Функции целлюлоза в организме: Биологическая роль целлюлозы и области применения

Содержание

Роль целлюлозы в пищеварении

Целлюлоза ферментами человека не переваривается. Но в толстом кишечнике под действием микрофлорыдо 75% ее количества гидролизуется с образованием целлобиозы и глюкозы. Глюкоза частично используется самой микрофлорой и окисляется до органических кислот (масляной, молочной), которые стимулируют перистальтику кишечника. Частично глюкоза может всасываться в кровь.

Основная роль целлюлозы для человека:

  • стимулирование перистальтики кишечника,

  • формирование каловых масс,

  • стимуляция желчеотделения,

  • абсорбция холестерола и других веществ, что препятствует их всасыванию.

У детей свои причуды Особенности переваривания углеводов у детей

У детей первого года жизни из-за недостаточной кислотности желудка слюнная α-амилаза способна попадать в тонкую кишку и участвовать в пищеварении. Поэтому, несмотря на то, что активность α-амилазы поджелудочной железы у новорожденных довольно низкая, младенцы удовлетворительно способны переваривать полисахариды, в том числе и молочных смесей. К концу первого года жизни активность 

панкреатической α-амилазы возрастает в 25 раз, к периоду половой зрелости – в 50 раз.

Интересной особенностью переваривания углеводов у младенцев является разная скорость гидролиза α-лактозы и β-лактозы.

β-Лактоза, присутствующая в женском молоке, не полностью гидролизуется в тонкой кишке и достигает нижних отделов тонкого кишечника и толстой кишки. Это определяет, в числе других достоинств грудного вскармливания, появление оптимальной кишечной микрофлоры.

В коровьем молоке из-за избытка фосфатов преобладает α-лактоза, которая быстро расщепляется уже в верхних отделах тонкого кишечника, быстрее всасывается и приводит после еды к более высокойгипергликемии

. Поэтому «искусственники» более склонны к ожирению, чем младенцы со здоровым грудным питанием.

С усвоением лактозы и сахарозы бывают проблемы

Существуют две наиболее встречающиеся формы нарушения переваривания дисахаридов в кишечнике – дефект лактазы (β-гликозидазного комплекса) и сахаразы (сахаразо-изомальтазного комплекса), которые называются как интолерантность к лактозе и сахарозе или непереносимость лактозы и сахарозы.

Непереносимость лактозы и сахарозы

Приобретенная недостаточность

Приобретенные формы недостаточности переваривания углеводов возникают в результате заболеваний стенок ЖКТ: энтериты, колиты, когда нарушается образование ферментов и их размещение на щеточной каемке энтероцитов. К тому же ухудшается всасывание моносахаров.

Наследственная недостаточность

При наследственной (первичной) патологии лактазы симптомы проявляются после первых кормлений. Патология сахаразы обнаруживается позднее, при введении в рацион сладкого.

Недостаточность лактазы может проявляться не только у младенцев, но и в подростковом и взрослом возрасте, что является физиологическим возрастным изменением. Такая недостаточность широко распространена среди монголоидов и негроидов.

Патогенез

Отсутствие гидролиза соответствующих дисахаридов приводит к осмотическому эффекту и задержке воды в просвете кишечника.

Кроме этого, сахара активно потребляются микрофлорой толстого кишечника и метаболизируют с образованием органических кислот (масляная, молочная) и газов. Из-за этого симптомами лактазной или сахаразной недостаточности являются диарея, срыгивания, метеоризм, вспучивание живота, его спазмы и боли, атопический дерматит.

Диагностика

Диагноз ферментативной недостаточности ставится на основании анамнеза, симптомов заболевания и анализа кала.

Дифференциальная диагностика нарушений переваривания и всасывания заключается в контроле уровня глюкозы крови после раздельного приема дисахаридов и эквивалентного количества моносахаридов. Незначительный подъем концентрации глюкозы крови в первом случае указывает на нехватку ферментов, во втором – на нарушение всасывания.     

Основы лечения

Использование препаратов, содержащих соответствующие ферменты

, снижение в рационе содержания молока или продуктов с добавлением сахара в зависимости от типа непереносимого углевода.

Подробно о лактазной недостаточности можно посмотреть тут http://www.laktazar.ru

Для переноса моносахаров внутрь клетки требуются особые белки

При использовании углеводов, как впрочем и других веществ, перед организмом стоит две задачи –всасывание в кровь и транспорт в клетки тканей. В любом случае необходимо преодолевать мембрану.

Транспорт моносахаров через мембраны

Всасывание в кишечнике

После переваривания крахмала и гликогена, после расщепления дисахаридов в полости кишечника накапливается глюкоза и другие моносахариды, которые должны попасть в кровь. Для этого им необходимо преодолеть, как минимум, апикальную мембрану энтероцита и его базальную мембрану.

Всасывание моносахаридов из просвета кишечника происходит по 

механизму вторичного активного транспорта. Это значит, что затрата энергии при переносе сахаров происходит, но тратится она не непосредственно на транспорт молекулы, а на создание градиента концентрации другого вещества.

В случае моносахаридов таким веществом является натрий. Фермент Na++-АТФаза постоянно, в обмен на калий, выкачивает ионы натрия из клетки, именно этот транспорт требует затрат энергии. В просвете кишечника содержание натрия относительно высоко и он связывается со специфическим мембранным белком, имеющим два центра связывания: один для натрия, другой для сахара. Примечательно то, что сахар связывается с белком только после того, как с ним свяжется натрий. Белок-транспортер свободно мигрирует в толще мембраны. При контакте белка с цитоплазмой натрий быстро отделяется от него по градиенту концентрации и сразу отделяется сахар. Результатом является накопление сахара в клетке, а ионы натрия выкачиваются Na

+,К+-АТФазой.

Выход глюкозы из клетки в межклеточное пространство и далее кровь происходит благодаря простой и облегченной диффузии.

Целлюлоза структура и функция — Справочник химика 21

    Молекулярная биология изучает биологические структуры и их функции на молекулярном и атомном уровне. Как научное направление молекулярная биология начала развиваться в период 1930—1940 гг., когда были достигнуты успехи в понимании тонкой структуры и свойств небольших молекул благодаря применению спектральных и магнитных методов, в первую очередь дифракции рентгеновских лучей на кристаллах (рентгеноструктурный анализ) и дифракции электронов молекулами газа этим успехам способствовал и прогресс в теории, связанный с появлением квантовой механики. Первые рентгенограммы фибриллярных белков и целлюлозы были получены в 1918 г., кристаллов глобулярных белков —в 1934 г. но только много лет спустя удалось полностью расшифровать строение белковых молекул. 
[c.428]

    Хитин является важнейшей структурой в животном мире подобно целлюлозе в растительном мире. Оба полимера выполняют однородные функции — функции опоры и защиты. Особенно широко хитин распространен в типе членистоногих. Скелет и наружный покров крабов, раков, креветок и других членистоногих в основном состоят из хитина. Хитин найден и в кутикуле насекомых. Данные о количественном содержании хитина в панцирях промысловых объектов [10] приведены в табл. 5.46. 
[c.170]

    Псевдопластичные жидкости (рис. 6-27, кривая 5) получили наибольшее распространение в рассматриваемой группе неньютоновских жидкостей. К ним относятся растворы полимеров, целлюлозы и суспензии с асимметричной структурой частиц, и т. п. Псевдопластичные жидкости, как и ньютоновские, начинают течь при самых малых значениях х . Для этих жидкостей зависимость напряжения сдвига от скорости деформации может быть представлена степенной функцией [c.145]

    Пиримидиновые и пуриновые основания являются элементарными кирпичиками, из которых строятся важнейшие после белков и целлюлозы биополимеры — нуклеиновые кислоты, те живые печатные станки (матрицы), на которых формируются белки в живой клетке, точно повторяющие аминокислотную последовательность белка кавдого живого индивида (подробнее о биологической роли нуклеиновых кислот, их структуре и функциях будет сказано в последнем разделе)  

[c. 707]

    Полисахариды выполняют две основные функции. Крахмал, существующий в двух формах — амилозы и амилопектина, и гликоген являются источниками моно- и дисахаридов. Целлюлоза (в растениях), хитин (у членистоногих) служат веществами, образующими скелет, опорные, защитные структуры. [c.91]

    Целлюлоза — главный компонент древесины как хвойных, так и лиственных пород, занимающий примерно ее половину. Целлюлоза представляет собой линейный полимер с высокой молекулярной массой, построенный исключительно из остатков, Р-О-глюкозы. Благодаря своим химическим и физическим свойствам, а также надмолекулярной структуре она выполняет функцию основного структурного компонента клеточных стенок растений. 

[c.18]

    Важной особенностью процесса ферментативной деструкции целлюлозы и других полисахаридов является то, что он осуществляется на поверхности нерастворимого субстрата, причем реакционная способность субстрата является функцией ряда его физикохимических и структурных свойств, и, как правило, убывает в ходе деструкции Специфика в данном случае заключается в том, что субстрат имеет упорядоченную (кристаллическую) структуру, во многих случаях содержит в своем составе сопутствующие вещества (в первую очередь лигнин), которые служат физическим барьером, затрудняющим доступ ферментов к глюкозидным связям Важную роль играют размеры поверхности, доступной молекулам ферментов, а также адсорбционные и диффузионные процессы, предшествующие и сопровождающие гидролитическое превращение нерастворимых субстратов 

[c. 5]


    В живой материи широко представлены различные регулярные полимеры. Например, чрезвычайно широко распространенная в растительном мире целлюлоза является полисахаридом, состоящим из повторяющихся молекул / -1)-глюкозы. Однако такие молекулы не могут образовать даже самые простейшие формы жизни. Последние характеризуются значительно высоким уровнем организации и, следовательно, требуют значительно более сложны.х и специализированных соединений. Таковыми являются белки и нуклеиновые кислоты — сложные полимерные молекулы, обязательные компоненты живых организмов. Структура и функции этих соединений будут детально описаны в последующих главах этой книги. Задача данной главы — показать основные принципы организации биополимеров, продемонстрировать, как эти принципы позволяют выполнять основополагающие функции живых организмов передавать из поколения в поколение 
[c.13]

    Целлюлоза — основной строительный материал растений. Выполняет в растениях опорные функции, придает им механическую прочность. По распространенности органических веществ на земном щаре целлюлоза занимает первое место. Она представляет собой высокомолекулярное соединение регулярной линейной структуры, построенное из остатков Д-глюкозы  [c.23]

    Для растворов полярных полимеров, например ацетата целлюлозы той же концентрации, график зависимости 1 Т1 = / криволинеен (кривая 2, рис. 13.12). В этом случае АЯв рассчитывают из наклона касательных, проведенных к каждой точке кривой. Величины АНв и Д5в являются функцией температуры (кривые 2, рис. 13.13,а и б). При более низких температурах АЯв и А5в достигают значений 188,5—290,5 кДж/моль, что свидетельствует об упорядоченной прочной структуре раствора, которая при нагревании разрушается, что сопровождается резким уменьшением АЯв и А5в. При этом наблюдается эффект компенсации АЯв и А5в, обнаруженный Хиншельвудом для химических реакций [38]. Поэтому свободная энергия активации становится относительно небольшой величиной и не зависит от температуры (рис. 13.13, е). [c.389]

    Удельные показатели народнохозяйственного ущерба в функции уменьшаются и по своей структуре также определяются главным образом недовыработкой продукции. Абсолютная величина технологической брони для различных целлюлозных заводов будет различна и зависит от способов производства целлюлозы и масштабов производства. [c.222]

    Наличие в древесине и в выделяемом из нее целлюлозном волокне различных клеток, выполняющих в процессе роста дерева различные биологические и структурные функции, неизбежно сказывается на реакционной способности препаратов и их устойчивости к действию различных реагентов. Это различие в свойствах волокон целлюлозы, обусловливаемое их различной морфологической структурой, выявляется для древесной целлюлозы еще более отчетливо, чем для хлопкового волокна различной зрелости. [c.116]

    По мнению авторов, на начальной стадии происходит пиролиз в аморфных областях, а кристаллические фракции служат сдерживающим каркасом, или матрицей. Дополнительным подтверждением подобной схемы служит упорядочение структуры, сохранение больших периодов и доля кристаллической фракции на начальных стадиях пиролиза. На второй стадии (выше 320 10) разрушается кристаллическая фракция, и функции каркаса начинает выполнять частично пиролизованная аморфная фракция. Снижение интенсивности рефлексов МУР является следствием разрушения кристаллической фракции. Действительно, согласно данным многих авторов, кристаллическая структура целлюлозы исчезает при 280—300 °С. [c.279]

    По данным автора, хлорпарафины совмещаются с триацетатом целлюлозы в количестве до 50%, но не оказывают никакого пластифицирующего действия. При нагревании и облучении пленки становятся хрупкими. При выдерживании таких материалов в воде, особенно при высокой температуре, хлорпарафин вытесняется. Это свидетельствует о том, что хлорпарафин, внедренный в структуру триацетата целлюлозы, очень слабо с ней связан и, скорее, выполняет функции наполнителя.[c.545]

