кровопотерю, а их частое применение может привести к анемии [40].

У частых доноров крови также может развиться анемия. Это происходит потому, что сдача крови удаляет из крови большое количество железа.Некоторые ученые утверждают, что минимальный 56-дневный интервал между донорами в США может быть недостаточным для восстановления запасов гемоглобина и железа. Вот почему донорам лучше контролировать уровень железа и ферритина и при необходимости использовать добавки железа или для продления периода между донорами [41].

4) Заболевания, нарушающие усвоение питательных веществ

Состояния, нарушающие усвоение питательных веществ, могут вызывать анемию, вызывая дефицит питательных веществ (чаще всего железа).Это может произойти при таких состояниях, как целиакия, воспалительное заболевание кишечника (ВЗК), аутоиммунный гастрит (заболевание, которое разрушает клетки, вырабатывающие желудочную кислоту) и инфекция Helicobacter pylori [42, 43, 44, 45, 46].

Анемия — наиболее частый симптом целиакии , обнаруживается у 32-69% взрослых с этим заболеванием [40].

Анемия также является одним из наиболее распространенных осложнений ВЗК (воспалительного заболевания кишечника) [44, 47].

5) Хирургия обходного желудочного анастомоза

Люди, перенесшие операцию обходного желудочного анастомоза, усваивают меньше питательных веществ. Вот почему железодефицитная анемия может быть относительно распространенным явлением после операции по наложению обходного желудочного анастомоза [48].

6) Хронические воспалительные заболевания

Воспалительная анемия (также называемая анемией хронического заболевания) возникает при хронических инфекциях, критических заболеваниях , почечной недостаточности , аутоиммунных заболеваниях и раке [49].

Это вызвано активацией иммунной системы (интерлейкин IL-6 увеличивает выработку гормона гепсидина, который снижает уровень железа в крови) [50, 51].

Например, по оценкам, от 30 до 60% пациентов с ревматоидным артритом могут иметь анемию [52].

Это анемия от легкой до умеренной. Значения гемоглобина редко опускаются ниже 8 г / дл [53].

Лучшее лечение этого типа анемии — лечение основного заболевания . Когда это невозможно, врачи могут назначить переливание крови, внутривенное введение железа и средства, стимулирующие выработку эритроцитов, чтобы улучшить состояние [49].

7) Избыточный вес

Избыточный вес был связан с более низким уровнем гемоглобина, вероятно, из-за хронического воспаления [54].

Обследовано 707 подростков. у полных девушек уровень гемоглобина был ниже [55].

8) Аномальное разрушение эритроцитов

Гемоглобин ниже в условиях, вызывающих аномальное разрушение красных кровяных телец (гемолитическая анемия), включая [56, 57, 58, 59]:

  • инфекции, такие как малярия
  • Увеличенная селезенка
  • наследственные заболевания, такие как серповидно-клеточная анемия
  • аутоиммунная анемия (антитела, атакующие красные кровяные тельца)

9) Генетические нарушения выработки гемоглобина

Существует несколько генетических нарушений, при которых гемоглобин является аномальным , в результате чего образуются деформированные эритроциты, такие как [57, 60]:

  • Серповидно-клеточная анемия
  • Альфа- и бета-талассемия
Серповидно-клеточная анемия

Серповидно-клеточная анемия вызывается мутацией в гене для одной из цепей гемоглобина.Включение аномальных цепей приводит к аномальному гемоглобину, называемому гемоглобином S (HbS). Заболевание встречается только у людей, у которых есть две аномальные копии.

Красные кровяные тельца, содержащие этот HbS, становятся жесткими , принимают форму полумесяца или «серпа» . Из-за своей формы , они препятствуют кровотоку в более мелких кровеносных сосудах [61].

Серповидно-клеточная анемия вызывает воспаление, образование тромбов, разрушение эритроцитов, недостаток кислорода и, в конечном итоге, повреждение органов [57].

Эпизодическое обострение может вызвать сильную боль, легочную недостаточность и инсульт [61].

Около 240 000 детей ежегодно рождаются с серповидно-клеточной анемией, большинство из них — в Африке. Только 20% доживают до второго дня рождения [61].

Средняя выживаемость пациентов с серповидно-клеточной анемией в США составляет около 42 лет [61].

Это заболевание так распространено по важной причине. А именно, носители HbS, имеющие единственную аномальную копию, устойчивы к малярии [62, 57].

Носители одной копии HbS обычно имеют 40% HbS. Обычно они протекают бессимптомно. Для того, чтобы испытать симптомы серповидно-клеточной анемии, им требуется серьезная кислородная недостаточность [62].

Примерно 8% афроамериканцев являются носителями этого варианта гемоглобина [62].

Талассемии

Талассемии — это заболевания, вызываемые комбинацией более 300 известных мутаций в цепях гемоглобина (альфа или бета) [61].

Эти мутации распространены в Средиземноморье, Юго-Восточной Азии и Китае.Ежегодно рождается около 60 000 пострадавших детей [61].

Люди с талассемией имеют анемию различной степени . В одном из наиболее тяжелых случаев, например, при большой бета-талассемии, невозможно поддерживать уровень гемоглобина выше 6,5 г / дл [61].

В то время как некоторым людям с этим заболеванием требуется регулярное переливание крови, другим требуется спорадическое переливание крови, когда активность костного мозга подавлена ​​(например, из-за вирусной инфекции). Вариантами лечения более тяжелых случаев могут быть трансплантация костного мозга или генная терапия [61].

Так же, как носители серповидноклеточного HbS, носители мутации талассемии также устойчивы к малярии. Поэтому эти мутации относительно распространены [63].

10) Хроническая болезнь почек

Анемия также развивается как частое осложнение хронической болезни почек (ХБП). Тяжесть анемии может быть пропорциональна степени нарушения функции почек [64].

Нарушение функции почек является следствием неспособности почек вырабатывать эритропоэтин (ЭПО), гормон, стимулирующий выработку красных кровяных телец [65].

11) Гипотиреоз

Анемия часто сопровождает заболевания щитовидной железы [66].

Гормоны щитовидной железы стимулируют выработку эритроцитов как напрямую, так и за счет увеличения выработки эритропоэтина (ЭПО) [66].

Анемия при гипотиреозе может быть результатом снижения функции костного мозга, снижения выработки эритропоэтина или дефицита железа, витамина B12 или фолиевой кислоты [66].

Связь между анемией и заболеваниями щитовидной железы двусторонняя, поскольку железодефицитная анемия снижает уровень гормонов щитовидной железы [66].

Исследование с участием 60 человек показало, что добавление железа к терапии тироксином улучшает гипотиреоз лучше, чем терапия только тироксином [67, 68].

12) Упражнения на выносливость (спортивная анемия)

Тренированные спортсмены , , особенно в видах спорта на выносливость , часто имеют « спортивная анемия ».

Это не всегда обычная анемия. Фактически, у спортсменов часто увеличивается общая масса эритроцитов и гемоглобина по сравнению с не спортсменами.Однако относительное снижение гемоглобина обусловлено увеличением объема плазмы (жидкой части крови) [17].

Однако некоторые виды упражнений могут фактически вызвать разрушение старых эритроцитов в сокращающихся мышцах или за счет сжатия, например, в подошвах ног во время бега [17].

Исследование с участием 747 спортсменов и 104 не спортсменов показало, что низкий гемоглобин чаще обнаруживается у людей, которые занимаются выносливостью, по сравнению с силовыми и смешанными тренировками [69].

13) Тяжелые металлы и токсины

Отравление свинцом снижает выработку гемоглобина и снижает выживаемость эритроцитов [70].

Несколько исследований с участием детей, подвергшихся воздействию свинца в окружающей среде, показали, что более высокие уровни свинца в крови связаны с более низким гемоглобином [71, 72].

Кадмий — еще один тяжелый металл, вызывающий анемию из-за разрушения эритроцитов, дефицита железа и дефицита эритропоэтина (ЭПО) [73].

Анемия и низкий уровень эритропоэтина являются клиническими признаками болезни итаи-итай, которая является заболеванием, вызванным длительной интоксикацией кадмием в Японии [74].

Токсины, отличные от тяжелых металлов, также могут нарушать выработку красных кровяных телец. Например, афлатоксины могут уменьшать объем как гемоглобина, так и эритроцитов [75].

Афлатоксины — это токсины, вырабатываемые грибами, которые заражают основные продовольственные культуры во многих развивающихся странах [76].

В исследовании 755 беременных женщин с более высоким уровнем афлатоксина в крови вероятность развития анемии была выше [76].

14) Заболевания костного мозга

Анемия и низкий уровень гемоглобина могут быть результатом заболеваний костного мозга (например,грамм. лейкоз, лимфома, миелома) и повреждения, вызванные токсинами, радиацией, химиотерапией и раком, которые распространились на костный мозг [77, 58].

15) Старение

Люди с большей вероятностью заболеют анемией с возрастом [78].

Крупное исследование, проведенное в США с участием почти 40 тысяч человек, показало, что анемия присутствует у 11% мужчин и 10% женщин старше 65 лет, а также у 26% мужчин и 20% женщин старше 85 лет [79].

Падение уровня гемоглобина, которое происходит примерно на восьмом десятилетии жизни, кажется частью нормального старения [79].

Но примерно в 50% случаев анемия у пожилых людей возникает по обратимым причинам, включая дефицит железа и витамина B12 и хроническую почечную недостаточность [78].

16) Беременность

При нормальной беременности объем крови увеличивается в среднем на 50%. Это быстрое увеличение объема крови начинается в первом триместре.

Однако объем плазмы (жидкая часть крови) увеличивается больше, чем масса эритроцитов, что приводит к относительному снижению уровня гемоглобина в течение первой половины беременности.Это известно как анемия беременности [3].

Это снижение гемоглобина больше всего у женщин с большими детьми или беременных близнецов [80].

17) Некоторые лекарства

Помимо НПВП, которые могут вызвать кровотечение, лекарства, используемые для снижения артериального давления, также могут снижать уровень гемоглобина. Обычно эти изменения небольшие. Однако в некоторых случаях эти препараты могут вызывать клинически значимую степень анемии [81].

Лекарства от кровяного давления вызывают гемодилюцию (увеличение содержания жидкости в крови), гемолитическую анемию (аномальный распад эритроцитов) и / или подавление выработки красных кровяных телец [81].

Факторы и условия, влияющие на функцию гемоглобина

1) Метгемоглобин

Метгемоглобин (metHb) — это форма гемоглобина, в которой железо находится в измененном состоянии (Fe 3+ вместо Fe 2+ ) и не может связывать кислород.

Помимо того, что этот тип гемоглобина не может переносить кислород, он вызывает окислительное и воспалительное повреждение кровеносных сосудов [82].

У нормальных людей metHb составляет от 1 до 2% от общего гемоглобина [82].

Однако некоторые лекарства и токсины могут повышать уровень metHb.Некоторые генетические мутации также могут повышать уровень metHb.

Люди с более чем 10% metHb имеют синеватый оттенок кожи [62].

Симптомы и повреждения, связанные с мозгом и сердцем, начинают проявляться, когда metHb превышает 30% [62].

Метиленовый синий эффективно лечит как токсические, так и врожденные патологии [62].

2) Окись углерода

Окись углерода (СО) связывает гемоглобин со сродством в 210 раз больше, чем кислород [62].

Вдыхание большого количества окиси углерода приводит к токсическому отравлению угарным газом [62].

Когда окись углерода связывает гемоглобин, гемоглобин больше не может связывать кислород. Это вызывает повреждение тканей из-за недостатка кислорода [62].

У людей с отравлением угарным газом происходит поражение мозга и сердца, когда уровень связанного с угарным газом гемоглобина превышает 20% [62].

Уровни от 40 до 60% приводят к потере сознания, коме и смерти [62].

Отравление угарным газом можно лечить кислородом или обменным переливанием крови [62].

Серия гемоглобина

Этот пост является второй частью серии из трех частей:

Что такое средняя концентрация корпускулярного гемоглобина (MCHC)?

Средняя концентрация корпускулярного гемоглобина (MCHC) — это лабораторное значение, обнаруженное в общем анализе крови (CBC), которое описывает среднюю концентрацию гемоглобина в данном объеме эритроцитов.

Гемоглобин придает цвет эритроцитам. Следовательно, более высокая концентрация гемоглобина с высоким MCHC делает клетки более темными (гиперхромными), в то время как низкая концентрация с низким MCHC делает их более светлыми (гипохромными).

Значение MCHC полезно при диагностике анемии, но используется вместе с количеством эритроцитов и другими показателями эритроцитов, такими как средний корпускулярный объем (MCV) и ширина распределения эритроцитов (RDW).

Фотография Tahreer / Getty Images

Цель теста

Поскольку MCHC выполняется как часть CBC, тест выполняется каждый раз, когда заказывается CBC.Например, это может включать обычные обследования состояния здоровья или во время диагностики, лечения и последующего наблюдения за широким спектром заболеваний.

Причины, по которым врач может специально осмотреть MCHC, включают:

  • При наличии симптомов анемии, таких как усталость, бледность кожи или головокружение
  • При поиске различных причин анемии (когда у человека низкий уровень эритроцитов и / или уровень гемоглобина)

Измерительный MCHC

MCHC рассчитывается путем умножения уровня гемоглобина на 10 и последующего деления на уровень гематокрита.Количество записывается в граммах на литр.

  • MCHC = Hb x 10 / гематокрит

MCHC также можно рассчитать путем деления среднего корпускулярного гемоглобина на средний корпускулярный объем:

Значение MCHC

Средняя концентрация корпускулярного гемоглобина является мерой концентрации гемоглобина в клетках.

Поскольку гемоглобин — это молекула, к которой присоединяется кислород, MCHC является мерой средней способности эритроцитов, циркулирующих в организме, переносить кислород.

Низкий MCHC (гипохромия) означает более низкую концентрацию гемоглобина в данном объеме эритроцитов и, следовательно, пониженную способность переносить кислород к тканям.

Нормальный (нормохромия) или высокий (гиперхромия) MCHC означает, что способность эритроцитов переносить кислород в норме. Однако он все еще может быть недостаточным, если присутствует недостаточно эритроцитов.

Ограничения

Есть несколько ограничений, которые могут повлиять на точность показаний MCHC, в том числе следующие.

Посттрансфузия

Поскольку кровь, взятая после переливания крови, будет представлять собой смесь донорских клеток и нормальных эритроцитов человека, MCHC не даст точной информации об исходных присутствующих эритроцитах.

Комбинированная анемия

Если у человека два разных типа анемии, которые приводят к разным уровням MCHC, показания не будут столь полезны для диагностики типа анемии. Например, MCHC может быть нормальным, если у человека комбинация железодефицитной анемии (которая вызывает низкий MCHC) и сфероцитоза (который имеет тенденцию вызывать высокий MCHC).

Условия, приводящие к неточным значениям гемоглобина или гематокрита

Поскольку MCHC рассчитывается с использованием уровней гемоглобина и гематокрита, все, что ложно увеличивает или уменьшает эти числа, даст ложный результат MCHC.

Например, гиперлипидемия (повышенный уровень холестерина или триглицеридов), гипербилирубинемия (повышенный уровень билирубина в крови, как при заболевании печени) и аутоагглютинация приводят к ложно высокому уровню гематокрита и ложно низкому уровню гемоглобина.

При гемолизе (разрушении эритроцитов) свободный гемоглобин в плазме, оставшийся от разрушенных эритроцитов, также вызовет ненормальный результат, то есть MCHC будет ложно увеличиваться.

Подобные тесты

Тест на средний корпускулярный гемоглобин (MCH) измеряет среднюю массу гемоглобина на эритроцит. Хотя название похоже на MCHC, на самом деле оно предоставляет информацию, более похожую на MCV (которая влияет на количество гемоглобина в клетке).

Многие врачи считают, что MCH наименее полезен из показателей эритроцитов, и в этой ситуации обращают внимание прежде всего на MCV. По сравнению со средним корпускулярным гемоглобином, MCHC — гораздо лучший тест для обнаружения гипохромии.

Дополнительные тесты

Помимо MCHC, общий анализ крови предоставляет информацию, включая общее количество эритроцитов, лейкоцитов и тромбоцитов, а также другие показатели эритроцитов:

  • Средний корпускулярный объем (MCV): MCV — это мера среднего размера красных кровяных телец
  • Ширина распределения эритроцитов (RDW): RDW — это число, которое отражает изменение размеров эритроцитов
  • Средний корпускулярный гемоглобин (MCH): MCH — это средняя масса гемоглобина на эритроцит

Кроме того, могут быть выполнены другие тесты, такие как мазок периферической крови для определения морфологии и количества ретикулоцитов.При наличии показаний могут потребоваться исследования железа, уровня витамина B12 и многое другое для дальнейшего уточнения информации, найденной в общем анализе крови.

Риски и противопоказания

Существует очень мало потенциальных рисков при проведении общего анализа крови: они включают небольшой риск кровотечения, синяков или инфекции.

Перед испытанием

Перед общим анализом крови нет ограничений в диете или физической активности. Важно принести свою страховую карточку на прием и убедиться, что у вашего врача есть доступ к предыдущим CBC, которые вы имели для сравнения.

Во время теста

Тест можно проводить во многих больницах и клиниках. Перед забором крови лаборант очистит область (обычно вену на руке) антисептиком и наложит жгут, чтобы лучше визуализировать вену. Если у вас есть порт для химиотерапии, кровь можно брать прямо из порта.

Затем техник введет иглу в вену. Вы можете почувствовать резкий толчок, когда игла входит, и некоторое давление, когда игла остается на месте.Некоторые люди могут чувствовать головокружение или обморок от укола иглы. Обязательно сообщите техническому специалисту, если вы чувствуете головокружение.

После получения образца техник удалит иглу и попросит вас удерживать давление на участке. Когда кровотечение остановится, вам наложат повязку или марлю, чтобы сохранить чистоту и снизить вероятность дальнейшего кровотечения.

После теста

Когда тест будет завершен, вы сможете вернуться домой и возобновить свою обычную деятельность.Возможные побочные эффекты включают:

  • Боль от укола иглой, особенно после нескольких попыток
  • Сложность получения образца из анализа крови (например, у людей, чьи вены труднодоступны из-за химиотерапии)
  • Кровотечение (у людей, принимающих антикоагулянты или страдающих нарушением свертываемости крови, для остановки кровотечения может потребоваться больше времени)
  • Гематома или большой синяк (может вызывать дискомфорт, но очень редко)
  • Инфекция (при введении иглы существует небольшой риск попадания бактерий в организм)

Интерпретация результатов

Если в вашей клинике есть лаборатория, вы можете получить результаты вскоре после того, как будет проведен анализ.В других случаях ваш врач может позвонить вам, чтобы сообщить результаты. Важно быть собственным защитником и спрашивать фактические цифры (например, ваш MCHC), а не то, находится ли ваш CBC просто в нормальном диапазоне.

Контрольный диапазон

«Нормальный» диапазон для MCHC может несколько отличаться в разных лабораториях, но обычно составляет от 32 до 36. В некоторых лабораториях диапазон нормальных значений меньше, например, между 33,4 и 35,5.

MCHC рассчитывается на основе гемоглобина и гематокрита, поэтому все, что мешает этим цифрам, сделает MCHC неточным.Результаты также будут неточными после переливания (они будут отражать характеристики перелитых клеток в сочетании с собственными клетками человека).

нормальный MCHC

MCHC может быть нормальным при многих типах анемии (нормохромных анемиях), таких как:

  • Анемия кровопотери
  • Анемия при заболевании почек
  • Анемии смешанные
  • Недостаточность костного мозга
  • Гемолитические анемии (многие типы)

Причины низкого MCHC

Когда MCHC низкий (если результат не является неточным из-за одного из ограничений, отмеченных ранее), это означает, что эритроцитам не хватает гемоглобина.Возможные причины включают:

  • Недостаток железа (с анемией или без)
  • Отравление свинцом
  • Талассемия (бета-талассемия, альфа-талассемия и промежуточная талассемия)
  • Сидеробластная анемия
  • Анемия хронического заболевания

Низкий MCHC без анемии связан с плохими результатами для людей, находящихся в отделении интенсивной терапии. Это также может указывать на дефицит железа до развития анемии.