    Третью группу биологических макромолекул, состоящих из простых фрагментов, образуют олиго- и полисахариды. Они состоят из простых мо-носахаридных фрагментов, связанных между собой. Функции полисахаридов весьма разнообразны. Они играют роль резервных веществ, например крахмал, и структурных элементов, например целлюлоза. Важную функцию распознавания клеток, а также роль рецепторов выполняют поверхностные элементы олигосахариды и малые полисахариды, связанные с липидами, свойства которых определяет их первичная структура. [c.153]

    В СВЯЗИ С большим практическим значением уксуснокислых эфиров целлюлозы было проведено колоссальное число работ, посвященных разработке оптимальных условий ацетилирования целлюлозы. Результаты этих работ сводятся к тому, что реакционная способность целлюлозы является функцией доступности гидроксильных групп в условиях этерификации. Эти вопросы подробно были рассмотрены Хойзером [130] и Хэппи [105]. При ацетилировании целлюлозы основной фактор, опре-деляюп1,ий реакционную способность,— влажность материала. Вода пе участвует в процессе ацетилирования, более того, ее присутствие является нежелательным, и условия этерификации выбираются такими, чтобы удалять ее из реакционной системы по мере ее образования. Влага влияет на морфологию целлюлозного материала (как на тонкую структуру, так и на макроструктуру), способствуя увеличению доступности гидроксильных групп для молекул реагентов. Вода не оказывает влияния на кристаллические участки, в то время как при действии других реагентов, например этиламина, изменяются как аморфные, так и кристаллические области целлюлозы. Как указывалось выше, межмолеку-лярные водородные связи между гидроксильными группами соединяют макромолекулы в элементы тонкой структуры. Вода, этиламин, алифатические диамины и другие соединения (вещества, вызывающие набухание) обладают энергией, необходимой для разрыва водородных связей, но недостаточной, однако, для перевода макромолекул целлюлозы в раствор. При действии этих веществ происходит перестройка межмолеку-лярных связей. Дальнейшие изменения зависят от суммарной энергии водородных связей и от последующих обработок материала. [c.53]

    Итак, главные источники структурного и функционального многообразия моносахаридов лежат в различном наборе функциональных групп (карбонильные, гидроксильные, карбоксильные, аминогруппы и т. д.) и в не меньшей степени в различиях стереохимии. Последнее надо особо подчеркнуть. В обычном курсе органической химии рассматривают свойства и различия отдельных классов соединений, основанные в первую очередь на различиях бут-леровских структур, и отдельно в виде некоего несколько экзотического приложения — вопросы стереохимии. В химии сахаров такого разделения не может быть. В принципе вся эта область есть органическая стереохимия par ex ellen e , и все многообразие свойств углеводов проистекает прежде всего из их стереохимических различий. Так, например, кардинальные различия свойств и биологической функции целлюлозы и одного из двух компонентов крахмала — амилозы — обусловлены различием кон фигурации лишь одного асимметрического центра элемен тарного звена этих стереоизомерных полисахаридов.[c.10]

    В других гелеобразующих полисахаридных системах могут быть иные (и весьма разнообразные) механизмы связывания макромолекул в узлах сетки однако характер требований к ковалентной структуре, соблюдение которых обеспечивает выполнение обусловленных гелеобразова-нием функций, оказывается сходным. Так, например, в гелях альгинатов, т. е. солей альгиновой кислоты, построенной из 1—>4-связанных остатков р-В-маннуроно-вой (23) и а-Ь-гулуроновой (24) кислот, узлы образованы кристаллитами — правильным образом упакованными участками разных молекул с регулярной структурой, подобными по упаковке кристаллическим участкам элементарных фибрилл целлюлозы. Как мы уже говорили, цепи альгиновых кислот построены по блочному принципу в них чередуются сегменты регулярной структуры из остатков одного типа с сегментами, в которых остатки обоих типов распределены более или менее случайно. Регулярные участки, подобно целлюлозе, имеют стержнеобразную конформацию и потому способны ассоциировать в кристаллиты, а для нерегулярных участков правильная упаковка невозможна, и они образуют в сетке промежутки между узлами.[c.170]

    Прививку полимера к пов-сти наполнителя можно осуществить разл. способами. Эффективность прививки определяют после длит, обработки продукта р-рителем по доле нерастворимого полимера, связанного с наполнителем. Наиб, изучена радикальная прививка. Так, привитые полимеры образуются при измельчении минер, наполнителей в присут. жидких или газообразных мономеров, напр, стирола, метилметакрилата (кол-во привитого полимера обычно 1-2% по массе), а также при радиац. обработке смеси наполнителя (напр., целлюлозы) с мономером (образуется также нек-рое кол-во гомополимера). Прививкой к пов-сти наполнителя в-в (в т. ч. инициаторов), содержащих функц. группы, осуществляют фиксацию на частицах наполнителя активных центров, используемых в дальнейшем для получения наполненных полимеров заданного состава. Подобным способом получены наполненные материалы на основе, напр., полистирола, поливинилхлорида, политетрафторэтилена. В случае прививки к минер, наполнителям полиолефинов используют способность катализатора Циглера-Натты, а также катализатора на основе Сг или Zr взаимодействовать с группами ОН, имеющимися на пов-сти таких наполнителей. Сначала наполнитель подвергают термообработке с целью удаления нежелат. примесей, затем обрабатывают катализатором, после чего проводят жидко-или газофазную полимеризацию олефинов. Полученные в этом процессе наполненные материалы обладают необычным комплексом св-в. Напр., высокомол. полиэтилен, содержащий 50-60% по массе минер, наполнителя, обладает высокими износостойкостью и ударной вязкостью, к-рые невозможно достигнуть при мех. смешении полимера с наполнителем фафито- и саженаполненный полипропилен имеет необычно высокую электропроводность. Методом П. на н. можно получить структуры, в к-рых частицы наполнителя окружены равномерными слоями полимеров и сополимеров разл. типа. Особенно перспективен этот метод для получения сверхвысоконаполненных материалов с равномерным распределением наполнителя в матрице полимера. [c.638]

    Полимеры сахаров присутствуют во всех клетках и выполняют множество функций. Так, целлюлоза придает прочность зеленым растениям, хитин обусловливает прочность скелета членистоногих. Гиалуроно-вые кислоты и другие мукополисахариды образуют защитную прослойку между животными клетками, а пектины и родственные полисахариды играют аналогичную роль в растениях. Клеточные поверхности обычно покрыты слоем полисахаридов самой разной структуры. Различия в структуре полисахаридов, составляющих этот наружный слой, весьма важны, поскольку обусловливают иммунологическую индивидуальность организмов. Крахмал, гликоген и другие запасные полисахариды представляют собой легко мобилизуемые пищевые ресурсы клеток [35 а]. [c.114]

    Распределение высокомолекулярных компонентов в клеточной стенке. Все слои клеточной стенки содержат целлюлозу, имеющую упорядочную надмолекулярную структуру, а также аморфные гемицеллюлозы и лигнин. Последние выполняют функцию связующего между микрофибриллами и элементарными фибриллами целлюлозы, причем в различных слоях клеточной стеки их содержание не одинаково. [c.281]

    Прежде всего была осознана исключительная роль биополимеров в жизненных процессах, что, естественно, поставило перед химией углево дов — важнейших компонентов живой ткани — новые задачи. Изучение структуры и ее связи с биологической функцией в ряду углеводов вызвалс к жизни новые представления и заложило основу новых направлений Одновре-менно бурное развитие промышленности полимеров и их исполь зование в технике и повседневной жизни было непосредственно связанс с широким изучением практически важных природных полимеров и, преж де всего, с развитием химии и технологии целлюлозы, ее спутников и про дуктов ее переработки. Это открыло широкую дорогу и лeдoвaния по химии полисахаридов и потребовало развития многих новых обла стей химии сахаров. [c.7]

    Полифункциональность моносахаридных единиц обусловливает большой набор возможных типов связи между мономерными остатками, что приводит к разнообразию в предпочтительных конформациях полисахаридной цепи и, следовательно, к различиям в физических свойствах и биологических функциях полисахаридов. Разнообразие типов связи может возникать не только из-за участия разных гидроксильных групп остатков моносахарида в образовании гликозидной связи, но и из-за различной конфигурации гликозидного гидроксила. Так, целлюлоза (Р-1,4-глюкан) и амилоза (а-1,4-глюкан) существенно отличаются по конформации молекул.и физическим свойствам. Для целлюлозы характерна способность образовывать длинные вытянутые нити, а молекула амилозы существует в растворе в виде свернутого клубка и легко дает комплексы, в которых полисахаридная цепь образует спиральную вторичную структуру. Это, несомненно, обусловливает различие в биологических функциях целлюлозы и амилозы. [c.607]

    Опорные полисахариды. Наиболее распространенным полисахаридом этой группы является целлюлоза. Линейное построение молекулы и Р-1,4 связи обусловливают возможность образования длинных нитей, соединенных между собой водородными связями, что и приводит к требуемым физическим свойствам. К этому же хемотипу относятся и другие полисахариды клеточных стенок — ксиланы, глюкоманнаны, альгиновая кислота. Аналогичная структура определяет опорные функции хитина. Жесткая цепь остатков N-ацетилглюкозамина определяет и механические свойст- [c. 608]

    Полисахариды — высокомолекулярные вещества, состоящие из повторяющихся структурных единиц. Отличаются друг от друга структурой моноса-харидных звеньев, молекулярной массой, а также гликозидных связей. Благодаря наличию большого числа полярных групп, полисахариды после набухания растворяются в воде и образуют коллоидные растворы. Они присутствуют почти во всех клетках и выполняют многообразные функции. Велика их роль в образовании биологических структур. Так, хитин образует панцири членистоногих, целлюлоза является основной структурой зеленых растений, мукополисахариды — важнейшие компоненты соединительной ткани. Гликоген в животных, а крахмал в растительных организмах являются важнейшими резервными полисахаридами. Их делят на гомо- и гетерополисахариды. Примером гомополисахаридов может служить крахмал, состоящий из остатков только одного типа (глюкозы), а примером гетерополисахаридов — гиалуроновая кислота, которая состоит из остатков глюкуроновой кислоты, чередующихся с -ацетилглюкозамином.[c.9]

    Как видно из формулы, интенсивность и положение соответствующего максимума на кривой интенсивности рассеяния определяются двумя факторами атомными номерами рассеивающих атомов и тригонометрической функцией от межатомных расстояний. Множитель sin К8гц1К8гц — периодическая функция с амплитудой максимумов, убывающей по мере увеличения расстояний Гц или S. Таким образом, в случае больших расстояний эта функция меньше сказывается па общей интенсивности рассеяния и величина и положение максимума интенсивности для группы больших расстояний довольно мало чувствительны к изменениям в больших расстояниях. Благодаря этому факту становится понятным, почему, несмотря на то, что изме-непия молекулярной структуры, происходящие при этерификации целлюлозы, должны сказаться в первую очередь на изменении положения первого максимума (dj), соответствующего группе больших расстояний, мы все же и на теоретической и на экспериментальной кривых рассеяния триацетилцеллюлозы не получили заметного смещения первого максимума.[c.48]

    Целлюлоза, главный внеклеточный структурный полимер большинства растений (разд. 11.9), также образуется в растениях из D-глюкозы. Непосредственным предшественником глюкозных мономерных звеньев целлюлозы, связанных в полимерной цепи Р(1->4)-свя-зями, служат в зависимости от вщ1а растения ADP-глюкоза, DP-глюкоза или GDP-глюкоза. Эти нуклеозцддифос-фаты глюкозы сходны по своей структуре и функции с UDP-глюкозой (разд. 20.13), являющейся предшественником гликогена в животных тканях. Здесь, следовательно, перед нами еще один пример, свидетельствующий о той роли, которую играют различные нуклеотиды, направляя промежуточные продукты метаболизма На определенные биосинтетические пути (разд. 14.18). [c.707]

    Для лучшего уяснеш я процессов переработки древесины, описываемых Е следуюЕ111х разделах, вкратце познакомимся со структурой древесной ткани в древесном стволе и тонкой структурой целлюлозы и лигнина. По структуре древесины можно судить о выполняемых ею функциях  [c. 307]