Причины высокого MCHC

Высокий MCHC означает, что гемоглобин более концентрированный, чем обычно, и может возникать несколькими способами.Например, гемоглобин становится более концентрированным при разрушении эритроцитов. MCHC часто повышается у курящих людей. MCHC также может быть повышен ложно из-за болезни холодовых агглютининов.

Возможные причины высокого MCHC при анемии включают:

  • Аутоиммунная гемолитическая анемия (вызванная лекарствами, аутоиммунными заболеваниями и др.)
  • Наследственный сфероцитоз
  • Сильные ожоги
  • Болезнь печени
  • Гипертиреоз
  • Серповидноклеточная анемия (гомозиготная)
  • Болезнь гемоглобина C

Использование MCHC с другими индексами эритроцитов

Результаты MCHC наиболее полезны при использовании в сочетании с другими показателями эритроцитов, особенно MCV.

Например, низкий MCHC и низкий MCV могут указывать на железодефицитную анемию, талассемию, сидеробластную анемию или отравление свинцом. Высокий MCHC и низкий MCV могут указывать на сфероцитоз или серповидно-клеточную анемию.

Нормальный MCHC и высокий MCV могут означать дефицит витамина B12, фолиевой кислоты или заболевание печени.

Другие тесты, полезные для классификации анемий

Помимо анализа крови и показателей эритроцитов, могут потребоваться дополнительные тесты, в том числе следующие.

  • Мазок периферической крови для определения морфологии : Мазок периферической крови включает изучение образца крови под микроскопом. Это позволяет специалисту лаборатории непосредственно визуализировать другие изменения в эритроцитах, которые могут быть связаны с анемией, например, клетки-мишени, ядросодержащие эритроциты и многое другое.
  • Исследования железа : Сывороточная железа и железосвязывающая способность и / или уровни ферритина могут дать ценную информацию о запасах железа и могут помочь отличить дефицит железа от других анемий с низким MCHC.
  • Уровень витамина B12 : Уровень витамина B12 полезен при поиске пагубной анемии.
  • Аспирация и / или биопсия костного мозга : В некоторых случаях может потребоваться исследование костного мозга для оценки появления клеток крови в костном мозге и запасов железа.

Слово от Verywell

Тест MCHC является наиболее значимым в сочетании с другими результатами общего анализа крови и может быть полезен для определения причин анемии, а также для прогнозирования прогноза у пациентов без анемии.Однако при использовании этих результатов очень важно знать об ограничениях, а также о возможности ошибки, и использовать любые результаты только после того, как они будут повторены и поддержаны другими тестами.

Серповидноклеточная болезнь | Серповидноклеточная анемия

Что такое серповидноклеточная анемия (ВСС)?

Серповидно-клеточная анемия (SCD) — это группа наследственных нарушений эритроцитов. Если у вас SCD, проблема с гемоглобином. Гемоглобин — это белок красных кровяных телец, переносящий кислород по всему телу.При SCD гемоглобин превращается в жесткие стержни внутри красных кровяных телец. Это меняет форму красных кровяных телец. Предполагается, что клетки имеют форму диска, но это меняет их форму полумесяца или серпа.

Серповидные клетки не гибкие и не могут легко изменить форму. Многие из них разрываются при движении по кровеносным сосудам. Серповидные клетки обычно живут от 10 до 20 дней вместо обычных 90-120 дней. У вашего тела могут возникнуть проблемы с производством достаточного количества новых клеток, чтобы заменить те, которые вы потеряли.Из-за этого у вас может не хватить эритроцитов. Это состояние, называемое анемией, может вызывать у вас усталость.

Серповидные клетки также могут прилипать к стенкам сосудов, вызывая закупорку, которая замедляет или останавливает кровоток. Когда это происходит, кислород не может достичь близлежащих тканей. Недостаток кислорода может вызвать приступы внезапной сильной боли, называемые болевыми кризами. Эти атаки могут происходить без предупреждения. Если вы его получите, вам, возможно, придется обратиться в больницу для лечения.

Что вызывает серповидно-клеточную анемию (ВСС)?

Причина SCD — дефектный ген, называемый геном серповидных клеток.Люди с этим заболеванием рождаются с двумя генами серповидных клеток, по одному от каждого родителя.

Если вы родились с одним геном серповидно-клеточной анемии, это называется серповидно-клеточной особенностью. Люди с серповидноклеточной анемией обычно здоровы, но они могут передать дефектный ген своим детям.

Кто подвержен риску серповидно-клеточной анемии (ВСС)?

В США большинство людей с ВСС — афроамериканцы:

  • Примерно 1 из 13 детей афроамериканцев рождается с серповидно-клеточной особенностью
  • Примерно 1 из каждых 365 чернокожих детей рождается с серповидно-клеточной анемией

SCD также поражает некоторых выходцев из латиноамериканского, южноевропейского, ближневосточного или азиатского индийского происхождения.

Каковы симптомы серповидно-клеточной анемии (ВСС)?

Люди с ВСС начинают проявлять признаки болезни в течение первого года жизни, обычно в возрасте около 5 месяцев. Ранние симптомы ВСС могут включать

  • Болезненный отек кистей и стоп
  • Усталость или беспокойство от анемии
  • Желтоватый цвет кожи (желтуха) или белков глаз (желтуха)

Эффекты SCD варьируются от человека к человеку и могут меняться со временем.Большинство признаков и симптомов ВСС связаны с осложнениями заболевания. Они могут включать сильную боль, анемию, повреждение органов и инфекции.

Как диагностируется серповидно-клеточная анемия (ВСС)?

Анализ крови может показать, есть ли у вас ВСС или серповидно-клеточные признаки. Все штаты теперь тестируют новорожденных в рамках своих программ скрининга, поэтому лечение можно начинать раньше.

Люди, которые думают о рождении детей, могут пройти тест, чтобы узнать, насколько велика вероятность того, что у их детей будет ВСС.

Врачи также могут диагностировать ВСС еще до рождения ребенка. В этом тесте используется образец околоплодных вод (жидкость в мешочке, окружающей ребенка) или ткани, взятой из плаценты (органа, доставляющего кислород и питательные вещества ребенку).

Какие методы лечения серповидно-клеточной анемии (SCD)?

Единственное лекарство от ВСС — трансплантация костного мозга или стволовых клеток. Поскольку эти трансплантаты опасны и могут иметь серьезные побочные эффекты, они обычно используются только у детей с тяжелой ВСС.Чтобы трансплантат работал, костный мозг должен быть похожим. Обычно лучший донор — это брат или сестра.

Существуют методы лечения, которые могут помочь облегчить симптомы, уменьшить осложнения и продлить жизнь:

  • Антибиотики для профилактики инфекций у детей младшего возраста
  • Обезболивающие при острой или хронической боли
  • Гидроксимочевина, лекарство, которое снижает или предотвращает несколько осложнений ВСС. Увеличивает количество гемоглобина плода в крови.Это лекарство подходит не всем; поговорите со своим врачом о том, следует ли вам его принимать. Это лекарство небезопасно во время беременности.
  • Детские прививки для профилактики инфекций
  • Переливание крови при тяжелой анемии. Если у вас были серьезные осложнения, например, инсульт, вам могут сделать переливание крови, чтобы предотвратить новые осложнения.

Существуют и другие методы лечения конкретных осложнений.

Чтобы оставаться максимально здоровым, регулярно получайте медицинскую помощь, ведите здоровый образ жизни и избегайте ситуаций, которые могут вызвать приступ боли.

NIH: Национальный институт сердца, легких и крови

Средний корпускулярный гемоглобин — обзор

Другой дефицит витаминов

Другой дефицит витаминов (таблица 3.3) также может привести к гипохромной анемии с уменьшением размера эритроцитов (MCV) и MCHC . Особое внимание в развивающихся странах уделяется дефициту витамина А, которым, по оценкам, страдают 253 миллиона детей дошкольного возраста во всем мире, и который часто возникает одновременно с железодефицитной анемией и потенциально усугубляет ее. 21 Витамин А может играть несколько ролей в уменьшении анемии, включая увеличение мобилизации запасов железа из печени, усиление эритропоэза и снижение риска инфекции. 21 , 22

Дефицит витамина B 6 , который действует как кофермент в декарбоксилировании и трансаминировании аминокислот и синтезе предшественника порфирина, аминолевулиновой кислоты, может привести к гипохромной микроцитарной анемии. 23 Это редко, но может наблюдаться при недоедании или лечении изониазидом или другими противотуберкулезными средствами, которые мешают метаболизму витамина B 6 . 24 Однако витамин B 6 обычно назначают вместе с изониазидом для предотвращения других осложнений, включая периферическую невропатию. 25

Дефицит меди может быть связан с рядом анемических проявлений: макроцитарной, микроцитарной или нормоцитарной. 26 Микроцитарная анемия чаще встречается при приеме внутрь большого количества хронического цинка, например, содержащегося в стоматологических фиксаторах, что приводит к вторичному дефициту меди.Дефицит меди из-за недоедания или после бариатрической операции чаще бывает макроцитарным. Пациенты также могут иметь нейтропению и, в редких случаях, тромбоцитопению. Диагноз ставится на основании низкого уровня церулоплазмина в сыворотке или низкого уровня меди в сыворотке с повышенными концентрациями цинка в сыворотке или без них. При оценке костного мозга можно оценить миелодиспластические особенности, включая вакуолизированные миелоидные и эритроидные предшественники и кольцевые сидеробласты, но эти диспластические признаки исчезают после коррекции токсичности цинка. 26

Анемия у детей — Американский семейный врач

ДЖОЗЕФ Дж. ИРВИН, доктор медицины, и ДЖЕФФРИ Т. КИРЧНЕР, округ Колумбия, Ланкастерская больница общего профиля, Ланкастер, Пенсильвания

Am Famician. , 15 октября 2001 г .; 64 (8): 1379-1387.