    Л. пока не нашел еще широкого применения. В силу особенностей строения Л. непригоден для получепия нитей и пленок. Без существенных химич. изменений его нельзя применять в качестве пластиков и клеев. Отходы гидролизной нром-сти (гидролизный Л.) и бумажной пром-сти (лигносульфоновые к-ты) являются сильно измененными, трудно используемыми формами Л. Более интересным с точки зрения использования является Л. сульфатных щелоков, однако этот Л. нельзя считать отходом, т. к. он участвует в цикле регенерации щелочи в сульфат-целлюлоз-ном произ-ве. Попытки найти рациональные способы применения громадных отходов Л. нока еще не достигли существенных успехов. Использование гидролизного Л. является большой народнохозяйственной задачей. Гидролизный Л. может быть использован в строительном деле (получение прессованных досок и плит, термоизоляционных плит, где он служит наполнителем вместе с другими дешевыми отходами). Л., особенно полученный осаждением к-той из черных сульфатных щелоков, может применяться в качестве активного усилителя каучуков взамен газовой сажи в резиновой нром-сти. Гидролизный Л. для этой цели следует нредварительно активировать, напр, нагреванием со щелочью в автоклаве. Являясь полимером с трехмерной структурой макромолекул и обладая фенольными функциями, Л. может быть использован в произ-ве пластмасс как наполнитель при получении прессизделий, а также в качестве компонента термореактивных смол, в к-рых он частично может заменить [c.481]

    Межмолекулярные водородные связи в случае отсутствия резонансных структур приводят к появлению широких полос поглощения в интервале 3450—3200 см . Интенсивность этих полос обычно значительно выше интенсивности полос колебаний несвязанной группы ОН, а их большая ширина объясняется, по-видимому, тем, что спирт образует различные полимерные формы с водородными связями различной прочности, так что наблюдаемая широкая полоса составляется из ряда более узких полос. Разное положение этих полос в пределах указанного интервала обусловлено только неодинаковой прочностью связей и является функцией физического состояния образца, его концентрации и природы растворителя, если вещество находится в растворе, температуры [106], а также типа образующейся связи. Однако сравнение различных типов спиртов при сходных условиях показывает, что у димеров с одним мостиком, у которых из-за пространственных затруднений не могут образоваться полимерные формы, возникают лишь слабые водородные связи [29, 35, 36, так что они поглощают обычно вблизи 3500 см нормальные же спирты, у которых образуется очень мало димеров [19], поглощают в интервале 3400—3200 см . Кун [74 установил, что ди-меризованные спирты поглощают в интервале 3525— 3472 см , а полимеризованные — в интервале 3341— 3338 см . Марринеи и Манн [107, 108] сообщают, что полимерные ассоциаты в целлюлозе поглощают в интервале 3347—3324 см , а димеры с простыми мостиками — при 3404 см . Они разработали изящный метод определения относительного содержания кристаллического и аморфного вещества в целлюлозе, основанный на различиях скорости дейтерообмена в группах ОН. От природы группы R в соединении R — ОН заметно зависит интенсивность полосы поглощения соответствующие данные могут иногда использоваться для выяснения структуры молекулы. Надо отметить, что количественный анализ смесей на основе поглощения связанной группы ОН осуществить гораздо труднее. [c.142]

    Для исследования надмолекулярной структуры высокомолекулярных соединений применяется также электронный микроскоп. Для препаратов природной целлюлозы, фибриллярных белков и коллагена можно по соответствующим снимкам этих препаратов или препаратов, напыленных металлом, сделать вывод о расположении молекул в более крупных образованиях. Электронно-микроскопические исследования дают ценные результаты и при изучении вирусов так, можно было установить, что вирус табачной мозаики в жизнеспособном состоянии состоит не из одной молекулы, а при изменении pH распадается на большое число маленьких однотипных частиц. Распад является обратимым, хотя при этом процессе происходит потеря вирусом функций жизнедеятельности и способности к размножению. Электронный микроскоп является прибором для определения размеров частиц, лежащих между молекулярными и оптически определимыми. Однако отдельные нитевидные молекулы не могут быть наблюдаемы в электронном микроскопе, так как их поперечный размер слишком мал. Однако Хуземан и Руске удалось наблюдать отдельные шарообразные макромолекулы п-йодбензоил-гликогена эти макромолекулы были предварительно охарактеризованы другими методами. [c.198]

    Гидрофильные кутин и целлюлоза, являющиеся составными элементами эпидермиса и кутикулы, связаны с той частью растения, которую принято называть апопластом [54]. Под апопла-стом физиологи понимают непрерывную, мертвую, водопроводящую гидрофильную фазу, в которую как бы погружен живой протопласт. Посредством плазмодесм протопласт всех живых клеток растения связан в единый симпласт. Последний отделен от апопласта плазмалеммой. Концепция симпласта предполагает общую связь всех клеток растения с помощью плазмодесм в единую протоплазматическую сеть, по которой передвигаются эндогенные метаболиты или близкие им по структуре и функциям ксенобиотические вещества [51]. Протопласт надземной части растений посредством плазмодесм флоэмы связан с протопластом корневой системы. [c.199]

    Если в зрелом хлопковом волокне до очистки содержится 93—95% целлюлозы, то ее содержание в древесине не превышает 45—50%. Наличие большого количества других компонентов, в первую очередь лигнина (20—30% от веса древесины), значительно усложняет выделение целлюлозы из древесины. Морфологическая структура древесины сложнее, чем структура хлопкового волокна. Древесина представляет собой сочетание растительных клеток разнообразной формы, которая зависит от функций, выполняемых клетками в живом дереве. Снаружи ствол дерева покрыт мертвой пробковой тканью — корой. Под корой находится важнейшая часть ствола, обеспечивающая его рост, — состоящая из живых клеток ткань (камбий и прикам-бнальные слои клеток), в которых образуются новые клетки древесины. Часть этих клеток откладывается по направлению к центру ствола. В противоположном направлении откладываются клетки, из которых образуется луб, соприкасающийся с опробковевшимн клетками коры. Древесина имеет концентрические кольца роста — годичные кольца. Она состоит из волокон— удлиненных клеток (так называемых прозенхимных), имеющих утолщенную клеточную стенку. В древесине хвойных пород эти клетки называются трахеидами. В растущей древесине имеются и живые клетки, содержащие протоплазму и не похожие по форме на волокно (паренхимные клетки). Часть паренхимных клеток образует радиально расположенные сердцевинные лучи ствола. В стволе имеются также группы клеток, заполненных смолой, так называемые смоляные ходы. Следовательно, в стволах хвойных деревьев можно различать следующие виды клеток  [c.131]

    С хроматографией на бумаге связано большое число разнообразных теоретических вопросов. В основном этп вопросы можно резделить на две группы. К одной группе относятся вопросы, связанные с образованием и изменениями концентращюнного раснределения веществ в бумаге при хроматографическом нроцессе. Вторая группа включает вопросы, связанные с сущностью функций разделения и влиянием структуры веществ (разделяемых веществ, растворителей, иногда и носителей, нанример-целлюлозы) на эту функцию. Инымп словами, к этой группе относятся вопросы, связанные с выяснением влияния строения на хроматографическое поведение веществ. В соответствии со сказанным будет разделена и настоящая глава. [c.44]


Цены и новости на рынке леса и пиломатериалов

Новости и события

О том, как восстанавливают российский лес, в программе «Утро России» на федеральном телеканале «Россия-1» рассказали калужские лесоводы.

Интересный факт – российские леса по площади уступ…

Распоряжением Губернатора Орловской области Андрея Клычкова утвержден Сводный план тушения лесных пожаров на 2021 год на территории региона.

Сводный план включает в себя комплекс мероприя…

Неравнодушные жители Калужской области, которых волнует судьба природы родного края, могут лично принять участие в сохранении лесов региона. Ежегодно региональное министерство природных ресурсов …

Санитарно – оздоровительные мероприятия в лесах, расположенных вблизи Шатиловской сельскохозяйственной опытной станции проводят специалисты лесного хозяйства Орловской области. На территории Ново…

В рамках реализации федерального проекта «Сохранение лесов» национального проекта «Экология» в Ярославской области продолжается работа по воспитанию подрастающего поколения. В преддверии пожарооп…

В рамках работы социального проекта «Кузница юных огнеборцев» ОГБУ «Лесопожарная служба Смоленской области» провела теоретическое занятие с командирами дружин общеобразовательных организаций г. С…

Информация

О том, как восстанавливают российский лес,
В Орловской области утвержден Сводный план тушения лесных пожаров на 2021 год
В Калужской области, жители могут лично принять участие в сохранении лесов региона

О том, как восстанавливают российский лес,
В Орловской области утвержден Сводный план тушения лесных пожаров на 2021 год
В Калужской области, жители могут лично принять участие в сохранении лесов региона

Каталог организаций и предприятий

ООО «Рамэко» — производит и реализует на мировом рынке высококачественное, экологически чистое целлюлозное волокно торговой марки «ECOLLOSE»®. Произведенное методом сухого роспуска вторичного сырья -…

Федеральная таможенная служба — федеральный орган исполнительной власти, осуществляющий в соответствии с законодательством Российской Федерации функции по контролю и надзору в области таможенного дела…

ООО «БАМ-ЭКО» предлагает к поставке кормовую добавку ЭКОСОРБ. ЭКОСОРБ — Многокомпонентная и высокоэффективная кормовая добавка для адсорбции микотоксинов, стимулирует обменные процессы организма и по…

Основные функции компании заключаются в содействии предприятиям машиностроения, металлургической, химической и нефтехимической промышленности, промышленности строительных материалов и другим промышлен…

Федеральная служба государственной статистики (Росстат, ранее Госкомстат) является федеральным органом исполнительной власти, осуществляющим функции по формированию официальной статистической информац…

Входит в состав Группы компаний «Русагро». Выполняет функции склада для соевого шрота, производимого одним из предприятий ГК — ООО «Приморская соя». Поставщиком соевого шрота со склада ООО «Колышлейс…

Предложения на покупку и продажу продукции

Пиломатериал на прямую от производителя в Кемерово по действующим ценам. Брус, брусок, плаха, доска, тес обрезной, не образной, штакетник. Сосна, ель, пихта, лиственница, кедр. Свежераспиленный, строг…

В том числе: Якунин — Подготовка круглых пил к работе Якунин — Круглые пилы и их эксплуатация Стахиев — Работоспособность плоских круглых пил Кучеров – Почему горят круглые пилы Глебов — Пиление д…

Станок заточной для фугования и заточки по передней и задней граням пильных дисков диам. до 1200 мм для круглопильных станков ЦДС, Кара, СПР (Молома), Лаймет и пр. Может устанавливаться как в к…

Продаётся скандинавская технология производства сушильных камер высокого качества и высокой производительности. Опыт производства более 30 лет. Технология позволяет организовать производство в коротки…

Предлагаем приобрести бескамерные кассетные сушилки для быстрой и высококачественной сушки древесины . Преимущества инфракрасной сушки по сравнению с другими способами сушки древесины очевидны :сушка …

Компания ООО «Брянские леса» производит и продает новые, деревянные, пропитанные шпалы тип 1 и 2, также брус для стрелочных переводов, полушпалы пропитанные для подкрановых путей, флюгарочный, мостово…

ГОСТы, ТУ, стандарты

Аннотация (область применения) — Настоящий стандарт распространяется на беленую сульфитную целлюлозу из хвойной древесины, предназначенную для производства различных видов бумаги и картона, изготовляемых для нужд народного хозяйства и экспорта.

Целлюлоза электроизоляционная сульфатная для конденсаторной, кабельной и трансформаторной бумаги. Технические условия. Обозначение — ГОСТ 5186-88.

Аннотация (область применения) — Настоящий стандарт распространяется на сульфитную вискозную целлюлозу, предназначенную для производства вискозной текстильной нити, вискозных волокон и гидрат целлюлозной пленки.

Аннотация (область применения) — Настоящий стандарт распространяется на небеленую сульфитную целлюлозу из хвойной древесины, применяемую для производства различных видов бумаги и картона. Ключевые слова — небеленая сульфитная целлюлоза;марки…

Аннотация (область применения) — Настоящий стандарт распространяется на целлюлозу и устанавливает метод количественного определения содержания альфа-целлюлозы. Вид стандарта — Стандарты на методы контроля.

Индекс рубрикатора ГРНТИ — 664531;660181. Аннотация (область применения) — Настоящий стандарт распространяется на целлюлозу всех видов и устанавливает метод определения массовой доли смол и жиров.

Полисахарид — описание ингредиента, инструкция по применению, показания и противопоказания

Описание полисахарида

Полисахариды – это сложные биоорганические вещества, принадлежащие к классу углеводов. Другое их название – гликаны.

Полисахарид представляет собой полимерную молекулу, состоящую из моносахаридных остатков, объединенных гликозидной связью. То есть это сложная молекула, цепочка которой построена из объединенных друг с другом остатков более простых углеводов. Структуру вещества может составлять разное количество мономеров: от десятков до сотен. Она бывает разветвленной и линейной.

Полисахариды плохо растворяются в воде либо совсем не растворяются. Они бывают бесцветными и соломенными, не имеют вкуса и запаха.

Функции полисахаридов

К полисахаридам относятся разнообразные вещества, выполняющие в организме человека различные функции:

  • Энергетическая функция – гликоген, крахмал. Отвечают за накопление углеводов и снабжение организма глюкозой.
  • Запасающая функция – крахмал, гликоген. Создают запас энергии в жировых тканях.
  • Кофакторная – гепарин. Понижает свертываемость крови и выступает в качестве кофактора ферментативных соединений.
  • Опорная – хондроитинсульфат, целлюлоза. Целлюлоза содержится в растительных стеблевых тканях, а хондроитинсульфат – в животных костных.
  • Защитная – кислые гетерополисахариды. Входят в состав стенок клеток живых организмов. Входят в состав секрета, выделяемого железами, покрывающего стенки желудка, пищевода и других органов и защищающего их от механических повреждений и атак болезнетворных микроорганизмов.
  • Гидроосмотическая – кислые гетерополисахариды. Отвечают за удерживание воды и ионов с положительным зарядом в клетках, не дают накопиться жидкости в пространстве между клетками.
  • Структурная – кислые гетерополисахариды. Сконцентрированы в межклеточном веществе, проявляют цементирующие свойства.
Внимание! Полисахариды тяжело усваиваются в организме человека ввиду сложной структуры. Однако они крайне важны и должны присутствовать в рационе каждого человека.

Сложные углеводы улучшают пищеварение. Растворимые полимеры связываются с желчными кислотами и растворяют их, улучшая усвоение, что способствует понижению уровня холестерина в крови. Кроме того, они тормозят всасывание простых сахаров, нормализуют концентрацию липидов в крови и очищают кишечник.

Фармакологические свойства

Эко-сертифицированные полисахариды активно применяются в медицине. Они проявляют противоопухолевую, антитоксическую, противовирусную, антисклеротическую активность.

Большой интерес для медицины представляет антисклеротическое действие гликанов. Они образуют с кровяными белками комплексы, препятствующие прилипанию холестерина к сосудистым стенкам, что снижает риск атеросклероза.

Антитоксическая функция связана со способностью полимеров выводить из организма тяжелые металлы, радионуклиды, токсины, продукты метаболизма.

углеводы — урок. Биология, Общие биологические закономерности (9–11 класс).

Углеводы, или сахариды, — одна из основных групп органических соединений. Они входят в состав клеток всех живых организмов.

Основная функция углеводов — энергетическая (при расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма). При избытке углеводов они накапливаются в клетке в качестве запасных веществ (крахмал, гликоген) и при необходимости используются организмом в качестве источника энергии. Углеводы также используются и в качестве строительного материала.

 

Общая формула углеводов:

Cn(h3O)m.

Углеводы состоят из углерода, водорода и кислорода.

В состав производных углеводов могут входить и другие элементы.

 

Растворимые в воде углеводы. Моносахариды и дисахариды

Пример:

из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Глюкоза — основной источник энергии для клеточного дыхания.

Фруктоза — составная часть нектара цветов и фруктовых соков.

Рибоза и дезоксирибоза — структурные элементы нуклеотидов, являющихся мономерами нуклеиновых кислот (РНК и ДНК).
Дисахариды образуются путём соединения двух молекул моносахаридов и по своим свойствам близки к моносахаридам. Например, и те и другие хорошо растворимы в воде и имеют сладкий вкус.

Пример:

сахароза (тростниковый сахар), мальтоза (солодовый сахар), лактоза (молочный сахар) — дисахариды, образовавшиеся в результате слияния двух молекул моносахаридов:

сахароза (глюкоза \(+\) фруктоза) — основной продукт фотосинтеза, транспортируемый в растениях.

Лактоза (глюкоза \(+\) галактоза) — входит в состав молока млекопитающих.

Мальтоза (глюкоза \(+\) глюкоза) — источник энергии в прорастающих семенах.

Функции растворимых углеводов: транспортная, защитная, сигнальная, энергетическая.

Нерастворимые в воде полисахариды

Полисахариды состоят из большого числа моносахаридов. С увеличением количества мономеров растворимость полисахаридов уменьшается и сладкий вкус исчезает.

 

Пример:

полимерные углеводы: крахмал, гликоген, целлюлоза, хитин.

Функции полимерных углеводов: структурная, запасающая, энергетическая, защитная.
Крахмал состоит из разветвлённых спирализованных молекул, образующих запасные вещества в тканях растений.

Целлюлоза является важным структурным компонентом клеточных стенок грибов и растений.

Целлюлоза нерастворима в воде и обладает высокой прочностью.

Хитин состоит из аминопроизводных глюкозы, входит в состав клеточных стенок некоторых грибов и формирует наружный скелет членистоногих животных.
Гликоген — запасное вещество животной клетки.

Известны также сложные полисахариды, выполняющие структурные функции в опорных тканях животных (они входят в состав межклеточного вещества кожи, сухожилий, хрящей, придавая им прочность и эластичность).

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://www.bestreferat.ru/referat-100195.html

§ 1. Классификация и функции углеводов

Глава I. УГЛЕВОДЫ

§ 1. КЛАССИФИКАЦИЯ И ФУНКЦИИ УГЛЕВОДОВ

Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни. Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных.  В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела. Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез). Суммарное стехиометрическое уравнение этого процесса имеет вид:

Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу. Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:

Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд. т органических соединений углерода, в основном углеводов.

Животные не способны из углекислого газа и воды синтезировать углеводы. Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности. Высоким содержанием углеводов характеризуются такие виды нашей пищи, как хлебобулочные изделия, картофель, крупы и др.

Название «углеводы» является историческим.  Первые представители этих веществ описывались суммарной формулой СmH2nOn или Cm(H2O)n. Другое название углеводов – сахара – объясняется сладким вкусом простейших углеводов. По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.

 

Классификация углеводов

Все известные углеводы можно подразделить на две большие группы – простые углеводы и сложные углеводы. Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины – комплекс с молекулой белка, гликолипиды – комплекс с липидом, и др.

Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С3), тетрозы (С4), пентозы (С5), гексозы (С6) и т. д.: 

 

Наиболее часто в природе встречаются пентозы и гексозы.

Сложные углеводы (полисахариды, или полиозы)  представляют собой полимеры, построенные из остатков моносахаридов. Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды, степень полимеризации которых, как правило, меньше 10) и высокомолекулярные. Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус. Их по способности восстанавливать ионы металлов (Cu2+, Ag+) делят на восстанавливающие и невосстанавливающие. Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды и гетерополисахариды. Гомополисахариды построены из моносахаридных остатков одного типа, а гетерополисахариды – из остатков разных моносахаридов.

Сказанное с примерами наиболее распространенных представителей каждой группы углеводов можно представить в виде следующей схемы:

Функции углеводов

Биологические функции полисахаридов весьма разнообразны.

Энергетическая и запасающая функция

В углеводах заключено основное количество калорий, потребляемых человеком с пищей. Основным углеводом, поступающим  с пищей, является крахмал. Он содержится  в хлебобулочных изделиях, картофеле, в составе круп. В рационе человека присутствуют также гликоген (в печени и мясе), сахароза (в качестве добавок к различным блюдам), фруктоза (во фруктах и меде), лактоза (в молоке). Полисахариды, прежде чем усвоиться организмом, должны быть гидролизованы с помощью пищеварительных ферментов до моносахаридов. Только в таком виде они всасываются в кровь. С током крови моносахариды поступают к органам и тканям, где используются для синтеза своих собственных углеводов или других веществ, либо подвергаются  расщеплению с целью извлечения из них энергии.

Освобождающаяся в результате расщепления глюкозы энергия накапливается в виде АТФ. Различают два процесса распада глюкозы: анаэробный (в отсутствие кислорода) и аэробный (в присутствии кислорода). В результате анаэробного процесса образуется молочная кислота

,

которая при тяжелых физических нагрузках накапливается в мышцах и вызывает боль.

В результате же аэробного процесса глюкоза окисляется до оксида углерода (IV) и воды:

В результате аэробного распада глюкозы освобождается значительно больше энергии, чем в результате анаэробного. В целом при окислении 1 г углеводов выделяется 16,9 кДж энергии.

Глюкоза может подвергаться спиртовому брожению. Этот процесс осуществляется дрожжами в анаэробных условиях: 

Спиртовое брожение широко используется в промышленности для производства вин и этилового спирта.

Человек научился использовать не только спиртовое брожение, но и нашел применение молочнокислому брожению, например, для получения молочнокислых продуктов и квашения овощей.

В организме человека и животных нет ферментов, способных гидролизовать целлюлозу, тем не менее целлюлоза является основным компонентом пищи для многих животных, в частности, для жвачных. В желудке этих животных в больших количествах содержатся бактерии и простейшие, продуцирующие фермент целлюлазу, катализирующий гидролиз целлюлозы до глюкозы. Последняя может подвергаться дальнейшим превращениям, в результате которых образуются масляная, уксусная, пропионовая кислоты, способные всасываться в кровь жвачных.

Углеводы выполняют и запасную функцию. Так, крахмал, сахароза, глюкоза у растений и гликоген у животных являются энергетическим резервом их клеток.

 

Структурная, опорная и защитная функции

Целлюлоза у растений и хитин у беспозвоночных и в грибах выполняют опорную и защитную функции. Полисахариды образуют капсулу у микроорганизмов, укрепляя тем самым  мембрану. Липополисахариды бактерий и гликопротеины поверхности животных клеток обеспечивают избирательность межклеточного взаимодействия и иммунологических реакций организма. Рибоза служит строительным материалом для РНК, а дезоксирибоза – для ДНК.

Защитную функцию выполняет гепарин. Этот углевод, являясь ингибитором свертывания крови, предотвращает образование тромбов. Он содержится в крови и соединительной ткани млекопитающих. Клеточные стенки бактерий, образованные полисахаридами, скреплены короткими аминокислотными цепочками, защищают  бактериальные клетки от неблагоприятных воздействий. Углеводы участвуют у ракообразных и насекомых в построение наружного скелета, выполняющего защитную функцию.

 

Регуляторная функция

Клетчатка усиливает перистальтику кишечника, улучшая этим пищеварение.

Интересна возможность использования углеводов в качестве источника жидкого топлива – этанола. С давних пор использовали древесину для обогрева жилищ и приготовления пищи. В современном обществе этот вид топлива вытесняется другими видами – нефтью и углем, более дешевыми и удобными в использовании. Однако растительное сырье, несмотря на некоторые неудобства в использовании, в отличие от нефти и угля является возобновляемым источником энергии. Но его применение в двигателях внутреннего сгорания затруднено. Для этих целей предпочтительнее использовать жидкое топливо или газ. Из низкосортной древесины, соломы или другого растительного сырья, содержащих целлюлозу или крахмал, можно получить жидкое топливо – этиловый спирт. Для этого необходимо вначале гидролизовать целлюлозу или крахмал и получить глюкозу:

,

а затем полученную глюкозу подвергнуть спиртовому брожению и получить этиловый спирт. После очистки его можно использовать в виде топлива в двигателях внутреннего сгорания. Надо отметить, что в Бразилии с этой целью ежегодно из сахарного тростника, сорго и маниока получают миллиарды литров спирта и используют его в двигателях внутреннего сгорания.

Про целлюлозу, биотопливо и коровий желудок | Научные открытия и технические новинки из Германии | DW

У всех высших растений на нашей планете оболочки клеток состоят главным образом из целлюлозы. В химическом отношении целлюлоза, она же клетчатка, представляет собой биополимер, высокомолекулярный углевод, полисахарид, молекулы которого образованы длинными, соединенными друг с другом множеством водородных связей линейными цепочками из сотен или даже тысяч остатков глюкозы. Целлюлоза буквально напрашивается в качестве сырья для биотоплива, поскольку сельскохозяйственное производство дает из года в год сотни тысяч, а то и миллионы тонн растительных отходов, которые состоят практически из чистой клетчатки. Проблема лишь в том, что целлюлоза плохо поддается расщеплению.

Вильфрид Вебер (Wilfried Weber), профессор Центра по изучению биологических сигнальных процессов (BIOSS) при Фрайбургском университете, говорит: «Если вы собираетесь производить биотопливо не из продовольственного сырья вроде кукурузы, пальмового масла и так далее, то оптимальной альтернативой представляются трава и солома как отход сельского хозяйства, а также древесина. Но с этими видами сырья связана одна проблема: главный энергоноситель в них — целлюлоза. А переработать целлюлозу в жидкое топливо, пригодное, скажем, для заправки автомобиля, очень непросто».

Термиты как альтернатива дрожжам

Во всяком случае, дрожжи, легко осуществляющие спиртовое брожение простых сахаров, с целлюлозой не справляются. Поэтому ученые разных стран активно ищут альтернативные процессы и технологии. Особенно активно работают в этом направлении американцы и немцы. Американский микробиолог, профессор Гари Строубел (Gary Strobel) из университета штата Монтана в Боузмене — изучает обнаруженный в Чили симбиотический гриб Gliocladium roseum, способный расщеплять целлюлозу с образованием этана и других летучих углеводородов; другой — профессор Джаред Ледбеттер (Jared R. Leadbetter) из Калифорнийского технологического института в Пасадене — исследует кишечную микрофлору обитающих в Коста-Рике термитов рода Nasutitermes, способных за считанные месяцы полностью переварить деревянный дом вместе с мебелью.