С анемией у детей обычно сталкивается семейный врач. Существует несколько причин, но при тщательном анамнезе, физическом осмотре и ограниченном лабораторном обследовании обычно можно установить конкретный диагноз.Использование среднего корпускулярного объема для классификации анемии как микроцитарной, нормоцитарной или макроцитарной является стандартным диагностическим подходом. Наиболее распространенной формой микроцитарной анемии является дефицит железа, вызванный пониженным потреблением с пищей. Это легко поддается лечению добавками железа, и раннее вмешательство может предотвратить потерю когнитивной функции в дальнейшем. Менее распространенными причинами микроцитоза являются талассемия и отравление свинцом. Нормоцитарная анемия имеет множество причин, что затрудняет диагностику. Подсчет ретикулоцитов поможет сузить дифференциальный диагноз; однако может потребоваться дополнительное тестирование, чтобы исключить гемолиз, гемоглобинопатии, дефекты мембран и энзимопатии.Макроцитарная анемия может быть вызвана дефицитом фолиевой кислоты и / или витамина B 12 , гипотиреозом и заболеванием печени. Эта форма анемии редко встречается у детей.

Анемия — частое лабораторное отклонение у детей. До 20 процентов детей в Соединенных Штатах и ​​80 процентов детей в развивающихся странах будут иметь анемию в какой-то момент к 18 годам.1

Физиология производства гемоглобина

Эритропоэтин является основным гормональным регулятором красной крови. производство клеток (эритроцитов).У плода эритропоэтин поступает из системы моноцитов / макрофагов печени. Постнатально эритропоэтин вырабатывается перитубулярными клетками почек. Ключевые этапы дифференцировки эритроцитов включают конденсацию ядерного материала эритроцитов, производство гемоглобина до 90 процентов от общей массы эритроцитов и вытеснение ядра, которое вызывает потерю способности к синтезу эритроцитов. Нормальные эритроциты выживают в среднем 120 дней, а аномальные эритроциты — всего 15 дней.1

Молекула гемоглобина представляет собой гемопротеиновый комплекс из двух пар одинаковых полипептидных цепей. У развивающихся людей существует шесть типов гемоглобина: эмбриональный, Gower-I, Gower-II, Portland, фетальный гемоглобин (HbF) и нормальный взрослый гемоглобин (HbA и HbA 2 ). HbF — это основной гемоглобин плода. Он имеет более высокое сродство к кислороду, чем гемоглобин взрослого, что увеличивает эффективность передачи кислорода плоду. Относительные количества HbF быстро снижаются до следовых уровней к возрасту от шести до 12 месяцев и в конечном итоге заменяются взрослыми формами HbA и HbA 2

Общий подход к лечению

Большинство детей с анемией не имеют симптомов и имеют анемию. аномальный уровень гемоглобина или гематокрита при обычном скрининге (таблица 1).2 Нечасто ребенок с анемией может иметь бледность, утомляемость и желтуху, но может быть или не быть в критическом состоянии. Ключевые исторические моменты и результаты физикального обследования могут выявить основную причину анемии.

Организм новорожденного восстанавливает и накапливает железо, поскольку уровень гематокрита снижается в течение первых нескольких месяцев жизни. Таким образом, у доношенных детей дефицит железа редко является причиной анемии до достижения шестимесячного возраста. У недоношенных детей дефицит железа может возникнуть только после удвоения веса при рождении.Х-сцепленные причины анемии, такие как дефицит глюкозо-6-фосфатдегидрогеназы (G6PD), следует учитывать у мужчин. Дефицит пируваткиназы является аутосомно-рецессивным и связан с хронической гемолитической анемией различной степени тяжести. Недостаток питания, пика или геофагия в анамнезе предполагают дефицит железа. Недавнее употребление рецептурных препаратов может указывать на дефицит G6PD или апластическую анемию. Недавнее вирусное заболевание может указывать на аплазию эритроцитов. Рецидивирующая диарея вызывает подозрение на мальабсорбцию и скрытую кровопотерю, возникающую при чревном спруе и воспалительном заболевании кишечника.

Посмотреть / распечатать таблицу

ТАБЛИЦА 1
Рекомендации по скринингу анемии у детей
  1. Целевая группа профилактических служб США рекомендует проверять гемоглобин или гематокрит в возрасте от шести до 12 месяцев у младенцев из группы высокого риска. К группе высокого риска относятся: чернокожие, коренные американцы, коренные жители Аляски, младенцы, живущие в бедности, иммигранты из развивающихся стран, недоношенные младенцы и младенцы с низкой массой тела при рождении, а также младенцы, основным пищевым рационом которых является не обогащенное коровье молоко.Новорожденных следует обследовать на гемоглобинопатию с помощью электрофореза гемоглобина. Выборочный скрининг уместен в регионах с низкой распространенностью.

  2. Рекомендации Американской академии семейных врачей аналогичны рекомендациям Целевой группы США по профилактическим услугам.

  3. Американская педиатрическая академия рекомендует проверять гемоглобин или гематокрит при посещении через шесть, девять или 12 месяцев всем младенцам. Универсальный скрининг новорожденных на анемию не требуется.

ТАБЛИЦА 1
Рекомендации по скринингу анемии у детей
  1. Целевая группа профилактических служб США рекомендует проверять гемоглобин или гематокрит в возрасте от шести до 12 месяцев у младенцев из группы высокого риска. К группе высокого риска относятся: чернокожие, коренные американцы, коренные жители Аляски, младенцы, живущие в бедности, иммигранты из развивающихся стран, недоношенные младенцы и младенцы с низкой массой тела при рождении, а также младенцы, основным пищевым рационом которых является не обогащенное коровье молоко.Новорожденных следует обследовать на гемоглобинопатию с помощью электрофореза гемоглобина. Выборочный скрининг уместен в регионах с низкой распространенностью.

  2. Рекомендации Американской академии семейных врачей аналогичны рекомендациям Целевой группы США по профилактическим услугам.

  3. Американская педиатрическая академия рекомендует проверять гемоглобин или гематокрит при посещении через шесть, девять или 12 месяцев всем младенцам. Универсальный скрининг новорожденных на анемию не требуется.

Медицинский осмотр важен, но для большинства детей с анемией он ничем не примечателен. Данные, указывающие на хроническую анемию, включают раздражительность, бледность (обычно не наблюдается до тех пор, пока уровень гемоглобина не станет менее 7 г / дл [70 г / л]), глоссит, систолический шум, задержку роста и изменения ногтевого ложа. У детей с острой анемией чаще наблюдаются более серьезные клинические проявления, включая желтуху, тахипноэ, тахикардию, спленомегалию, гематурию и застойную сердечную недостаточность.

Лабораторная оценка

Анемия определяется как снижение концентрации гемоглобина и массы эритроцитов по сравнению с таковыми в контрольной группе того же возраста. В ситуациях скрининга, таких как годовой осмотр, обычно определяется только уровень гемоглобина. Если во время этого скрининга обнаруживается анемия, образец следует обновить до полного количества клеток крови (CBC), поскольку в некоторых лабораториях образцы крови хранятся до семи дней. Врачи должны сначала посмотреть на средний корпускулярный объем (MCV), который позволяет отнести анемию к одной из стандартных классификаций микроцитарной, нормоцитарной и макроцитарной (таблица 2).3,4 После сужения дифференциального диагноза на основе MCV клиницист может перейти к дополнительному диагностическому обследованию.

Следующий этап обследования на анемию должен включать периферический мазок и измерение количества ретикулоцитов. Патологические находки периферического мазка могут указывать на этиологию анемии на основании морфологии эритроцитов. Базофильная пунктирная линия (рис. 1а), представляющая агрегированные рибосомы, может наблюдаться при синдромах талассемии, дефиците железа и отравлении свинцом.Тельца Хауэлла-Джолли (рис. 1b) представляют собой ядерные остатки, наблюдаемые при асплении, злокачественной анемии и тяжелой недостаточности железа. Кольцевые тельца Кэбота (рис. 1c) также являются остатками ядра и проявляются при токсичности свинца, пагубной анемии и гемолитической анемии. Тела Хайнца (рис. 1d) состоят из денатурированного агрегированного гемоглобина и могут быть обнаружены при талассемии, асплениях и хронических заболеваниях печени.

Подсчет ретикулоцитов (или процентное содержание) помогает отличить гипопродуктивную анемию (снижение выработки эритроцитов) от деструктивного процесса (усиление разрушения эритроцитов).Низкое количество ретикулоцитов может указывать на нарушения костного мозга или апластический криз, в то время как высокое количество обычно указывает на гемолитический процесс или активную кровопотерю. Скорректированное количество ретикулоцитов корректирует различия в гематокрите и является более точным индикатором эритропоэтической активности. Чтобы рассчитать скорректированное количество ретикулоцитов, умножьте количество ретикулоцитов пациента (или процент) на результат деления уровня гематокрита пациента на нормальный уровень гематокрита. Скорректированное количество ретикулоцитов выше 1.5 предполагает повышенное производство эритроцитов. В случае снижения выживаемости эритроцитов костный мозг обычно отвечает повышением продукции ретикулоцитов, обычно более 2 процентов или с абсолютным числом более 100 000 клеток на мм 3 (100 × 10 6 на л). Это предположительное свидетельство хронического гемолиза, если ретикулоцитоз сохраняется.

Просмотр / печать Рисунок

РИСУНОК 1.

Изображение морфологии красных кровяных телец, которые могут появиться на периферическом мазке, показывая: (A) базофильную штриховку, (B) тельца Хауэл-Джолли, ( C) Кольцевые тела Кэбота и (D) тела Хайнца.


РИСУНОК 1.

Изображение морфологии эритроцитов, которые могут появиться на периферическом мазке, показывая: (A) базофильную штриховку, (B) тельца Хауэл-Джолли, (C) кольцевые тельца Кэбота и (D) Тела Хайнца.