А специалисты Объединенного института геномных исследований в Уолнат-Крике, штат Калифорния, обратились к крупному рогатому скоту. Ведь хотя жвачные животные — так же, как и люди — не обладают собственными ферментами, способными расщеплять целлюлозу, они тем не менее прекрасно обходятся в качестве корма травой и сеном, то есть практически чистой клетчаткой, и умудряются усваивать ее так, что она вполне удовлетворяет их энергетические потребности.

Метагеномный анализ коровьего желудка

Очевидно, все дело тут в микрофлоре пищеварительного тракта. Именно это и побудило калифорнийских ученых произвести так называемый метагеномный анализ микроорганизмов, населяющих коровий желудок, то есть секвенировать все имеющиеся там нуклеиновые кислоты в надежде обнаружить гены, причастные к расщеплению клетчатки. В общей сложности исследователи идентифицировали в коровьем желудке почти 30 тысяч биомолекул. Теперь ученые надеются, что процессы, происходящие в желудке коровы, удастся воспроизвести в искусственных условиях — сначала в лаборатории, а потом и в крупных промышленных установках по производству биоэтанола. Во всяком случае, это отвечало бы представлениям так называемой синтетической биологии, которая видит свою задачу в том, чтобы по-новому скомбинировать отдельные природные элементы.

Журналисты любят сравнивать такой подход со сборкой самых разных изделий и сооружений из стандартных кирпичиков конструктора Lego. Но на самом деле не все так просто, — говорит Вильфрид Вебер: «До такой легоподобной биологии нам пока, к сожалению, еще очень далеко. Это связано с тем, что биологические компоненты гораздо хуже поддаются стандартизации или переносу из одной среды в другую, чем кирпичики лего или, скажем, электронные компоненты».

Легоподобные биокомпоненты

Ключевую роль в современной синтетической биологии играет база данных в Массачусетском технологическом институте в Кеймбридже близ Бостона. Эта база содержит информацию обо всех имеющихся в наличии биокомпонентах. Их можно заказать, как книги или одежду по каталогу посылторга. Впрочем, и тут есть проблемы. Вильфрид Вебер: «На сегодняшний день этот каталог MIT содержит более 3,5 тысяч биологических компонентов — в основном генов. Это очень ценный ресурс, позволяющий получить все необходимые фрагменты ДНК. К сожалению, описание этих фрагментов часто оставляет желать лучшего. Нам уже не раз доводилось испытывать разочарование, когда мы заказывали там определенные компоненты и получали совсем не то, что указывалось в описании. То есть система контроля качества там пока не на высоте». Но это, конечно, ни в коей мере не ставит под сомнение перспективы синтетической биологии.

Автор: Владимир Фрадкин
Редактор: Ефим Шуман

Структура, свойства, функции, факты и резюме

Введение

Целлюлоза — это органическое соединение, относящееся к категории полисахаридов. Это полимер, состоящий из субъединиц глюкозы. Он содержится в бактериальных и растительных клетках и в большом количестве присутствует в их клеточных стенках. Целлюлоза играет важную роль в структуре и прочности растений. Это также имеет большое значение в отрасли.

В этой статье мы изучим структуру, свойства и синтез целлюлозы.Мы также обсудим его возникновение и важность для растений. Напоследок поговорим о промышленном использовании целлюлозы. Итак, продолжайте читать.

Структура

Целлюлоза состоит из тысяч субъединиц D-глюкозы. Субъединицы глюкозы в целлюлозе связаны через бета-1-4 гликозидные связи.

В отличие от других полисахаридов, молекулы глюкозы в целлюлозе имеют обратную ориентацию. Они имеют бета-ориентацию, при которой гидроксильная группа аномерного углерода или углерода номер один направлена ​​над плоскостью глюкозного кольца.Гидроксильные группы остальных атомов углерода направлены ниже плоскости кольца.

Для образования бета-1-4-гликозидных связей каждая альтернативная молекула глюкозы в целлюлозе инвертируется. Гидроксильная группа углерода 1 направлена ​​вверх, а у углерода 4 — вниз. Теперь, чтобы образовать бета-1-4-гликозидную связь, одна из этих молекул должна быть перевернута так, чтобы обе гидроксильные группы находились в одной плоскости. Это причина инверсии каждой альтернативной молекулы глюкозы в целлюлозе.

Целлюлоза — неразветвленная молекула. Полимерные цепи глюкозы расположены линейно. В отличие от крахмала или гликогена эти цепи не подвергаются свертыванию, образованию спиралей или разветвлению. Скорее, эти цепочки расположены параллельно друг другу. Водородные связи образуются между этими цепочками из-за атомов водорода и гидроксильных групп, которые прочно удерживают цепи вместе. Это приводит к образованию прочных и прочных микрофибрилл целлюлозы.

Целлюлоза присутствует в клетках растений в виде микрофибрилл целлюлозы.Эти микрофибриллы вместе образуют полисахаридную или целлюлозную матрицу. Дальнейшие подробности о полисахаридной матрице будут обсуждаться где-нибудь в этой статье.

Недвижимость

Целлюлоза отличается от остальных полисахаридов по своим свойствам. Уникальные свойства целлюлозы обусловлены ее уникальной структурой. Они также зависят от количества субъединиц глюкозы, присутствующих в целлюлозе. Он имеет следующие свойства:

  • Целлюлоза — самый распространенный углевод, присутствующий в природе.
  • Она нерастворима в воде.
  • Целлюлоза — твердое кристаллическое вещество, имеющее белый порошкообразный вид.
  • Она имеет высокую прочность на разрыв благодаря прочным водородным связям между отдельными цепями в микрофибриллах целлюлозы. Прочность на разрыв микрофибрилл целлюлозы сравнима с прочностью на разрыв стали
  • Альтернативное расположение молекул глюкозы в целлюлозе также способствует высокому пределу прочности на разрыв целлюлозы
  • Она растворима в органических растворителях

Синтез

Целлюлоза — это синтез не происходит у животных. Он ограничен только растениями или бактериями. Биосинтез целлюлозы в двух организмах происходит по разным этапам

Растения

У растений синтез целлюлозы происходит на специальных комплексах, присутствующих на клеточной мембране, которые называются концевыми комплексами розетки.Эти комплексы представляют собой гексамерные трансмембранные белки, способные свободно плавать в плазматической мембране. Они содержат как минимум три фермента синтазы целлюлозы.

Эти трансмембранные розетки выполняют две функции; полимеризация остатков глюкозы с образованием целлюлозной цепи и сборка микрофибрилл целлюлозы.

Синтез целлюлозной цепи

Процесс синтеза цепей целлюлозы начинается на цитоплазматическом конце концевых комплексов розетки. Ферменты синтазы целлюлозы используют остатки глюкозы, обеспечиваемые UDP-глюкозой.

На первом этапе глюкозо-6-фосфат превращается в глюкозо-1-фосфат в цитоплазме растительных клеток под действием фермента фосфоглюкомутазы. Этот этап является обычным при синтезе крахмала, гликогена и целлюлозы.

На следующем этапе UTP и глюкозо-1-фосфат реагируют с образованием UDP-глюкозы и высвобождается молекула пирофосфата. Гидролиз пирофосфата делает этот этап необратимым. Это также стадия, ограничивающая скорость синтеза целлюлозы.

Целлюлазосинтаза требует праймера для синтеза цепей целлюлозы. Стероидная молекула ситостерин-бета-глюкозид выполняет функцию праймера при синтезе целлюлозы.

Целлюлозосинтаза начинает строить целлюлозную цепь на праймере с использованием остатков глюкозы, обеспечиваемых молекулами UDP-глюкозы. Он соединяется с остатками глюкозы через бета-1-4 гликозидные связи с образованием длинной цепи целлюлозы, высвобождающей молекулы UDP.

Молекулы UDP могут затем превращаться в UTP с помощью определенных киназ.

Сборка микрофибрилл целлюлозы

Когда цепь целлюлозы удлиняется до определенной длины, фермент целлюлаза, присутствующий в цитоплазме, отщепляет эту цепь от праймера.

Розеточные комплексы перемещают эту цепь через плазматическую мембрану в клеточную стенку.

В клеточной стенке различные цепи целлюлозы расположены параллельно друг другу, и между ними образуются водородные связи. Это приводит к образованию микрофибрилл целлюлозы с высокой прочностью на разрыв.

Бактерии

Бактерии используют то же семейство ферментов для синтеза целлюлозы, что и растения. Однако бактериальные ферменты кодируются разными генами. Другая гипотеза состоит в том, что растения получили ферменты синтеза целлюлозы от бактерий после эндосимбиоза.

Животные

Целлюлозу также синтезируют некоторые животные, называемые оболочниками. Туникаты — это беспозвоночные животные, обитающие в море. У них твердая оболочка, которая окружает нежное тело животного.Целлюлоза содержится в панцире этих животных.

Процесс синтеза целлюлозы в чем-то такой же, как у растений и бактерий. Структура целлюлозы практически такая же.

Целлюлозная сеть в клеточной стенке растений

Понимание расположения микрофибрилл целлюлозы и полисахаридного матрикса в клеточной стенке растений также важно.

Ранее мы исследовали, что при синтезе цепей целлюлозы они выводятся из клетки в клеточную стенку.Здесь целлюлозные цепи расположены параллельно, образуя водородные связи между собой. Это приводит к образованию микрофибрилл целлюлозы.

Полисахаридная матрица образуется, когда другие молекулы сахара взаимодействуют с этими микрофибриллами целлюлозы. В первичной клеточной стенке растений глюканы и арабиноксиланы являются двумя основными компонентами полисахаридной матрицы. Эти полисахариды взаимодействуют друг с другом и образуют сеть среди микрофибрилл целлюлозы. Эта сеть усиливается за счет образования перекрестных ссылок. Эти поперечные связи образуются, когда остатки арабиноксилана реагируют с кислотами, такими как феруловая кислота (FA) и диферуловая кислота (DFA). По этой причине также говорят, что полисахаридная матрица состоит из кислых полисахаридов.

В дополнение к микрофибриллам целлюлозы и полисахаридной матрице первичная клеточная стенка также содержит сшивающие полисахариды. Эти полисахариды сшивают микрофибриллы целлюлозы, образуя сложную сеть.Наиболее важным из этих сшивающих полисахаридов является гемицеллюлоза. Это производное целлюлозы, о котором мы кратко поговорим в конце этой статьи.

Кальций также играет важную роль в формировании сети. Он перекрестно связывает кислые полисахариды, присутствующие в полисахаридной матрице.

происшествие

Целлюлоза — это биополимер, производимый наиболее широко на Земле. Он присутствует в клеточной стенке всех клеток растения. Целлюлоза также присутствует в клеточной стенке других организмов, таких как бактерии и водоросли.

Самая чистая форма целлюлозы — хлопок, который содержит около 98% целлюлозы. Кроме того, целлюлоза также присутствует в древесине, полученной из деревьев.

Хотя клетки животных не имеют клеточной стенки, целлюлоза также встречается у некоторых видов животных. Он присутствует в панцирях оболочников, беспозвоночных животных, обитающих в море.

Целлюлолиз

Процесс разложения целлюлозы называется целлюлолизом. Его можно обсудить под тремя заголовками; у растений, животных и при тепловом воздействии.

Растения

Целлюлоза обычно не разлагается в растениях, за исключением болезней. При большинстве заболеваний патогены проникают в растительную клетку после разрушения стенки растительной клетки. Это разрушение клеточной стенки осуществляется целлюлолитическими ферментами, которые разрушают или расщепляют целлюлозу, присутствующую в микрофибриллах.

Различные целлюлолитические ферменты вместе известны как ферменты целлюлазы. Эти ферменты вырабатываются различными бактериями, грибами и другими паразитами растений.

Животные

Разложение целлюлозы происходит в пищеварительном тракте некоторых млекопитающих. Обычно целлюлозу трудно переваривать из-за обширных поперечных сшивок, которые образуются между ее волокнами в клеточной стенке растения. Однако пищеварение можно облегчить, если его растворить в некоторых полярных растворителях, таких как ионные растворы и т. Д.

Переваривание целлюлозы ограничено травоядными животными, такими как коровы, козы, овцы и т. Д. У этих млекопитающих есть бактерии, которые живут в симбиотических отношениях в пищеварительном тракте этих млекопитающих.К ним относятся видов бактерий Cellulomonas и Ruminococcus .

Эти бактерии производят фермент целлюлазу, который разрушает целлюлозу, присутствующую в пище этих млекопитающих. Продукты распада целлюлозы используются бактериями для собственного роста и размножения.

Позже бактерии перевариваются ферментами пищеварительного тракта млекопитающего. Таким образом, целлюлоза, присутствующая в бактериях, становится частью тела млекопитающих.

В этом процессе участвуют два типа ферментов;

  • Целлюлазы, они действуют на остатки глюкозы, присутствующие в цепи, и разрушают бета-1-4 звенья
  • Глюкозидазы, они действуют на концы цепи и удаляют концевые остатки глюкозы, разрывая гликозидные связи

Целлюлоза не является переваривается в пищеварительной системе человека из-за отсутствия ферментов, разрушающих бета-1-4 гликозидные связи.

Термолиз

Термолиз означает разрушение целлюлозы при воздействии на нее высокой температуры или тепла.

Термолиз целлюлозы происходит при 350 градусах, когда разлагается на пары углекислого газа и других аэрозолей. Эта температура называется термолитической или пиролитической.

Расплав целлюлозы при температуре пиролиза содержит короткие цепи, состоящие из двух-семи субъединиц.

Аэрозоли, возникающие при этой температуре пиролиза, содержат олигомеры целлюлозы в безводной форме. Эти безводные молекулы получены из расплава.

Важность

Целлюлоза имеет огромное значение для растений, животных, микроорганизмов, а также в промышленности.

Растения

Целлюлоза обеспечивает жесткость растительных клеток. Высокая прочность на разрыв целлюлозных волокон, присутствующих в стенке растительной клетки, отвечает за сохранение формы и жесткости растительных клеток. Именно благодаря таким прочным целлюлозным волокнам в клеточной стенке клетки растений не лопаются, как клетки животных, при помещении в гипотонический раствор.

Микроорганизмы

Целлюлоза — компонент клеточных стенок бактерий и водорослей. Он обеспечивает жесткость этих ячеек, а также сохраняет их форму и структуру.

Животные

Это важный источник углеводов для травоядных, таких как козы и овцы.

У других млекопитающих и людей не переваривается. Однако он действует как объемная клетчатка, необходимая для здоровья желудочно-кишечного тракта.

Промышленность

Целлюлоза используется в различных отраслях промышленности на благо человечества.Ниже приведены некоторые из его применений:

  • Целлюлоза используется для производства бумаги, картона, картона, картона и других бумажных изделий.
  • Используется в текстильной промышленности для изготовления одежды. Из хлопка и других растительных волокон шьют разную одежду.
  • Используется для изготовления электроизоляционной бумаги в электротехнической промышленности.
  • Используется для производства биотоплива.
  • Целлюлоза используется в порохе.
  • Применяется в качестве стабилизатора в различных лекарствах.
  • Используется в биологических лабораториях как стационарная фаза для хроматографии.

Сводка

  1. Целлюлоза — самый важный структурный полисахарид, присутствующий в растениях.
  2. Он состоит из неразветвленных цепей молекул глюкозы, связанных бета-1-4 гликозидными связями.
  3. Каждая альтернативная молекула глюкозы в целлюлозных цепях инвертирована. Эти цепочки расположены параллельно друг другу, образуя микрофибриллы.
  4. Синтезируется специальными розетками трансмембранных комплексов, присутствующих в плазматической мембране растительных клеток.
  5. Микрофибриллы целлюлозы сшиты через молекулы гемицеллюлозы.
  6. Полисахаридная матрица с кислым полисахаридом также присутствует вместе с микрофибриллами целлюлозы в клеточной стенке растений.
  7. Целлюлоза присутствует в клеточной стенке растений, водорослей и бактерий, а также в оболочке оболочников.
  8. Целлюлоза переваривается только у травоядных.
  9. В растениях целлюлоза разлагается патогенными ферментами. Он также подвергается деградации при температуре 350 градусов Цельсия.
  10. Придает прочность и жесткость клеткам растений и бактерий, а также водорослям.
  11. Это источник углеводов для травоядных.
  12. Целлюлоза составляет основную массу пищевых волокон в рационе человека.
  13. Используется в промышленности для следующих целей;
    • Для производства бумаги и бумажных изделий
    • Для изготовления изоляционной бумаги
    • В качестве биотоплива
    • В качестве стационарной фазы в хроматографии
    • Для производства пороха

Ссылки

  1. Обновление D.М. (1969). «Полимикроопределение целлюлозы в биологических материалах». Аналитическая биохимия. 32 (3): 420–424. дой : 10.1016 / S0003-2697 (69) 80009-6 . PMID 5361396 .
  2. Ромео, Тони (2008). Бактериальные биопленки. Берлин: Springer. С. 258–263. ISBN 978-3-540-75418-3 .
  3. Клемм, Дитер; Хойблен, Бриджит; Финк, Ханс-Петер; Бон, Андреас (2005). «Целлюлоза: очаровательный биополимер и экологически чистое сырье». Энгью. Chem. Int. Эд. 44 (22): 3358–93. DOI : 10.1002 / anie.200460587 . PMID 15861454 .
  4. Целлюлоза. (2008). В Британская энциклопедия . Получено 11 января 2008 г. из Encyclopdia Britannica Online.
  5. Химический состав древесины Архивировано 2018-10-13 на Wayback Machine .ipst.gatech.edu.

Целлюлоза | Encyclopedia.com

Структура целлюлозы

Как целлюлоза устроена в стенках растительных клеток

Переваривание целлюлозы

Ресурсы

Целлюлоза — это вещество, которое содержится в клеточных стенках растений. Хотя целлюлоза не входит в состав человеческого тела, она, тем не менее, является самой распространенной органической макромолекулой на Земле. Научное сообщество впервые обнаружило целлюлозу в 1833 году, когда она изучалась в стенках клеток растений.По химической структуре целлюлоза напоминает крахмал, но, в отличие от крахмала, целлюлоза чрезвычайно жесткая (рис. 1). Эта жесткость придает большую прочность телу растения и защищает внутренние части растительных клеток.

Как и крахмал, целлюлоза состоит из длинной цепи, состоящей не менее чем из 500 молекул глюкозы. Таким образом, целлюлоза — это полисахарид (от латинского «много сахаров»). Некоторые из этих полисахаридных цепей расположены параллельными рядами с образованием микрофибрилл целлюлозы. Отдельные полисахаридные цепи связаны в микрофибриллах водородными связями.Микрофибриллы, в свою очередь, связываются вместе, образуя макрофибриллы (рис. 1).

Микрофибриллы целлюлозы чрезвычайно прочные и негибкие из-за наличия водородных связей. Фактически, описывая структуру микрофибрилл целлюлозы, химики называют их расположение кристаллическим, что означает, что микрофибриллы обладают кристаллоподобными свойствами. Хотя крахмал имеет ту же основную структуру, что и целлюлоза — это также полисахарид, — субъединицы глюкозы связаны таким образом, что позволяет молекуле крахмала скручиваться.Другими словами, молекула крахмала гибкая, а молекула целлюлозы жесткая.

Подобно человеческой кости, стенки растительных клеток состоят из фибрилл, расположенных в матрице или фоновом материале. В клеточной стенке фибриллы представляют собой микрофибриллы целлюлозы, а матрица состоит из других полисахаридов и белков. Одним из этих матричных полисахаридов в клеточных стенках является пектин, вещество, которое при нагревании образует гель. Пектин — это вещество, которое повара используют для приготовления желе и джемов.

Расположение микрофибрилл целлюлозы в полисахаридной и белковой матрице придает большую прочность стенкам растительных клеток.Клеточная стенка растений выполняет несколько функций, каждая из которых связана с жесткостью клеточной стенки. Он защищает внутреннюю часть растительной клетки, но также позволяет циркулировать жидкости внутри и вокруг клеточной стенки. Клеточная стенка также связывает растительную клетку с ее соседями. Это связывание создает

КЛЮЧЕВЫЕ УСЛОВИЯ

Анаэробный — Описывает биологические процессы, происходящие в отсутствие кислорода.

Клеточная стенка — Жесткое внешнее покрытие растительных клеток, состоящее из микрофибрилл целлюлозы, удерживаемых вместе в матрице.

Синтетаза целлюлозы — Фермент, встроенный в плазматическую мембрану, который синтезирует целлюлозу.

Толстая кишка — Терминальная часть пищеварительного тракта человека.

Тело Гольджи — Органелла, которая производит, сортирует и транспортирует макромолекулы внутри клетки.

Лигнин— Полисахарид, образующий вторичную клеточную стенку у некоторых растений.

Матрица — Материал, состоящий из полисахаридов и белка, в котором микрофибриллы целлюлозы встроены в стенки клеток растений.

Метан— Газ, образующийся при анаэробном переваривании целлюлозы бактериями у некоторых животных.

Микрофибрилла — Мелкие фибриллы целлюлозы; состоит из параллельных массивов целлюлозных цепей.

Полисахарид — Молекула, состоящая из множества субъединиц глюкозы, расположенных в цепочку.

Жвачное животное — Жевательное животное с четырехкамерным желудком и ровными копытами.

прочный, жесткий каркас тела растения.Стенки клеток являются причиной того, что растения прямые и жесткие. У некоторых растений вторичная клеточная стенка расположена поверх первичной клеточной стенки. Вторичная клеточная стенка состоит из еще одного полисахарида, называемого лигнином. Например, лигнин содержится в деревьях. Наличие как первичных, так и вторичных клеточных стенок делает дерево еще более жестким, проницаемым только острыми топорами.

В отличие от других компонентов клеточной стенки, которые синтезируются в теле растения Гольджи (органелле, которая производит, сортирует и транспортирует различные макромолекулы внутри клетки), целлюлоза синтезируется на поверхности растительной клетки. В плазматическую мембрану растения встроен фермент, называемый синтетазой целлюлозы, который синтезирует целлюлозу. По мере синтеза целлюлозы она спонтанно образует микрофибриллы, которые откладываются на поверхности клетки. Поскольку фермент синтетазы целлюлозы расположен в плазматической мембране, новые микрофибриллы целлюлозы откладываются под более старыми микрофибриллами целлюлозы. Таким образом, самые старые микрофибриллы целлюлозы расположены на

наружу на клеточной стенке, в то время как более новые микрофибриллы находятся на самой внутренней стороне стенки клетки.

По мере роста растительная клетка должна расширяться, чтобы соответствовать объему растущей клетки. Однако, поскольку целлюлоза очень жесткая, она не может растягиваться или сгибаться, чтобы позволить этому росту. Вместо этого микрофибриллы целлюлозы скользят друг мимо друга или отделяются от соседних микрофибрилл. Таким образом, клеточная стенка может расширяться при увеличении объема клетки во время роста.

У людей отсутствует фермент, необходимый для переваривания целлюлозы. Сено и травы особенно богаты целлюлозой, и оба они не усваиваются человеком (хотя люди могут переваривать крахмал).Все животные, такие как термиты и травоядные, такие как коровы, коалы и лошади, переваривают целлюлозу, но даже у этих животных нет фермента, который переваривает этот материал. Вместо этого эти животные содержат микробы, способные переваривать целлюлозу.

Термит, например, содержит в кишечнике простейших (одноклеточных организмов), называемых мастигофорами, которые осуществляют переваривание целлюлозы. Вид мастигофора, который выполняет эту функцию для термитов, называется Trichonympha, , который, что интересно, может вызывать у человека серьезную паразитарную инфекцию.

У таких животных, как коровы, есть анаэробные бактерии в пищеварительном тракте, переваривающие целлюлозу. Коровы — это жвачные животные или животные, которые жуют жвачку. У жвачных животных есть несколько желудков, которые расщепляют растительный материал с помощью ферментов и бактерий. Затем частично переваренный материал срыгивается в рот, который снова пережевывается, чтобы еще больше разложить материал. Бактериальное переваривание целлюлозы бактериями в желудках жвачных животных является анаэробным, что означает, что в этом процессе не используется кислород.Одним из побочных продуктов анаэробного метаболизма является метан, газ с неприятным запахом. Жвачные животные ежедневно выделяют большое количество метана. Фактически, многие защитники окружающей среды обеспокоены производством метана коровами, поскольку метан может способствовать разрушению озона в стратосфере Земли.

Несмотря на то, что целлюлоза не усваивается человеком, она является частью человеческого рациона в виде растительной пищи. Небольшое количество целлюлозы, содержащейся в овощах и фруктах, проходит через пищеварительную систему человека в неизменном виде.Целлюлоза является частью материала, называемого клетчаткой, которую диетологи и диетологи определили как полезную для быстрого и эффективного перемещения пищи по пищеварительному тракту. Считается, что диета с высоким содержанием клетчатки снижает риск рака толстой кишки, поскольку клетчатка сокращает время, в течение которого продукты жизнедеятельности остаются в контакте со стенками толстой кишки (конечная часть пищеварительного тракта).

См. Также Руминация.

КНИГИ

Хон, Дэвид Н. С. и Нобуо Сираиси. Древесина и целлюлозная химия. New York: Marcel Dekker, 2001.

Koshijima, Tetsup. Ассоциация лигнина и углеводов в древесине и других тканях растений. Берлин и Нью-Йорк: Springer, 2003.

OTHER

Мартин Чаплин, Лондонский университет Саут-Бэнк. «Вода

Структура и поведение: целлюлоза». (по состоянию на 4 октября 2006 г.).

Кэтлин Скогна

Почему вам нужна целлюлоза в вашем рационе?