Если после анализа первоначальных лабораторных данных диагноз все еще остается неясным, могут потребоваться другие подтверждающие исследования. Тесты для определения того, является ли MCV слишком низким, включают уровень железа в сыворотке, общую железосвязывающую способность (TIBC) и уровень свинца.Уровень ферритина в сыворотке может быть приемлемой заменой уровня железа в сыворотке или уровня TIBC. Уровень ферритина в сыворотке первым снижается у пациентов с дефицитом железа, он чувствителен и специфичен. Однако, поскольку сывороточный ферритин является реагентом острой фазы, он может быть ошибочно повышен. Если есть подозрение на гемолиз, прямой тест Кумбса, анализ G6PD, электрофорез гемоглобина и определение лактатдегидрогеназы (ЛДГ), гаптоглобина и билирубина (непрямые) могут помочь подтвердить диагноз.У ребенка с анемией и повышенным MCV врач должен проверить уровень витамина B 12 , фолиевой кислоты и тиреотропного гормона.

Другие тесты для диагностического подтверждения включают панель ферментов эритроцитов для диагностики энзимопатий, осмотической хрупкости для диагностики наследственного сфероцитоза, изоэлектрическое фокусирование гемоглобина для диагностики вариантов гемоглобина, исследования мембранных белков для диагностики мембранопатий и цитогенетические исследования3. при подозрении на гематологическое злокачественное новообразование может быть показана аспирация костного мозга.Перед назначением этих более сложных анализов обычно требуется консультация гематолога.

ТАБЛИЦА 2
Классификация анемий по размеру красных кровяных телец

Правообладатель не предоставил права на воспроизведение этого объекта на электронных носителях. Сведения об отсутствующем элементе см. В исходной печатной версии данной публикации.

Типы анемии на основе MCV

МИКРОЦИТИЧЕСКИЕ АНЕМИИ

Наиболее распространенной и предотвратимой формой микроцитарной анемии является железодефицитная анемия.1 Распространенность железодефицитной анемии в Соединенных Штатах колеблется от 3 до 10 процентов и может достигать 30 процентов среди групп населения с низким доходом.5 Исследователи в исследовании 1997 года6 частного педиатрического кабинета в Нью-Йорке оценили 504 детей подряд в возрасте от одного года до трех лет при анемии. Дети с хроническим или острым заболеванием, преждевременными родами или с известной дискразией крови были исключены из участия в исследовании. Авторы обнаружили, что примерно 7 процентов детей в этой популяции имели дефицит железа без анемии и 10 процентов страдали железодефицитной анемией.6

Просмотр / печать таблицы

ТАБЛИЦА 3
Возрастные индексы клеток крови

2 недели 16,6 (166)

Возраст Гемоглобин, г / дл (г / л) Гематокрит (%) MCV, мкм 3 (fL) MCHC, г / дл (г / л) Ретикулоциты

Гестация от 26 до 30 недель *

13,4 (134)

41,5 (0,41134)

118,2 (118,2)

37.9 (379)

Гестация 28 недель

14,5 (145)

45 (0,45)

120 (120)

)

(5-10)

32 недели беременности

15,0 (150)

47 (0,47)

118 32 (118)

320)

(от 3 до 10)

Термин † (шнур)

16.5 (165)

51 (0,51)

108 (108)

33,0 (330)

(от 3 до 7)

от 1 до 3 дней

18,5 (185)

56 (0,56)

108 (108)

33,0 (330)

(1,8 до 4,6)

2123911

34

53 (0.53)

105 (105)

31,4 (314)

1 месяц

13,9 (139)

44 (0,44)

  • 4
  • 44 (0,44)

  • 4 101)

  • 31,8 (318)

    (от 0,1 до 1,7)

    2 месяца

    11,2 (112)

    35 (0,35)

    )

    31.8 (318)

    6 месяцев

    12,6 (126)

    36 (0,36)

    76 (76)

    35,0 (350)

    35,0 (350)

    (0,7 — 2,3)

    От 6 месяцев до 2 лет

    12,0 (120)

    36 (0,36)

    78 (78)

    33,0 (330)

    От 2 до 6 лет

    12.5 (125)

    37 (0,37)

    81 (81)

    34,0 (340)

    (0,5 до 1,0)

    от 6 до 12 лет

    13,5 (135)

    40 (0,40)

    86 (86)

    34,0 (340)

    (0,5–1,0)

    от 12 до 18 лет

    Мужской

    14.5 (145)

    43 (0,43)

    88 (88)

    34,0 (340)

    (0,5 — 1,0)

    Женский

  • 11
  • 4 14,0 (140)

  • 41 (0,41)

    90 (90)

    34,0 (340)

    (0,5 — 1,0)

    Взрослый

    35

    Мужской

    15.5 (155)

    47 (0,47)

    90 (90)

    34,0 (340)

    (0,8–2,5)

    Женский

  • 4 14,0 (140)

  • 41 (0,41)

    90 (90)

    34,0 (340)

    (0,8 до 4,1)

    ТАБЛИЦА 3
    Возрастные индексы клеток крови

    31,8 (318)

    От 0,1 до 1,7)

    Возраст Гемоглобин, г / дл (г / л) Гематокрит (%) MCV, мкм 3 (fL) MCHC, г / дл (г / л) Reticulocytes

    Беременность от 26 до 30 недель *

    13.4 (134)

    41,5 (0,42)

    118,2 (118,2)

    37,9 (379)

    Срок беременности 28000

  • 4 141239 )

  • 45 (0,45)

    120 (120)

    31,0 (310)

    (от 5 до 10)

    32 недели беременности

    150)

    47 (0.47)

    118 (118)

    32,0 (320)

    (от 3 до 10)

    Срок † (шнур)

    16,5 (165)

  • 4
  • 51 (0,51)

    108 (108)

    33,0 (330)

    (от 3 до 7)

    от 1 до 3 дней

    18,5 (185)

    56 (0,56)

    108 (108)

    33.0 (330)

    (1,8 — 4,6)

    2 недели

    16,6 (166)

    53 (0,53)

    105 (105)

    9114 31,4
    (314)

    1 месяц

    13,9 (139)

    44 (0,44)

    101 (101)

    31,8 (318)

    2 месяца

    11.2 (112)

    35 (0,35)

    95 (95)

    31,8 (318)

    6 месяцев

    12,6 (126)

    12,6 (126)

    36 (0,36)

    81 (81)

    76 (76)

    35,0 (350)

    (0,7–2,3)

    От 6 месяцев до 2 лет

    12,0 (120)

    36 (0.36)

    78 (78)

    33,0 (330)

    От 2 до 6 лет

    12,5 (125)

    37 (0,37)

    34,0 (340)

    (от 0,5 до 1,0)

    от 6 до 12 лет

    13,5 (135)

    40 (0,40)

    86 (86)

    34.0 (340)

    (от 0,5 до 1,0)

    от 12 до 18 лет

    Мужской

    14,5 (145)

    1 43 (0,41134)

    88 (88)

    34,0 (340)

    (от 0,5 до 1,0)

    Женский

    14,0 (140)

    41 (0,41134)

    90 (90)

    34.0 (340)

    (от 0,5 до 1,0)

    Взрослый

    Мужской

    15,5 (155)

    47 (0,44 912)

    39 (90)

    34,0 (340)

    (от 0,8 до 2,5)

    Женский

    14,0 (140)

    41 (0,41)

  • 11
  • 4 (90)

  • 34.0 (340)

    (от 0,8 до 4,1)

    Тяжелый дефицит железа обычно легко диагностируется; однако более легкие формы дефицита железа представляют собой большую проблему. Нормальные значения соответствующих возрасту индексов эритроцитов перечислены в таблице 37.

    Если анамнез и лабораторные данные предполагают железодефицитную анемию, у бессимптомных младенцев в возрасте от 9 до 12 месяцев целесообразно провести одномесячное эмпирическое испытание приема добавок железа. . Низкий MCV и повышенная ширина распределения эритроцитов (RDW) предполагают дефицит железа.8 RDW — это показатель изменчивости размера эритроцитов (анизоцитоз), который является самым ранним проявлением дефицита железа.9 Таблица 48 показывает, как RDW помогает отличить дефицит железа от других причин микроцитоза.10

    Добавки железа дают ребенку в дозировке от 3 до 6 мг на кг в день в форме сульфата железа перед завтраком. Повышение уровня гемоглобина более чем на 1,0 г на дл (10,0 г на л) к четырем неделям является диагностическим признаком железодефицитной анемии и требует продолжения терапии в течение двух-трех дополнительных месяцев для надлежащего восполнения запасов железа.11 В течение этого времени могут быть проведены дальнейшие диетические вмешательства и обучение пациентов. Если анемия рецидивирует, необходимо провести обследование для определения источника скрытой кровопотери.

    Широко признано, что дефицит железа может иметь долгосрочные последствия, часто необратимые. Несколько исследований показали, что обращение анемии не улучшило результаты стандартизированных тестов.12,13 В одном исследовании14 была изучена группа коста-риканских детей в возрасте пяти лет. У детей с железодефицитной анемией средней степени тяжести (гемоглобин менее 10 г на дл [100 г на л]) в младенчестве результаты стандартизированных тестов в возрасте пяти лет были значительно ниже, несмотря на восстановление нормального гематологического статуса и роста.Исследования на моделях крыс показали, что железодефицитная анемия в раннем возрасте вызывает дефицит дофаминовых рецепторов, который нельзя исправить, обращая анемию вспять.15,16 Поэтому крайне важно, чтобы врачи пытались предотвратить дефицит железа у детей до второго года жизни. . Стратегии профилактики железодефицитной анемии могут снизить вероятность развития заболевания (Таблица 517).

    Показания, перечисленные в таблице 48, могут помочь дифференцировать другие микроцитарные анемии.Талассемии — это генетическая недостаточность гена, кодирующего цепи глобина. У пациентов с талассемией ни α-цепь, ни β-цепь не могут быть синтезированы в достаточных количествах, что соответствует номенклатуре α-талассемии или β-талассемии. Этот дефицит вызывает несбалансированный синтез глобиновой цепи, что приводит к преждевременной гибели эритроцитов (таблица 618 (p1403)). Существует около 100 мутаций разной степени тяжести, вызывающих талассемию. Они чаще встречаются у лиц средиземноморского, африканского, индийского и ближневосточного происхождения.Они вызывают нарушение синтеза полипептида гемоглобина, которое может протекать бессимптомно, с легкими симптомами или вызывать тяжелую анемию.

    Направление подходит для случаев неясного диагноза и для лечения более тяжелых типов анемии.

    Врач часто сталкивается с микроцитарной анемией в популяции с более высокой распространенностью талассемии. Индекс Ментцера был разработан, чтобы помочь отличить талассемию от дефицита железа. Он рассчитывается путем деления количества эритроцитов на MCV.Когда коэффициент меньше 13, более вероятна талассемия, а если коэффициент больше 13, дефицит железа более вероятен.19 Таким образом, у ребенка с факторами риска дефицита железа и индексом Ментцера, указывающим на дефицит железа, a как указано выше, оправдано испытание добавок железа. При повторной проверке общего анализа крови через четыре-шесть недель можно взять дополнительные пробирки с кровью и удерживать их в зависимости от результатов общего анализа крови. Затем их можно отправить на электрофорез гемоглобина или другие клинически значимые тесты, если не было адекватного ответа на испытание с добавлением железа.

    Просмотр / печать таблицы

    ТАБЛИЦА 4
    Соотношение ширины распределения эритроцитов и среднего корпускулярного объема

    34

    34

    34

    00

    34 9114 Нормальный

    Лагерингия эритроцитов
    Ширина распределения эритроцитов Средний корпускулярный объем
    Нормальный Высокий

    Нормальный (от 11,5 до 14,5) *

    Гетерозиготная альфа- или бета-талассемия

    Апластическая анемия

    Прелейкоз

    Высокий (больше 14.5)

    Дефицит железа, болезнь HgH или серповидноклеточная β-талассемия

    Хроническое заболевание

    Дефицит фолиевой кислоты

    Дефицит витамина B 12

    ТАБЛИЦА 4
    Зависимость ширины распределения эритроцитов от среднего корпускулярного объема
    Нормальный 9114
    Ширина распределения эритроцитов Средний корпускулярный объем
    Высокий

    Нормальный (11.От 5 до 14,5) *

    Гетерозиготная альфа- или бета-талассемия

    Апластическая анемия

    9 9114 9114 9114 9119 9119 9119

    Высокий (более 14,5)

    Дефицит железа, болезнь HgH или серповидно-β-талассемия

    Хроническое заболевание

    Дефицит фолиевой кислоты

    0 красных клеток фрагментация

    Болезнь печени

    Дефицит витамина B 12

    Другими причинами микроцитарной анемии являются отравление свинцом и сидеробластная анемия.Отравление свинцом диагностируется у ребенка с повышенным уровнем свинца в сыворотке крови. Приобретенные и наследственные формы сидеробластной анемии у детей встречаются очень редко.

    ТАБЛИЦА 5
    Комитет Американской академии педиатрии по рекомендациям по питанию для предотвращения дефицита железа

    Правообладатель не предоставил права на воспроизведение этого элемента на электронных носителях. Сведения об отсутствующем элементе см. В исходной печатной версии данной публикации.

    Просмотреть / распечатать таблицу

    ТАБЛИЦА 6
    Клинические и гематологические особенности основных форм талассемии
    β тихий носитель, гетерозиготный

    9114 9119 или низкий 2 900 Нормальный или нормальный
    Тип талассемии Экспрессия гена глобина Гематологические признаки Клинические данные

    β-талассемия

    β ° гомозиготный

    β ° / β °

    Тяжелая анемия; нормобластемия

    Анемия Кули

    HbF более 90 процентов Нет HbA HbA 2 повышен

    β + гомозиготный

  • 4
  • β

    0

    Анизоцитоз, пойкилоцитоз; анемия средней степени тяжести

    Талассемия промежуточная

    HbA: от 20 до 40 процентов HbF: от 60 до 80 процентов

    β ° гетерозиготный

    β / β °

    β / β °

    гипохромия, анемия легкой и средней степени тяжести

    Может иметь спленомегалию, желтуху

    Повышает HbA 2 и HbF

    β000 + 911 911 911 911 911 β гетерозиготный

    Микроцитоз, гипохромия, легкая анемия

    Нормальный

    Повышенный HbA 2 и HbF

    β молчащий носитель, гетерозиготный

    9114

    Обычное

    Обычное

    δβ гетерозиготный

    δβ / (δβ) °

    Микроцитоз, гипохромия, легкая анемия

    Обычно нормальный

    HbF: от 5 до 20 процентов HbA

    γδβ гетерозиготный

    γδβ / (γδβ) °

    Новорожденный: гемолитическая анемия с микроцитозом нормобластемия Взрослый: похож на гетерозиготную δβ

    на гетерозиготную гетерозиготную болезнь δβ

    Новорожденный.

    Нормальный

    α -Талассемия

    Молчаливый носитель α

    -, α / α, α

    Легкий

    Нормальный

    α признак

    -, α / -, α или -, — / α α

    Микроцитоз, гипохромия, легкая анемия

    Обычно нормальный

    Новорожденный: Hb Barts (γ 4 ) от 5 до 10 процентов Ребенок или взрослый: нормальный

    Болезнь HbH

    -, α / -, —

    Микроцитоз, тельца включения при наджизненном окрашивании; умеренно тяжелая анемия

    Промежуточная талассемия

    Новорожденный: Hb Barts (γ 4 ) от 20 до 30 процентов Ребенок или взрослый: HbH (β 4 ) от 4 до 20 процентов

    α − hydrops fetalis

    -, — / -, —

    Анизоцитоз, пойкилоцитоз; тяжелая анемия

    Водянка плода; обычно мертворожденная или неонатальная смерть

    Hb Barts (y 4 ) от 80 до 90 процентов; нет HbA или HbF

    ТАБЛИЦА 6
    Клинические и гематологические особенности основных форм талассемии

    β тихий носитель, гетерозиготный

    9114 9119 или низкий 2 900 Нормальный или нормальный
    Тип талассемии Экспрессия гена глобина Гематологические особенности

    β-талассемия

    β ° гомозиготный

    β ° / β °

    Тяжелая анемия; нормобластемия

    Анемия Кули

    HbF более 90 процентов Нет HbA HbA 2 повышен

    β + гомозиготный

  • 4
  • β

    0

    Анизоцитоз, пойкилоцитоз; анемия средней степени тяжести

    Талассемия промежуточная

    HbA: от 20 до 40 процентов HbF: от 60 до 80 процентов

    β ° гетерозиготный

    β / β °

    β / β °

    гипохромия, анемия легкой и средней степени тяжести

    Может иметь спленомегалию, желтуху

    Повышает HbA 2 и HbF

    β000 + 911 911 911 911 911 β гетерозиготный

    Микроцитоз, гипохромия, легкая анемия

    Нормальный

    Повышенный HbA 2 и HbF

    β молчащий носитель, гетерозиготный

    9114

    Обычное

    Обычное

    δβ гетерозиготный

    δβ / (δβ) °

    Микроцитоз, гипохромия, легкая анемия

    Обычно нормальный

    HbF: от 5 до 20 процентов HbA

    γδβ гетерозиготный

    γδβ / (γδβ) °

    Новорожденный: гемолитическая анемия с микроцитозом нормобластемия Взрослый: похож на гетерозиготную δβ

    на гетерозиготную гетерозиготную болезнь δβ

    Новорожденный.

    Нормальный

    α -Талассемия

    Молчаливый носитель α

    -, α / α, α

    Легкий

    Нормальный

    α признак

    -, α / -, α или -, — / α α

    Микроцитоз, гипохромия, легкая анемия

    Обычно нормальный

    Новорожденный: Hb Barts (γ 4 ) от 5 до 10 процентов Ребенок или взрослый: нормальный

    Болезнь HbH

    -, α / -, —

    Микроцитоз, тельца включения при наджизненном окрашивании; умеренно тяжелая анемия

    Промежуточная талассемия

    Новорожденный: Hb Barts (γ 4 ) от 20 до 30 процентов Ребенок или взрослый: HbH (β 4 ) от 4 до 20 процентов

    α − hydrops fetalis

    -, — / -, —

    Анизоцитоз, пойкилоцитоз; тяжелая анемия

    Водянка плода; обычно мертворожденная или неонатальная смерть

    Hb Barts (y 4 ) от 80 до 90 процентов; нет HbA или HbF

    НОРМОЦИТИЧЕСКИЕ АНЕМИИ

    Установление диагноза нормоцитарной анемии у ребенка может быть клинически трудным.Во-первых, получите количество ретикулоцитов, чтобы определить, снижается ли продукция красных кровяных телец или увеличивается их разрушение. При усилении деструкции количество ретикулоцитов будет высоким, уровни ЛДГ и непрямого билирубина увеличатся, а в периферическом мазке могут быть признаки разрушения эритроцитов (т. Е. Шистоцитов, серповидных клеток, слезных форм и пойкилоцитов). При снижении выработки эритроцитов количество ретикулоцитов будет снижено по сравнению с концентрацией гемоглобина.В зависимости от тяжести анемии оценка может в конечном итоге потребовать аспирации костного мозга (таблица 7) .18 (p1399)

    Физиологическую анемию младенчества часто путают с патологическим состоянием. В течение первых недель жизни синтез эритропоэтина резко снижается. В последующие шесть-восемь недель гемоглобин достигает нижней точки от 9 до 11 г на дл (от 90 до 110 г на л) или от 7 до 9 г на дл (от 70 до 90 г на л) у недоношенных детей, эритропоэтин производство снова стимулируется, и уровень гемоглобина возвращается к норме.Это часто вызывает беспокойство при рутинном осмотре ребенка с лихорадкой. Общий анализ крови, полученный для оценки количества лейкоцитов, может выявить «аномальный» уровень гемоглобина. Эта физиологическая анемия, если она не ниже ожидаемого диапазона для этой возрастной группы, не требует дальнейшего изучения.