Чаша груш

Кредит изображения: wmaster890 / iStock / Getty Images

Откусите сочное яблоко или сладкую грушу, и часть того, что вы едите, составляет целлюлозу, компонент растительной пищи, который не переваривается человеческим организмом. Может показаться нелогичным, что то, что ваше тело не может переваривать, может принести пользу вашему здоровью, но это может. Целлюлоза — это тип волокна, называемый нерастворимой клетчаткой, и его преимущества включают в себя ускорение прохождения пищи через пищеварительную систему, что предотвращает запоры и снижает риск развития состояния, называемого дивертикулярной болезнью.

Более пристальный взгляд на целлюлозу

Целлюлоза, наиболее распространенная из всех природных органических соединений, является структурным компонентом растительной пищи, находящейся в клеточных стенках растений.Около 33 процентов растительного вещества, 90 процентов хлопка и 50 процентов древесины состоит из целлюлозы. Помимо естественного присутствия в пищевых продуктах, он также используется в производстве бумаги, ткани, пластика и фотопленки. Вы также можете найти его в полке с добавками в виде порошка.

Основное назначение нерастворимой клетчатки

Целлюлоза считается нерастворимой, поскольку она не связывается с водой и не меняет форму в пищеварительном тракте.Другой тип клетчатки, называемый растворимой клетчаткой, действительно связывается с водой и становится гелеобразным веществом — этот тип клетчатки служит различным целям в вашем организме. Поскольку нерастворимая клетчатка проходит через пищеварительную систему в неизменном виде, она помогает перемещать отходы через пищеварительный тракт, что предотвращает запоры.

Дополнительные преимущества целлюлозы

Нерастворимая клетчатка — это тип, который в первую очередь отвечает за предотвращение дивертикулярной болезни, состояния, которое характеризуется развитием карманов, называемых дивертикулами, вдоль стенки толстой кишки.Согласно веб-сайту Гарвардской школы общественного здравоохранения, дивертикулярная болезнь является одним из наиболее распространенных возрастных заболеваний, поражающих толстую кишку в западном обществе. Дивертикулит возникает, когда дивертикулы инфицируются и воспаляются. Согласно веб-сайту Американского общества хирургов толстой и прямой кишки, дивертикулярная болезнь чаще встречается у людей, которые не едят достаточно клетчатки.

Сколько вам нужно и источники

Рекомендации по волокну включают как нерастворимые, так и растворимые волокна.Обычно всем взрослым рекомендуется потреблять не менее 20 граммов пищевых волокон в день; однако на веб-сайте Гарварда объясняется, что ваши потребности в клетчатке пропорциональны потреблению калорий — чем больше калорий вы едите, тем больше клетчатки вам нужно, поэтому мужчинам может потребоваться от 30 до 35 граммов каждый день. Лучшие источники клетчатки — это семена конопли и льна, а также цельнозерновые, морковь, помидоры и огурцы. Если вы едите разнообразные фрукты, овощи, цельнозерновые, орехи и семена, у вас больше шансов получить клетчатку, необходимую для поддержания здоровья.

Быстрый ответ: что целлюлоза делает в организме?

Целлюлоза — основное вещество в стенках клеток растений, помогающее растениям оставаться жесткими и вертикальными.

Люди не могут переваривать целлюлозу, но она важна в рационе, как клетчатка.

Клетчатка помогает вашей пищеварительной системе, поддерживая прохождение пищи через кишечник и выводя отходы из организма.

Полезна ли целлюлоза для человека?

Целлюлоза — это тип полисахаридного растительного волокна, состоящего из углеводов, которые не перевариваются человеческими ферментами и не усваиваются человеческим организмом.Целлюлоза не обеспечивает организм человека энергией или питательными веществами; однако он играет ключевую роль в питании и общем состоянии здоровья.

Почему целлюлоза не усваивается организмом?

Большинство животных плохо усваивают целлюлозу. Люди не могут переваривать целлюлозу из-за отсутствия фермента, необходимого для расщепления его гликозидной связи β (1–4 1–4 1–4) (см. Молекулярную структуру на рисунке 1).

Почему целлюлоза хороша для клеточных стенок?

Целлюлоза — важная органическая молекула, потому что ее прочная структура обеспечивает широкий спектр функций.Это основной компонент прочных клеточных стенок, окружающих клетки растений, и именно он делает стебли, листья и ветви растений такими прочными. Его также используют для изготовления синтетических материалов, таких как ковровые покрытия и хлопчатобумажные ткани.

Каковы характеристики целлюлозы?

Состав и свойства. Целлюлоза не имеет вкуса, запаха, гидрофильна с краевым углом 20–30 градусов, нерастворима в воде и большинстве органических растворителей, хиральна и биоразлагаема.

Вредна ли целлюлоза для организма?

Это называется целлюлоза, и вы уже ели это раньше.Много.

Первое хорошее: употребление целлюлозы не убьет вас. Нет известных вредных побочных эффектов от добавления его в пищу, и это полностью законно. 17 февраля 2016 г.

Какие продукты с высоким содержанием клетчатки?

Свежие овощи в граммах на 100 граммов сырого веса имеют следующие уменьшающиеся значения DF и NDF: зеленая фасоль, морковь, картофель и помидоры. В зеленых бобах было больше всего целлюлозы и гемицеллюлозы; картофель с самым высоким содержанием лигнина; и морковь с самым высоким содержанием пектина.

Какой фермент расщепляет целлюлозу?

Целлюлазы

Какие продукты ваше тело не может переваривать?

Вот некоторые продукты, которых следует избегать, поскольку они могут быть трудно перевариваемыми.

  • Фрукты. Большинство свежих фруктов содержат большое количество клетчатки, особенно если у них есть кожица или семена.
  • Овощи.
  • Ферментированные продукты.
  • Мясные продукты и белок.
  • Зерна.
  • Молочные продукты.
  • Прочие продукты.

19 сен 2018

Могут ли люди переваривать хитин?

Человеческий желудочный сок содержит хитиназу, которая может разлагать хитин. Переваривание хитина людьми, как правило, подвергалось сомнению или отрицалось. Только недавно хитиназы были обнаружены в некоторых тканях человека, и их роль была связана с защитой от паразитарных инфекций и некоторых аллергических состояний.18 июня 2007 г.

Что такое структура целлюлозы?

(C6h20O5) n

Где в ячейке производится целлюлоза?

Целлюлоза — наиболее важный структурный компонент клеточной стенки растений.Целлюлоза, полисахарид, содержащий повторяющиеся неразветвленные звенья β (1-4) D-глюкозы, синтезируется на плазматической мембране комплексом целлюлозосинтазы (CSC) из бактерий в растения. 28 апреля 2016 г.

Откуда берется целлюлоза ?

Промышленные волокна целлюлозы производятся на заводах, которые перерабатываются в целлюлозу, а затем экструдируются тем же способом, что и синтетические волокна, такие как полиэстер или нейлон. Вискоза или вискоза являются одними из наиболее распространенных «промышленных» целлюлозных волокон, и их можно изготавливать из древесной массы.

Где чаще всего встречается целлюлоза?

Целлюлоза присутствует в клеточных стенках всех растений и некоторых бактерий и является самым распространенным природным полисахаридом на Земле.

Что такое целлюлозная бумага?

Бумага представляет собой тонкий материал, получаемый путем сжатия влажных волокон целлюлозной массы, полученных из древесины, ветоши или травы, и сушки их в гибкие листы. Это универсальный материал, имеющий множество применений, включая письмо, печать, упаковку, чистку, декорирование, а также ряд промышленных и строительных процессов.

Сделана ли целлюлоза из глюкозы?

Целлюлоза — третий полимер, сделанный из глюкозы. Но на этот раз он состоит из молекул β-глюкозы, а молекулы полимера «прямые». Целлюлоза по своей природе служит совершенно иной цели, чем крахмал и гликоген. Он составляет клеточные стенки в растительных клетках.

Что такое целлюлоза? Факты и функции

Целлюлоза [(C 6 H 10 O 5 ) n ] представляет собой органическое соединение и самый распространенный биополимер на Земле.Это сложный углевод или полисахарид, состоящий из сотен и тысяч молекул глюкозы, связанных вместе в цепочку. Хотя животные не производят целлюлозу, ее производят растения, водоросли, некоторые бактерии и другие микроорганизмы. Целлюлоза — это основная структурная молекула в клеточных стенках растений и водорослей.

История

Французский химик Ансельм Пайен открыл и выделил целлюлозу в 1838 году. Пайен также определил химическую формулу. В 1870 году первый термопластический полимер, целлулоид, был произведен компанией Hyatt Manufacturing Company с использованием целлюлозы.Оттуда целлюлоза использовалась для производства вискозы в 1890-х годах и целлофана в 1912 году. Герман Штаудингер определил химическую структуру целлюлозы в 1920 году. В 1992 году Кобаяши и Шода синтезировали целлюлозу без использования каких-либо биологических ферментов.

Химическая структура и свойства

Целлюлоза образуется путем связывания субъединиц глюкозы. NEUROtiker, Бен Миллс / Public Domain

Целлюлоза образуется через β (1 → 4) -гликозидные связи между звеньями D-глюкозы. Напротив, крахмал и гликоген образуются за счет α (1 → 4) -гликозидных связей между молекулами глюкозы.Связи в целлюлозе делают ее полимером с прямой цепью. Гидроксильные группы на молекулах глюкозы образуют водородные связи с атомами кислорода, удерживая цепи на месте и придавая волокнам высокую прочность на разрыв. В стенках растительных клеток множество цепей соединяются вместе, образуя микрофибриллы.

Чистая целлюлоза не имеет запаха, вкуса, гидрофильна, нерастворима в воде и биоразлагаема. Он имеет температуру плавления 467 градусов Цельсия и может быть разложен на глюкозу при кислотной обработке при высокой температуре.

Функции целлюлозы

Целлюлоза поддерживает клеточную стенку растений. ttsz / Getty Images

Целлюлоза — это структурный белок растений и водорослей. Волокна целлюлозы опутаны полисахаридной матрицей для поддержки стенок растительных клеток. Стебли растений и древесина поддерживаются целлюлозными волокнами, распределенными в лигниновой матрице, где целлюлоза действует как арматурный стержень, а лигнин действует как бетон. Самая чистая натуральная форма целлюлозы — это хлопок, который на 90% состоит из целлюлозы.Напротив, древесина состоит на 40-50% из целлюлозы.

Некоторые виды бактерий выделяют целлюлозу для образования биопленок. Биопленки обеспечивают поверхность прикрепления для микроорганизмов и позволяют им объединяться в колонии.

Хотя животные не могут производить целлюлозу, это важно для их выживания. Некоторые насекомые используют целлюлозу в качестве строительного материала и пищи. Жвачные животные используют симбиотические микроорганизмы для переваривания целлюлозы. Люди не могут переваривать целлюлозу, но она является основным источником нерастворимых пищевых волокон, влияющих на усвоение питательных веществ и способствующих дефекации.

Важные производные

Существует много важных производных целлюлозы. Многие из этих полимеров поддаются биологическому разложению и являются возобновляемыми ресурсами. Соединения, производные целлюлозы, как правило, нетоксичны и неаллергенны. Производные целлюлозы включают:

  • Целлулоид
  • Целлофан
  • Вискоза
  • Ацетат целлюлозы
  • Триацетат целлюлозы
  • Нитроцеллюлоза
  • Метилцеллюлоза
  • Сульфат целлюлозы
  • Этулоза
  • Этилгидроксиэтилцеллюлоза
  • Гипропилметилцеллюлоза метилцеллюлоза целлюлоза
  • Метилгидроксиэтилцеллюлоза
  • Гипропилцеллюлоза

Коммерческое использование

Основное коммерческое использование целлюлозы — это производство бумаги, где крафт-процесс используется для отделения целлюлозы от лигнина.Волокна целлюлозы используются в текстильной промышленности. Хлопок, лен и другие натуральные волокна могут использоваться напрямую или обрабатываться для производства вискозы. Микрокристаллическая целлюлоза и порошковая целлюлоза используются в качестве наполнителей лекарств и пищевых загустителей, эмульгаторов и стабилизаторов. Ученые используют целлюлозу для фильтрации жидкостей и тонкослойной хроматографии. Целлюлоза используется в качестве строительного материала и электроизолятора. Он используется в повседневных бытовых материалах, таких как кофейные фильтры, губки, клеи, глазные капли, слабительные средства и пленки.В то время как целлюлоза из растений всегда была важным топливом, целлюлозу из отходов животноводства также можно перерабатывать для производства бутанольного биотоплива.