    Просмотреть / распечатать таблицу

    ТАБЛИЦА 7
    Клинически важные серповидно-клеточные синдромы
    + 930 + 930 + 9

    HbA: от 10 до 30

    Нормальный

    Может быть столь же суровым
    Серповидно-клеточное расстройство Состав гемоглобина (%) HbA 2 уровень Уровень эритроцитов Уровень эритроцитов 912 Клинические особенности

    HbSS

    HbS: от 80 до 95

    Нормальный

    Нормальный

    + + to + + + +

  • 4

    + + to + + + +

  • 4 Тяжелое заболевание
  • HbF: от 2 до 20

    HbS-β ° -талассемия

    HbS: от 75 до 90

    Повышение

    Снижение

    В целом неотличимы от SS

    HbF: от 5 до 25

    HbS-β + -талассемия

    HbS: от 5 до 85

    Повышенный

    Пониженный

    + до + +

    HbF: от 5 до 10

    HbSS с признаком α-талассемии (-, α / -, α)

    HbS: от 80 до 9030

    Пониженный

    + + to + + + +

    Может быть мягче, чем SS

    HbF: 10-20

    000 HbSC : От 45 до 50

    Нормальный

    Нормальный

    от + до + +

    Обычно мягче, чем SS; более высокая частота костных инфарктов и пролиферативного заболевания сетчатки

    HbC: от 45 до 50

    HbF: от 2 до 5

    HbSo Arab

    HbSo Arab

    Нормальный

    Нормальный

    от + + до + + + +

    В целом неотличим от SS

    HbO: от 40 до 45

    8 :

    HbSD Лос-Анджелес

    HbS: от 45 до 50

    Нормальный

    Нормальный

    + + + + + + + +

    SS900

    HbD: от 30 до 40

    HbF: от 5 до 20

    HbS / HPFH *

    HbS: 65-80

    Нормальный

    Нормальный

    0 до +

    Обычно бессимптомный

    HbF: 15-30

    8 HbF : От 32 до 45

    Нормальный

    Нормальный

    от 0 до +

    Бессимптомный

    HbA: 52-65

    Клеточно-клинически важный

    34
    Симптоматическая таблица 911 9114 9114 9114 911 911 911 до 95

    50

    Может быть столь же суровым
    Серповидно-клеточное заболевание Состав гемоглобина (%) HbA 2 уровень Объем эритроцитов (MCV) Клиническая степень тяжести 80 Клинические особенности

    Обычный

    Обычный

    + + to + + + +

    Тяжелое заболевание

    HbF: от 2 до 20

    HbS-β ° -талассемия

    HbS: с 75 до 90

  • 4
  • 4 9
  • Снижение

    + + до + + + +

    В целом неотличимо от SS

    HbF: от 5 до 25

    HbS-11-11 β-900halassemia

    HbS: от 5 до 85

    Повышенный

    Пониженный

    + до + +

    Обычно мягче, чем SS

    911 911 911 911 911 до

    HbF: от 5 до 10

    HbSS с признаком α-талассемии (-, α / -, α)

    HbS: от 80 до 90

    Нормальный

    911 34

    Снижено

    + + до + + + +

    Может быть мягче, чем SS

    HbF: от 10 до 20

    HbSC

    45000 9114

    Нормальное

    Нормальное

    + to + + +

    Обычно мягче, чем SS; более высокая частота костных инфарктов и пролиферативного заболевания сетчатки

    HbC: от 45 до 50

    HbF: от 2 до 5

    HbSo Arab

    HbSo Arab

    Нормальный

    Нормальный

    от + + до + + + +

    В целом неотличим от SS

    HbO: от 40 до 45

    8 :

    HbSD Лос-Анджелес

    HbS: от 45 до 50

    Нормальный

    Нормальный

    + + + + + + + +

    SS900

    HbD: от 30 до 40

    HbF: от 5 до 20

    HbS / HPFH *

    HbS: 65-80

    Нормальный

    Нормальный

    0 до +

    Обычно бессимптомный

    HbF: 15-30

    8 HbF : 32-45

    Нормальный

    Нормальный

    0 до +

    Бессимптомный

    HbA: 52-65

    ) является частой причиной угнетения костного мозга, обычно вызывая от четырех до восьми дней аплазии.20 У здоровых детей гематологические осложнения возникают редко; однако у детей с серповидно-клеточной анемией или наследственным сфероцитозом или эллиптоцитозом последствия этой вирусной аплазии эритроцитов могут быть катастрофическими. Это связано с тем, что средняя продолжительность жизни сфероцита или эллиптоцита заметно снижается с 120 дней до 10–30 дней. Таким образом, объем циркулирующей крови значительно больше зависит от продукции костного мозга. Детей с острой парвовирусной инфекцией обычно госпитализируют для внутривенного введения иммуноглобулина и переливания крови, если анемия симптоматическая или тяжелая (гемоглобин ниже 3.5 г на дл [35 г на л]) 21

    Дефицит ферментов, таких как G6PD и пируваткиназа, характеризуется приступами гемолиза во время некоторой формы стресса. Дефицит G6PD является наиболее распространенной энзимопатией и присутствует у 13 процентов чернокожих мужчин, 2 процентов чернокожих женщин и у некоторых детей средиземноморского и юго-восточного азиатского происхождения.22 В случае дефицита G6PD окислительный стресс может вызвать гемолитическую анемию. это может быть драматичным. Клинически это проявляется желтухой, а также другими признаками и симптомами низкого уровня гемоглобина.Пониженный уровень G6PD подтвердит диагноз, но может быть нормальным при остром гемолизе. В этом случае тест следует повторить через несколько месяцев после разрешения эпизода. В настоящее время большинство больниц тестируют на G6PD и пируваткиназу в рамках скрининга новорожденных перед выпиской из больницы.

    МАКРОЦИТИЧЕСКИЕ АНЕМИИ

    Макроцитарные анемии у детей относительно редки, но обычно вызваны дефицитом витамина B 12 и фолиевой кислоты. Другие возможные причины включают хроническое заболевание печени, гипотиреоз и миелодиспластические расстройства.

    Дефицит фолиевой кислоты обычно является вторичной причиной недостаточного питания. Человеческое и коровье молоко являются достаточными источниками фолиевой кислоты. Этот дефицит лечат парентеральным или пероральным приемом фолиевой кислоты в дозировке от 1 до 3 мг один раз в день.23 Гематологический ответ на добавление фолиевой кислоты можно увидеть в течение 72 часов.

    Витамин B 12 Дефицит витамина B в результате недоедания в Соединенных Штатах встречается редко. Врожденная злокачественная анемия возникает из-за неспособности секретировать внутренний фактор желудка.Неврологические симптомы проявляются примерно к девяти месяцам в зависимости от количества витамина B 12 запасов с рождения4. Предпочтительным лечением является пожизненный прием добавок витамина B 12 .

    Заключительный комментарий

    Методы лечения и диагностики анемии у детей были четко определены. Одной из основных областей для улучшения первичной медико-санитарной помощи является предотвращение дефицита железа, поскольку он связан с постоянной задержкой психомоторного развития.Соответствующий скрининг и последующее диагностическое обследование позволят семейному врачу правильно диагностировать большинство случаев анемии у детей. Направление к гематологу всегда уместно в сложных или менее определенных случаях.

    Анемия при беременности: низкий уровень железа при беременности

    Что такое анемия при беременности?

    Анемия означает, что в вашей крови меньше эритроцитов, чем необходимо. Красные кровяные тельца содержат гемоглобин — белок, который переносит кислород из легких в клетки по всему телу.Наиболее распространенной формой анемии является железодефицитная анемия (ЖДА). Это означает, что вашему организму не хватает железа для выработки красных кровяных телец.

    Беременность увеличивает риск развития анемии. По оценкам Всемирной организации здравоохранения (ВОЗ), одна треть всех женщин репродуктивного возраста и 40 процентов беременных женщин во всем мире страдают анемией.

    Что вызывает анемию при беременности?

    Увеличение объема крови в сочетании с недостаточными запасами и потреблением железа является наиболее вероятной причиной анемии во время беременности.

    Когда вы беременны, объем вашей крови увеличивается примерно на 4 ½ — 6 ½ стакана, что примерно на 30–50 процентов больше, чем у небеременных женщин. Однако объем ваших эритроцитов увеличивается только на 15–30 процентов, что часто приводит к так называемой анемии разведения (что означает, что избыточной жидкости больше, чем дополнительных эритроцитов). Вашему организму легко может не хватить железа для увеличивающегося объема крови, особенно если вы изначально не получали достаточного количества железа в своем рационе (или с добавками).

    Помимо повышенного риска, связанного с самой беременностью, вы также подвержены более высокому риску анемии во время беременности, если вы:

    • Были обильные менструации до беременности
    • Соблюдайте диету с низким содержанием железа
    • Придерживайтесь диеты с низким содержанием продуктов, богатых витамином С (которые способствуют усвоению железа).
    • Ешьте слишком много продуктов или напитков, снижающих всасывание железа (например, молочные продукты, продукты, содержащие сою, кофе и чай)
    • Был небольшой перерыв между беременностями
    • Были моложе 20 лет, когда вы забеременели
    • У вас заболевание желудка или кишечника, которое влияет на усвоение питательных веществ вашим организмом
    • Имеете заболевание, повышающее риск анемии, например гипотиреоз, хроническое заболевание почек или наследственные заболевания крови, такие как серповидно-клеточная анемия или талассемия
    • Перенесли определенные виды операции обходного желудочного анастомоза, влияющей на работу кишечника и всасывание питательных веществ
    • Принимайте лекарства, влияющие на усвоение организмом железа из пищи
    • Потерял больше крови, чем обычно, при предыдущих родах, или потерял много крови по любой другой причине
    • Недостаточно фолиевой кислоты
    • Недостаточно витамина B12
    • Беременны многоножкой
    • До беременности болела анемией
    • У вас или было утреннее недомогание.)

    Симптомы анемии при беременности

    У вас может не быть никаких симптомов анемии во время беременности, особенно если ваша анемия легкая. Иногда усталость из-за того, что ваше тело получает меньше кислорода, является единственным симптомом, который вы замечаете. Поскольку чувство усталости во время беременности является обычным явлением, многие женщины не осознают, что недостаток железа вызывает у них большую усталость, чем обычно.

    Усталость и слабость — наиболее частые симптомы тяжелой анемии. Другие симптомы, которые могут начинаться слабо и медленно развиваться, включают:

    • Головная боль
    • Головокружение, ощущение головокружения при вставании
    • Выпадение волос
    • Тяга непищевых продуктов (pica) или льда, чтобы сосать или жевать
    • Судороги в ногах и / или неприятное желание пошевелить ногами в периоды бездействия (синдром беспокойных ног)
    • Учащенное сердцебиение
    • Боль в груди
    • Раздражительность или низкая концентрация
    • Гвозди-ложки
    • Глянцевый язычок
    • Трещины в уголках рта
    • Гвозди ломкие
    • Голубой цвет в белках глаз
    • Цвет лица бледный.Бледные губы, внутренние веки и во рту
    • Одышка
    • Болезненный или воспаленный язык
    • Язвы во рту

    Как диагностируется анемия при беременности?

    На вашем первом дородовом приеме ваш поставщик медицинских услуг оценит вашу историю болезни, проведет медицинский осмотр и выполнит стандартный анализ крови, который включает проверку на анемию. Даже если в начале беременности у вас не было анемии, по мере ее развития у вас может развиться анемия.Большинство провайдеров проверит вас снова в третьем триместре.

    Один из анализов крови, который вам предстоит сделать, — это общий анализ крови. Среди прочего, по данным CBC:

    • Процент эритроцитов в кровотоке (гематокрит или Hct)
    • Количество гемоглобина (Hgb или Hb) в этих эритроцитах
    • MCV или средний корпускулярный объем. Это может помочь различать типы анемии. Например, низкий MCV указывает на железодефицитную анемию, а высокий MCV указывает на анемию, вызванную дефицитом B12 или фолиевой кислоты.А нормальный MCV с анемией может означать анемию разведения или талассемию (генетическая причина анемии).

    Ваш поставщик медицинских услуг может проконтролировать общий анализ крови с помощью дополнительных анализов, чтобы определить, является ли дефицит железа причиной вашей анемии.

    Результаты анализа крови

    Американский колледж акушеров и гинекологов и ВОЗ определяют анемию во время беременности как:

    • Первый триместр: уровень гемоглобина (Hgb) менее 11 граммов (г) гемоглобина на децилитр (дл) крови и гематокрит (Hct) менее 33 процентов.
    • Второй триместр: Hgb <10,5 г / дл с приблизительным гематокритом <31 или 32%
    • Третий триместр: Hgb <10,5-11 г / дл с приблизительным гематокритом <33%
    • Послеродовой период: гемоглобин 10 г / дл с приблизительным гематокритом <30 процентов

    Повлияет ли анемия на мою беременность или ребенка?

    Легкая анемия очень распространена, часто легко поддается лечению и обычно не вызывает беспокойства.

    Тем не менее, если у вас нелеченная анемия, которая не проходит или носит тяжелый характер, она может вызвать проблемы для вас и вашего ребенка.Тяжелая анемия при беременности (особенно в первых двух триместрах) может увеличить риск:

    Тяжелая анемия также может подвергнуть вашего ребенка более высокому риску анемии в младенчестве.

    Исследования на животных показали, что железо играет важную роль в развитии мозга и что развивающийся плод не получает первые капли железа, если у вас его дефицит. Некоторые обсервационные исследования на людях связывают материнскую анемию с когнитивными проблемами и нарушениями развития нервной системы, такими как расстройство аутистического спектра (РАС), синдром дефицита внимания / гиперактивности (СДВГ) и умственная отсталость (ИН) у младенцев и детей.

    Лечение анемии при беременности

    Железодефицитная анемия во время беременности обычно легко лечится добавками железа. (Если вы страдаете анемией, вам будет сложно получить достаточно железа только из своего рациона.)

    Если ваш поставщик медицинских услуг посоветует вам принимать добавки железа, и вы будете принимать их в соответствии с предписаниями, ваше состояние должно улучшиться. (Вероятно, вам посоветуют принимать их в дополнение к витаминам для беременных.) Национальный институт здоровья рекомендует женщинам ежедневно получать следующие базовые количества элементарного железа:

    • 15 мг для детей от 14 до 18 лет
    • 18 мг для детей от 19 до 50 лет
    • 27 мг при беременности

    Примечание: проверьте этикетку на количество элементарного железа; это количество, которое может поглотить ваше тело.Это количество в мг отличается от количества в мг глюконата или сульфата железа (источников, используемых для добавок железа), которые также указаны на этикетке.

    Если вы страдаете анемией, вам необходимо принимать дополнительные добавки железа сверх указанного количества. Обязательно сообщите своему врачу о других лекарствах, которые вы принимаете, потому что некоторые из них могут взаимодействовать с вашей добавкой железа. (Возможно, вам придется поменять типы лекарств, или ваш поставщик может сказать вам, как их принимать.)

    Советы по приему добавок железа

    • Железо лучше всего усваивается натощак, но многие женщины не могут легко переносить добавки железа.(У некоторых женщин они могут вызывать тошноту, спазмы и диарею.) Так что вы можете взять свой с небольшим перекусом.
    • Принимайте добавки железа с источником витамина С, потому что витамин С помогает усвоению железа. Апельсиновый сок — хороший источник, но он вызывает изжогу у многих беременных. Некоторые добавки с железом — обычно рецептурные или жидкие — уже содержат этот дополнительный витамин С. Если у вас этого нет, вы можете одновременно принять немного добавки витамина С.
    • Избегайте молочных продуктов, шпината, кофеина, соевых продуктов, цельнозернового хлеба и круп в течение одного часа до и двух часов после приема добавок железа.Все эти продукты могут снизить всасывание железа.
    • Не принимайте антациды или добавки кальция одновременно с добавками железа. Разделите их на час или два.
    • Если от пищевых добавок вас тошнит, попробуйте принимать их прямо перед сном. Надеюсь, тошнота не будет беспокоить вас, пока вы спите.
    • Если у вас возникли проблемы с ограничением потребления железосодержащих добавок, вы можете попробовать принимать меньшие количества в течение дня. Или поговорите со своим поставщиком о том, чтобы попробовать другой вид железа.Существуют жевательные и жидкие формулы в дополнение к бесчисленным стандартным таблеткам. Добавки железа, отпускаемые по рецепту, иногда легче переносятся, но они могут быть дорогими. Если вы не можете принимать пероральные добавки с железом, можно использовать их вливания.
    • Чтобы предотвратить запор (частый побочный эффект добавок железа), пейте много воды, регулярно занимайтесь спортом и подумайте о добавлении чернослива или сливового сока в свой рацион. Смягчители стула, такие как докузат натрия, безопасны и обычно принимаются во время беременности при запорах.Обратитесь к своему провайдеру за рекомендацией.
    • Если вы принимаете добавки с жидким железом, смешайте жидкость с водой или соком и выпейте через соломинку, чтобы не испачкать зубы.
    • Храните железные таблетки в прохладном сухом месте (иначе они могут рассыпаться). Обязательно храните в недоступном для детей месте.
    • Позвоните своему врачу, если у вас стул на вид дегтеобразный или с красными полосами (черный стул является нормальным при приеме препаратов железа).

    Что делать, если у меня тяжелая анемия?

    Если у вас более тяжелый случай анемии — из-за того, что вы плохо усваиваете железо или у вас была хроническая кровопотеря — или вы не переносите добавки железа, вам могут потребоваться внутривенные инъекции железа или железа для лечения вашего дефицита.Это безопасно и эффективно.

    Если у вас тяжелая железодефицитная анемия и серьезные симптомы, такие как одышка, слабость или боль в груди, вам могут сделать переливание эритроцитов. Переливание не устранит недостаток, но обеспечит временное улучшение. Вашему провайдеру все равно нужно будет устранить причину анемии.

    Если у вас тяжелая анемия и она не проходит после начального лечения, ваш лечащий врач может направить вас к гематологу (специалисту по крови) для лечения.Вам также может потребоваться обратиться к специалисту по медицине матери и плода (MFM), чтобы выяснить, не вызывает ли вашу анемию другое заболевание.

    Если у вас низкий уровень железа, вы можете быстрее уставать или утомляться во время беременности. В любом случае беременность может быть утомительной, поэтому будьте особенно осторожны, если чувствуете дополнительное напряжение из-за низкого уровня железа.

    Можно ли предотвратить анемию при беременности?

    Есть несколько способов снизить риск развития анемии во время беременности.

    Включите в свой рацион хорошие источники железа . Лучший способ предотвратить анемию во время беременности — убедиться, что у вас хорошие запасы железа. Гемовое железо (содержащееся в животных источниках) легче усваивается вашим организмом, чем негемовое железо (из бобовых, овощей и злаков). Приготовление пищи в чугунных сковородах также может немного улучшить ваше железо, потому что продукты будут поглощать часть железа из сковороды.

    Постное красное мясо, обогащенные железом злаки, яйца, арахис и бобы являются хорошими источниками железа.Включите в рацион продукты, улучшающие усвоение железа, например апельсиновый сок, клубнику, брокколи, грейпфрут и перец.

    Узнайте больше о железе в рационе для беременных.

    Принимать добавки . Принимайте витамины для беременных до и во время беременности и в течение всего периода грудного вскармливания. Если ваш витамин не содержит достаточного количества железа, примите также отдельную добавку железа, чтобы убедиться, что вы получаете не менее 27 мг железа в день. (См. Советы выше по приему добавок железа.)

    Поделитесь своей историей . Сообщите своему врачу, если у вас была диагностирована железодефицитная анемия до того, как вы забеременели, или если у вас была анемия во время предыдущей беременности. Также сообщите ей, есть ли у вас предыдущий диагноз или семейная история талассемии. (Если у вас есть это генетическое различие, дополнительное железо не поможет вашей анемии.)

    Имея всю вашу историю болезни, ваш врач может управлять вашим состоянием и эффективно лечить вас до зачатия, на протяжении всей беременности и в послеродовом периоде.

    Как и при любой беременности, приходите на все приемы и следуйте советам врача. Вот еще несколько советов для здоровой беременности.

    Подробнее:

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    2008 - 2021 | Охотники за сердцами