Источники

  • Дхингра, Д; Майкл, М; Раджпут, H; Патил, Р. Т. (2011). «Диетическая клетчатка в продуктах питания: обзор». Журнал пищевой науки и технологий . 49 (3): 255–266. DOI: 10.1007 / s13197-011-0365-5
  • Клемм, Дитер; Хойблен, Бриджит; Финк, Ханс-Петер; Бон, Андреас (2005). «Целлюлоза: увлекательный биополимер и экологически чистое сырье.» Angew. Chem. Int. Ed. . 44 (22): 3358–93. Doi: 10.1002 / anie.200460587
  • Mettler, Matthew S .; Mushrif, Samir H ​​.; Paulsen, Alex D .; Javadekar , Ashay D .; Vlachos, Dionisios G.; Dauenhauer, Paul J. (2012). «Выявление химии пиролиза для производства биотоплива: превращение целлюлозы в фураны и малые оксигенаты.» Energy Environ. Sci. 5: 5414–5424. Doi : 10.1039 / C1EE02743C
  • Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri (2002). «Кристаллическая структура и система водородных связей в целлюлозе Iβ по данным синхротронного рентгеновского излучения и дифракции нейтронных волокон.» J. Am. Chem. Soc . 124 (31): 9074–82. DOI: 10.1021 / ja0257319
  • Stenius, Per (2000). Forest Products Chemistry . Papermaking Science and Technology. Vol. 3 Финляндия: Fapet OY. ISBN 978-952-5216-03-5.

Какая пищевая ценность имеет целлюлоза? | Здоровое питание

Автор: Джоди Браверман Обновлено 6 декабря 2018 г.

Все стенки растительных клеток сделаны из целлюлозы. В результате это самое распространенное органическое соединение на Земле.По данным Американского химического общества, растения содержат около 33 процентов целлюлозы. Сама по себе целлюлоза не обеспечивает питания. Однако он играет очень важную роль в питании человека в виде пищевых волокон, которые имеют решающее значение для здорового пищеварения.

Что такое целлюлоза?

Когда вы откусываете стебель сельдерея, возникает приятный хруст. Этот хруст происходит благодаря целлюлозе, которая обеспечивает жесткость стенок растительных клеток. Целлюлоза позволяет растениям стоять прямо, и это делает древесину твердой.Целлюлоза содержится в различных количествах во всех растительных продуктах, которые вы едите, и даже присутствует в вашей одежде и стенах вашего дома.

Пищевая ценность целлюлозы

Целлюлоза не содержит калорий, витаминов и минералов, а также белков, углеводов или жиров. Целлюлоза — это нерастворимая клетчатка, поэтому организм не может ее переварить. Когда вы едите сельдерей, другие компоненты овоща перевариваются, но клетчатка движется по пищеварительному тракту без изменений.Это дает несколько важных преимуществ для вашего здоровья.

Преимущества нерастворимой клетчатки

Поскольку нерастворимая клетчатка не растворяется в воде, она не разрушается в пищеварительном тракте. Вместо этого он связывается с другими пищевыми компонентами, которые вы съели, увеличивая объем массы и помогая ей перемещаться по вашему кишечнику. Это вызывает желание пойти в ванную. По словам зарегистрированного диетолога Дебры А. Бутин из Университета Бастыр, при дефекации действует кишечник, который является мышцей.Без достаточного количества нерастворимой клетчатки в рационе кишечник становится слабым, и испражнения сокращаются, что приводит к запорам.

Нерастворимая клетчатка также поддерживает здоровье пищеварительной системы, способствуя росту полезных кишечных бактерий, которые питаются сахаром и клетчаткой в ​​пищевых продуктах. Эта здоровая кишечная флора предотвращает размножение вредных бактерий и их распространение.

Убедитесь, что вы получаете достаточно

Как нерастворимая, так и растворимая клетчатка является ключом к здоровому пищеварению, которое влияет на многие другие области здоровья, включая расщепление углеводов, белков и жиров, а также усвоение витаминов, минералов и других питательных веществ.Клетчатка также полезна для предотвращения набора веса, способствует похуданию и улучшает здоровье сердца.

Не существует отдельного рекомендуемого приема целлюлозы или нерастворимой клетчатки, только общее количество клетчатки. Рекомендуемое потребление клетчатки составляет 38 граммов в день для мужчин младше 50 лет и 30 граммов в день для мужчин старше 50 лет. Женщины до 50 лет должны получать 25 граммов, а женщины старше 50 должны получать 21 грамм в день. Необязательно зацикливаться на том, какой тип волокна вы потребляете. Если вы едите достаточно растительной пищи в течение дня, вы будете получать всю растворимую и нерастворимую клетчатку, необходимую вашему организму.

Определение и примеры целлюлозы — Биологический онлайн-словарь

Определение целлюлозы

существительное
множественное число: целлюлозы
целлюлоза, sĕl’yə-lōs
(1) Полисахарид, состоящий из линейной цепи β (1 → 4) связанные звенья D-глюкозы: (C 6 H 10 O 5 ) n
(2) Волокнистый углевод, обнаруженный в клеточных стенках зеленых растений, некоторых водорослей и оомицетов. Придает прочность и жесткость растительным клеткам.

Обзор

Целлюлоза принадлежит к группе полисахаридов углеводов .Углеводы — это органические соединения, состоящие из углерода, водорода и кислорода, обычно в соотношении 1: 2: 1. Они являются одним из основных классов биомолекул. Полисахариды — это углеводы, состоящие из нескольких сахаридных единиц. Некоторые из них служат в качестве энергетического топлива (например, крахмал и гликоген), тогда как другие выполняют структурные функции (например, целлюлоза).

История и терминология

В 1838 году французский химик Ансельм Пайен 1795 –1871 смог выделить целлюлозу из растительного вещества. 1 Он также определил химическую формулу целлюлозы: (C 6 H 10 O 5 ) n , где n относится к степени полимеризации.

Характеристики

Целлюлоза разлагается микроорганизмами, не имеет запаха и вкуса. Это углеводный полимер с прямой цепью. Это органическое соединение, как и другие углеводы. Он состоит из линейной цепи из нескольких остатков глюкозы (например,грамм. От 300 до 1000 или более единиц), связанных β (1 → 4) гликозидной связью. Гидроксильные группы глюкозы одной цепи соединяются водородными связями с атомами кислорода глюкозы другой или той же цепи. Между цепями нет гликозидных связей. Водородные связи — это те, которые удерживают цепи вместе, бок о бок. Таким образом, целлюлоза выглядит как микрофибрилла . Он придает прочность на разрыв клеточной стенке, где он служит «цитоскелетом» растения . Другие свойства целлюлозы зависят от длины цепи или от степени полимеризации.

Целлюлоза против крахмала

Целлюлоза похожа на крахмал, поскольку состоит из нескольких мономеров глюкозы. Однако остатки глюкозы в крахмале связаны α-гликозидными связями, то есть α (1 → 4) в амилозе и α- (1,4) и α (1 → 6) в составляющих амилопектина. Кроме того, целлюлоза — это прямой полимер. В нем отсутствуют намотки и ветки, которые присутствуют в крахмале. Целлюлоза образует довольно жесткую, стержневидную форму. Оба они биосинтезируются растениями. Однако растения производят крахмал в первую очередь как запасной углевод.Целлюлоза вырабатывается растениями в основном как компонент клеточной стенки. Целлюлоза является структурным компонентом первичной клеточной стенки сосудистых растений (а также многих водорослей и оомицетов).

Целлюлоза против хитина

Целлюлоза — самый распространенный природный полисахарид, за которым следует хитин. Целлюлоза напоминает хитин, будучи полисахаридом, мономеры которого связаны друг с другом β (1 → 4) гликозидной связью. Их различие заключается в моносахаридных составляющих: целлюлоза состоит из D-глюкозы, тогда как хитин представляет собой полимер из N -ацетил-D-глюкозаминовых мономеров.Хитин имеет ацетиламиновую группу вместо гидроксильной группы на каждом мономере. Это открывает больше возможностей для образования водородных связей между полимерами в хитине. Следовательно, по сравнению с целлюлозой, хитин является более жестким полисахаридом, особенно в сочетании с карбонатом кальция в композиционном материале.

Целлюлоза против гемицеллюлозы

Гемицеллюлоза — еще один полисахарид в стенках растительных клеток. И гемицеллюлоза, и целлюлоза являются полисахаридами, но гемицеллюлоза получается путем полимеризации не только глюкозы.Гемицеллюлоза также содержит ксилозу , галактозу , маннозу , рамнозу и арабинозу . Более того, гемицеллюлоза представляет собой разветвленный сшитый полимер, тогда как целлюлоза представляет собой неразветвленный полимер с прямой цепью. Они также различаются по способу синтеза. В то время как целлюлоза синтезируется вне клетки ( «концевым комплексом розетки» на плазматической мембране), гемицеллюлоза синтезируется внутри клетки, то есть из нуклеотидов сахара в аппарате Гольджи. 2

Синтез

Целлюлоза естественным образом вырабатывается другими формами организмов, помимо растений. Обнаружено, что он вырабатывается некоторыми бактериями, простейшими, водорослями и животными (например, оболочками). Предполагается, что цианобактерии являются первым организмом, вырабатывающим целлюлозу. 1
У высших растений целлюлоза вырабатывается вне клетки, особенно во внеклеточном матриксе или клеточной стенке. Он синтезируется белковой структурой, называемой концевым комплексом розетки , плавающей на плазматической мембране.Комплекс содержит целлюлозосинтаз , которые участвуют в синтезе целлюлозной цепи. Путь биосинтеза целлюлозы использует глюкозу в качестве предшественника. Различные этапы этого пути показаны ниже: 3
(1) Глюкоза → Глюкозо-6-фосфат ( гексокиназой )
(2) Глюкозо-6-фосфат → Глюкозо-1-фосфат (-фосфоглюкомутазой )
(3) Глюкозо-1-фосфат → УДФ-глюкоза (по УДФ-глюкозопирофосфорилаза )
(4) УДФ-глюкоза → Глюкановые цепи (по целлюлозосинтазе )
(5) Глюкановые цепи → Кристаллическая целлюлоза (процесс кристаллизации)
Цепи целлюлозы расположены как «тросы» , встроенные в матрицу.Матрица, в свою очередь, содержит различные гликопротеины и другие полисахариды. У бактерий целлюлоза вырабатывается как составляющая биопленки. Биопленка — это микробное сообщество, которое стабилизируется внеклеточным матриксом полисахаридов, белков и нуклеиновых кислот. 1

Разложение

Целлюлоза, которая расщепляется на целлодекстрины и единицы глюкозы в результате гидролиза, называется целлюлолизом . Не многие животные могут переваривать пищу, содержащую целлюлозу.Жвачные животные, такие как коровы и овцы, способны переваривать целлюлозу за счет симбиотических анаэробных бактерий (например, Cellulomonas ), которые имеют ферменты, разрушающие целлюлозу. Ферменты называются целлюлаз . Бактерии обитают в задней части кишечника, где они ферментируют целлюлозу. Термиты, которые питаются древесиной, богатой целлюлозой, также могут ее переваривать. У некоторых из них есть жгутиковые простейшие или микробные симбионты в задней части кишечника, вырабатывающие ферменты, которые могут расщеплять гликозидные связи.Другие термиты производят целлюлазы.

Биологическое значение

В растениях целлюлоза является важным компонентом клеточной стенки. Он стабилизирует и делает клеточную стенку жесткой и прочной. Животные, которые способны переваривать целлюлозу, могут получать энергию от этого полисахарида. Люди не могут переваривать целлюлозу из-за отсутствия необходимых ферментов. Однако целлюлозу по-прежнему можно включать в рацион, если она служит пищевым волокном. Целлюлоза естественным образом присутствует в капусте, орехах, бобовых, авокадо, ягодах, яблоках, тыквенных семечках и т. Д.Его также можно подвергнуть химической обработке для использования в пищевой промышленности в качестве сливочного агента или загустителя для сыра пармезан, мороженого и других коммерческих пищевых продуктов. 4 При употреблении целлюлоза в этих продуктах питания служит нерастворимой клетчаткой, которая поглощает воду и увеличивает объем стула. Микробиота, обычно проживающая в толстом кишечнике человека, способна ферментировать целлюлозу с образованием короткоцепочечных жирных кислот и газов. Жирные кислоты с короткой цепью абсорбируются и метаболизируются организмом.
Целлюлоза также имеет различные промышленные применения. Например, хлопковый завод производит хлопковые волокна, состоящие более чем на 90% из целлюлозы. Из них можно производить одежду, бумагу, вискозу, целлофан и строительные материалы. Целлюлозный материал из энергетических культур также использовался для преобразования в биотопливо (например, целлюлозный этанол).

Этимология

  • Французский, из целлюлозы (биологическая клетка)

Химическая формула

Связанные термины

См. Также

Ссылка

  1. McNamara, J.Т., Морган, Дж. Л. У. и Циммер, Дж. (2015). Молекулярное описание биосинтеза целлюлозы. Ежегодный обзор биохимии, 84 (1), 895–921. : //doi.org/10.1146/annurev-biochem-060614-033930 Ссылка
  2. Разница между целлюлозой и гемицеллюлозой Определение, структура, состав, функция, различия. (2018, 15 января). Получено с http://pediaa.com/difference-between-cellulose-and-hemicellulose/
  3. Balaji, A. B., Pakalapati, H., Khalid, M., Rashmi, W., & Siddiqui, H.(2018). Природные и синтетические биосовместимые и биоразлагаемые полимеры. В: Биоразлагаемые и биосовместимые полимерные композиты . Elsevier Ltd.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *