Функции белков в организме таблица: Заполните таблицу. Основные функции белков …

Содержание

Урок «Состав и функции белков»

Состав и функции белков

Цель урока: продолжить углубление и расширение знаний о химическом составе клетки, раскрыв состав и функции белков

Задачи урока:

Образовательные:

  1. Расширить и углубить знания учащихся о важнейших органических веществах в клетке на основе изучения строения и функции белков.

  2. Раскрыть состав и строение белков.

  3. Раскрыть функции белков, показать их разнообразие и значимость для жизнедеятельности живых организмов.

Развивающие:

  1. Сформировать у учащихся познавательный интерес к процессу изучения функций белков в клетке и организме.

  2. Продолжить формирование умений выявлять связь между строением и функциями

Тип урока: урок изучения нового материала.

Форма проведения: групповая работа.

Методы: фронтальная беседа, проблемные вопросы.

Оборудование: штативы, пробирки, реактивы: растворы гидроксида натрия, хлорида натрия, сульфата меди, глицин, глутаминовая кислота, лизин, лакмусовая бумага, мультимедийный проектор, презентация (приложение 1)

Ход урока:

1. Приветствие. Здравствуйте! Я очень рада видеть вас в этой аудитории. Меня зовут Чернова Ольга Геннадьевна. Я учитель биологии средней школы №33.

2. Мотивация учебной деятельности. Начать урок я хочу словами Сергея Яковлевича Надсона: (слайд 1)

Меняя каждый миг свой образ прихотливый

Капризна, как дитя, и призрачна, как дым,

Кипит повсюду ЖИЗНЬ в тревоге суетливой,

Великое смешав с ничтожным и смешным

Что такое жизнь? Откуда она взялась на Земле? Эти вопросы давно интересовали людей в разные времена.

Академик Опарин говорил:

«Путь к живым организмам лежит через белки. Жизнь и белки – понятия неотделимые одно от другого»

Белок — основа жизни, верно ли это? Вот основной проблемный вопрос нашего урока.

Поэтому тема нашего урока – Состав и функции белка.

(слайд 2)

3. Новый материал. Белки – это сложные органические вещества, состоящие из углерода, кислорода, водорода, азота. В некоторых молекулах белков содержится железо, сера, фосфор, цинк, медь и др. Белки, или протеины – это биополимеры, нерегулярные полимеры.

Белков в клетках больше, чем каких бы то ни было других органических веществ. На их долю приходится в среднем около 50 % общей массы клетки. Так, например, в мышцах на долю белка приходится 80%, в коже-63%, печени – 57%, мозге — 45%, костях — 28%. Интересны формулы некоторых белков. Так, формула всем нам известного гемоглобина, белка крови, C

3032 H4816 O872 N780 S8 Fe4 . Глядя на формулу гемоглобина, какой можно сделать вывод? Молекулярные массы молекул огромны: белок куриного яйца 36 000, белок мышц 1500 000. (слайд 3)

4. Итак, вернемся к нашему проблемному вопросу. Для ответа на этот вопрос мы проведем небольшое исследование. Любое исследование всегда подразумевает изучение теории, т.е. изучение литературы на эту тему. Мы с вами пойдем от противного, и начнем разговор с функций. В течение всего урока мы работаем на рабочих листах, которые перед вами.

(приложение 2)

Давайте вспомним, какие функции выполняют белки в клетке? (Рассказ о функциях или фронтальная беседа). (слайды 4-14)

Функции белков

Белки выполняют чрезвычайно важные и многообразные функции. Всего функций белков насчитывается около 30. Мы рассмотрим лишь главные из них.

1. Структурная или строительная. Белки являются основой всех биологических мембран, всех органоидов клетки. Многие белки образуют волокна, перевитые друг с другом или уложенные плотным слоем. Они выполняют опорную или защитную функцию, скрепляя биологические структуры и придавая им прочность. Так,

коллаген является важным составным компонентом соединительной ткани (хрящей и сухожилий), кератин – компонентом перьев, волос, ногтей, эластин – эластичный компонент связок, стенок кровеносных сосудов.

2.Двигательная. Некоторые белки наделяют клетку или организм способностью сокращаться, изменять форму или передвигаться. Актин и миозин представляют собой нитевидные белки, функционирующие в сократительной системе скелетной мышцы, а также во многих немышечных клетках. Другим примером таких белков служит тубулин – белок, из которого построены микротрубочки, являющиеся важным элементом ресничек и жгутиков, при помощи которых клетки передвигаются.

3. Важное значение имеет транспортная функция. Так, гемоглобин переносит кислород из легких к клеткам других тканей и органов. Транспортные белки в наружной мембране клеток переносят различные вещества из окружающей среды в цитоплазму. Белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ.

4. Специфические белки выполняют защитную функцию. Они предохраняют организм от вторжения чужеродных белков и микроорганизмов. Так,

антитела, вырабатываемые лимфоцитами, блокируют чужеродные белки; фибрин и тромбин предохраняют организм от кровопотери.

5. Регуляторная функция присуща белкам – гормонам. Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах. Например, инсулин регулирует содержание сахара в крови.

6. Рецепторная. С помощью этих белков клетка воспринимает информацию о состоянии внешней среды, сигналы от низкомолекулярных физиологически активных веществ. Они играют важную роль при передаче нервного возбуждения

7.Энергетическая. Белки могут служить источником энергии для клетки. При недостатке углеводов или жиров окисляются молекулы аминокислот. Освободившаяся при этом энергия используется на поддержание процессов жизнедеятельности организма.

8. Токсическая. Многие живые организмы для обеспечения защиты выделяют белки – токсины, которые в большинстве случаев являются сильными ядами.

9.Ферментативная. В каждой живой клетке непрерывно происходят сотни биохимических реакций, в ходе которых идут распад и окисление поступающих извне питательных веществ. Клетка использует энергию, полученную вследствие их окисления, продукты расщепления служат для синтеза необходимых клетке органических соединений. Быстрое протекание реакций обеспечивают биокатализаторы –

ферменты. Известно более двух тысяч ферментов, каждый из которых способен осуществлять от тысячи до сотен тысяч реакций в минуту. В ходе биохимических превращений ферменты не расходуются. Они соединяются с реагирующими веществами, ускоряет их превращения и выходит из реакции неизменным. Ферменты выполняют работу наилучшим образом только при оптимальной температуре.

9.Запасающая. В семенах многих растений запасены пищевые белки, потребляемые зародышем на первых стадиях развития. Наиболее известны такие белки в семенах кукурузы, пшеницы, риса.

5. Как мы видим, белки выполняют огромное количество функций. Как вы думаете, с чем это связано? Почему такое многообразие функций? Вот еще один проблемный вопрос.

Для его решения проведем небольшую практическую работу. Для этого делимся на 3 группы по рядам. Первая выясняет состав белковой молекулы. Вторая — её структуру. Третья – изучает свойства белков. Перед вами информационные листы (приложение 3) Внимательно изучите алгоритм работы. В своем рабочем листе отобразите основные моменты вашей работы. Затем, мы посмотрим, что у нас получилось.

6. Итоги работы в группах

1 группа. Выводы: мономеры белков – аминокислоты, строение. Амфотерность. 20 аминокислот Рассказ об опыте.

Есть АК с основными свойствами (лизин; 2 аминогруппы), есть с кислотными (глутаминовая кислота; 2 карбоксильные группы)

2 группа. Пептидная связь.

Доказательства пептидной связи. Рассказ об опыте

Структуры белка.

Вывод: белки очень разнообразны, так как каждый из них характеризуется специфической последовательностью аминокислот. Свойства белков зависят от химического строения.

3 группа Денатурация. Её значение. Повышенная температура тела, спирт и т.д. Денатурация приводит к нарушению антигенной чувствительности белка, а иногда к полному блокированию иммунных реакций, к инактивации ферментов, нарушению обмена веществ. Ученые предполагают, что процессы старения связаны с медленной денатурацией.

Рассказ об опыте.

7. Строение изучили, изучили и функции. Давайте вернемся к нашему проблемному вопросу. Белки – основа жизни?

Понятия жизнь и белок неразрывно связаны. Чтобы ответить на вопрос «Что такое жизнь»? надо знать, что такое белки. Насколько многообразны белки, настолько сложна, многолика и загадочна жизнь. Подтверждением этого может стать высказывание Гёте: «Я всегда говорил и не устаю повторять, что мир бы не мог существовать, если бы был так просто устроен»

Если остается время: либо тест, либо ответ на вопрос:

Довольно часто происходит такое явление: животные получают достаточно калорийную пищу, но при отсутствии в ней белка, наблюдается отставание в росте, изменение в составе крови и пр. Объясните причины этих негативных явлений.

Краткий словарь генетических терминов

Краткий словарь основных понятий и терминов, использующихся в генетике

Для понимания того, с чем работает наша компания и зачем эта работа нужна, какие результаты мы получаем и что они вам расскажут, можно прийти на консультацию к специалистам ЦГРМ «ГЕНЕТИКО». А для того, чтобы Вы не забыли, о чем был разговор, и не утонули в море новой информации, мы составили для Вас небольшой словарик основных понятий и терминов, использующихся в генетике.

Основным положением биологической науки является то, что клетка – это самое маленькое из возможных проявление жизни и что новая клетка может появиться только от уже существующей и никак не может возникнуть сама по себе. Конечно, это приводит к большому количеству вопросов о том, как зародилась жизнь и каким образом могла сформироваться самая первая клетка. Но для удобства будем считать обозначенные положения верными в современной реальности планеты Земля, где мы живем. Несмотря на невообразимо огромное разнообразие живых существ, все они состоят из клеток. И у всех клеток есть схожие черты, которые обусловлены самыми простыми жизненными необходимостями. Во-первых, клетка должна как-то отделяться от внешнего пространства – для этого есть специальная оболочка.

Во-вторых, клетка должна питаться – для этого есть разные системы, способные преобразовать энергию света или химических связей в необходимые для жизни вещества и удобную для использования энергию. И еще клетка умеет размножаться. Для выполнения всех этих функций необходимы механизмы, основу которых составляют белки и РНК. А вот инструкция, как эти молекулы должны выглядеть и работать, хранится в специальном отсеке клетки – ядре – в виде ДНК. Ошибки в этой инструкции, которая разрабатывалась миллионы лет, приводят к смерти клетки. А в многоклеточном организме, таком, как у человека, например, клетки взаимодействуют друг с другом, поэтому нарушение в работе одной или нескольких клеток может привести не к смерти всего организма, а к нарушениям его работы – заболеваниям. Также необходимо помнить, что человеческий организм огромная система, ансамбль миллионов разнообразных маленьких организмов, которые выросли из одной единственной клетки – зиготы – результата слияния яйцеклетки и сперматозоида.

ДНК – ДезоксиРибонуклиновая Кислота – полимер, то есть молекула с большим количеством последовательно повторяющихся структурных элементов, который несет всю информацию о генах и белках, необходимых для жизни всего организма. ДНК является картотекой, библиотекой и матрицей, с которой считывается информация в определенной последовательности и определенных условиях, разъяснения о которых записаны как в самой ДНК, так и с помощью различных дополнительных модификаций этой молекулы. Каждой хромосоме соответствует 1 молекула ДНК. Структурными блоками этого полимера являются дезоксирибонуклеотиды (=нуклеотиды), которые бывают 4х видов (А, Т, Г, Ц).

Последовательность ДНК – это то, в каком порядке в молекуле ДНК идут ее структурные элементы – нуклеотиды. Таким образом, генетической информацией является именно последовательность ДНК, а молекула ДНК является ее физическим носителем.

Хромосома – это молекула ДНК, специальным образом обернутая различными белками, которые помогают управляться с такой длинной молекулой, чтобы она не порвалась, не перепуталась с другими ДНК-молекулами и была физически доступна для белков, осуществляющих работу всего генетического аппарата.

РНК –РибоНуклиновая Кислота – полимер, который выполняет функциональную роль переносчика информации, то есть копии, которая делается с ДНК и используется для создания функциональных молекул: специальных РНК или белков. Специальные молекулы РНК могут не являться матрицами, на базе которых синтезируется белок, а сами выполняют структурные, ферментативные или транспортные функции. Главное, что последовательность структурных блоков в молекуле РНК всегда определена последовательностью ДНК соответствующего участка.

Белок – основная функциональная единица живой клетки с самым широчайшим спектром функций и возможностей. Как ДНК и РНК, является полимером, однако имеет химически иные структурные блоки – аминокислоты. Их последовательность, с одной стороны, напрямую зависит от соответствующей последовательности ДНК и может изменяться только в ограниченных и предусмотренных в ДНК инструкций, с другой стороны является основой структуры, в том числе пространственной, возможностей и функции белков разных типов.

Ген – определение гена включает два аспекта: теоретический и физический. Теоретически, то есть умозрительно, геном называют последовательность ДНК (слово, записанное на языке генетики), обладающее определенными свойствами. Как и слово в языке, ген является основой наследственной информации, в то время как различные другие структуры можно отнести к знакам препинания или вспомогательным элементам. Ген является подробной инструкцией для синтеза белка или специфической РНК, которую он кодирует. Причем эта инструкция описывает не только последовательность молекул, но и то в каких условиях и как они должны работать и выполнять свои функции. С физической, то есть материальной, точки зрения, ген – это часть молекулы ДНК с определенными структурными элементами. Как внутри слова есть приставка, корень, суффикс и окончание, позволяющие слову адаптироваться для каждой конкретной фразы, так и у гена есть промотор, экзоны и интроны. Первый обозначает начало гена, экзоны – это ключевая информация о последовательности РНК или белка, а интроны необходимы для регуляции и тонкой настройки работы гена в условиях разных тканей, органов и изменяющейся окружающей среды.

Экспрессия гена – это эффективность работы гена, так как для его функционирования недостаточно его наличия в геноме – с него должна считываться информация. Именно то, как часто и в каком объеме считывается информация с гена, выражают термином экспрессия.

Локус – участок молекулы ДНК, содержащий различный структурные элементы, в том числе один или несколько генов.

Геном– это последовательность всех молекул ДНК организма. Важно помнить, что в каждой клетке одного организма в норме содержатся одинаковые по количеству и последовательностям молекулы ДНК, а различается экспрессия конкретных генов.

Экзом – это последовательности ДНК экзомных участков генов, то есть так называемая основная кодирующая составляющая. Это то, с чем работает организм, в то время как остальная часть генома объясняет, как работать и в каких условиях как применять и настраивать кодирующую часть генома.

Мутация – изменение последовательности ДНК по сравнению другими клетками организма или другими представителями вида. Мутации могут возникать как из-за воздействия внешних неблагоприятных условий, так и из-за того, что наши ферменты работают пусть с редкими, но ошибками. Так как происходит физическое изменение в носителе информации – ДНК, такое изменение может передаваться из поколения в поколение.

Частота мутаций — относительное значение, показывающее у какой доли людей в геноме есть конкретная мутация. Частоту мутации можно рассчитать, как среднюю для всех людей, так и отдельно по расовым или национальным, или любы другим группам. В медицинской генетике под мутацией подразумевают изменение ДНК, которое может быть связано с каким-то заболеванием, и противопоставляют ее полиморфизму. Хотя по общей логике полиморфизм – это частный случай мутации.

Полиморфизм – нейтральная, а точнее безвредная, мутация, которая сравнительно часто встречается у какой-то группы организмов одного вида. Некоторые мутации встречаются часто у всех людей, некоторые – только среди представителей определенных рас или народностей.

Аллель – вариант последовательности гена в разном виде: от различия в одной букве последовательности до отсутствия целого куска последовательности или вставке лишнего. Эти различия возникают из-за мутации, которая могла произойти у далекого предка и передаться потомству через поколения. Таким образом, каждый ген у отдельного человека может быть представлен конкретным вариантом – аллелем. Для понимания аллелизма необходимо объяснить, что, например, различия в цвете глаз, волос, росте, чувствительности к алкоголю объясняются именно разными аллельными состояниями соответствующих генов.

Генотип – это все гены конкретной особи с указанием аллельного состояния каждого гена и наличия/отсутствия мутаций в межгенных участках ДНК.

Доминантный аллель. В геноме человека содержится по 2 копии каждой хромосомы. Это означает, что в каждом геноме есть две очень похожие по длине и последовательности генов молекулы ДНК, которые отличаются аллельными состояниями генов и мутациями/полиморфизмами в межгенных участках этих молекул ДНК. Из этого следует, что и каждый ген представлен в геноме 2 копиями, каждая из которых может быть определенным вариантом (аллелем) этого гена. Доминантным аллелем называется тот, одной копии которого достаточно для проявления его особенностей. То есть если хотя бы на одной из хромосом ген находится в состоянии доминантного аллеля, то ген будет работать по тому варианту, который описывается именно этим аллелем. Важно, что так как у одного гена может быть более двух вариантов (аллелей), то и доминантность аллеля определяется по отношению к каждому из вариантов, хотя есть и те, которые доминантны по сравнению со всеми другими. Встречаются варианты с одинаковой предпочтительностью для работы, тогда проявляется совместное влияние этих вариантов.

Рецессивный аллель – по аналогии с доминантным аллелем, это такое состояние гена, которое наименее предпочтительно для проявления. Поэтому если в геноме есть другая копия гена, доминантная, то задавать темп работы гена будет именно она, но если и вторая копия гена представлена рецессивным аллелем, то будет работать этот, хотя менее предпочтительный, но в такой ситуации единственно имеющийся вариант. Хотя в большинстве случаев связанные с возникновением заболевания аллели рецессивны, это вредность/полезность не является единственным определяющим фактором рецессивности/доминантности аллеля.

Гомозигота. Гомозиготой по определенной мутации/полиморфизму/аллелю называют такую клетку или организм, в генотипе которой/которого обе копии гена на двух хромосомах представлены одним вариантом, то есть не отличаются по этой мутации/полиморфизму/аллелю.

Гетерозигота. Гетерозиготой по определенной мутации/полиморфизму/аллелю называют такую клетку или организм, в генотипе которой/которого две копии гена на двух хромосомах представлены разными вариантами, то есть отличаются по этой мутации/полиморфизму/аллелю.

Секвенирование – это группа методов, позволяющая узнать последовательность нуклеотидов в молекуле ДНК. Этот метод обладает некоторыми особенностями. Во-первых, пока что ни один способ секвенирования не позволяет прочитать всю последовательность одной хромосомы, чтение идет сравнительно небольшими отрезка от 50 до несколько тысяч нуклеотидов. Во-вторых, почти все методы устроены так, что из кусочка ДНК делается много одинаковых и читаются они все. Эта особенность проявляется в таком параметре секвенирования, как глубина секвенирования, обозначаемая 10Х, 20Х, 50Х. Чем больше это значение, тем больше раз прочитан один и тот же кусок молекулы, тем точнее можно выявить ошибки секвенирования и особенности участка, например, его гетерозиготность по какой-либо мутации/полиморфизму.

Гаплотип — совокупность состояний/вариантов определенных локусов, которые расположены на одной хромосоме, и вследствие структурных особенностей эти состояния всегда наследуются вместе. То есть, например, если в одном локусе (1) гаплотипа имеется мутация (1А), а в другом (2) имеется уже другая мутация (2M), то именно в таком составе они будут наследоваться (1А2М), а смешанных вариантов (1B2M или 1A2N) не бывает или они относятся к другому гаплотипу.

Гаплогруппа — совокупность особей, имеющих сходный гаплотип по определенным локусам, которые задаются в соответствии с тем, какую задачу нужно решить, определяя гаплогруппу

Митохондриальная ДНК. Если разбираться подробнее и глубже, то генетическая информация одного человека находится не только в 46 хромосомах, располагающихся в специальном отсеке клетки – ядре, но и в клеточных органах митохондриях. У митохондрий в клетке своя задача – преобразовывать энергию, заключенную в химической связи определенных атомов, в более удобную для клетки, то есть они готовят эффективные питательные запасы из разного сырья. Митохондрии довольно сложны, их оболочка хитро устроена, чтобы опасные побочные продукты готовки не могли попасть в остальную часть клетки, поэтому все время таскать туда нужные для их работы белки не слишком продуктивно. Таким образом, у них есть своя ДНК, которая несет информацию о разных особенных белках и РНК, которые нужны именно для работы митохондрии. Такую ДНК называют митохондриальной и она является неотъемлемой и обязательной частью нашего генотипа. Передается она только от мамы, так как сперматозоид для возможности быстро перемещаться и долго оставаться живым несет самый минимум необходимой генетической информации – 23 хромосомы. А вот яйцеклетка, которой для выполнения основной функции не нужно находится в агрессивной окружающей среде, может позволить себе бОльшую массу и дополнительные запасы в виде готовых к работе станций приготовления питания – митохондрий и заранее синтезированных белков и РНК.

Гены половой дифференцировки – группа генов, играющая ведущую роль в определении будет эмбрион развиваться как девочка или как мальчик. В геноме человека основой проявления мужских или женских половых признаков является наличие/отсутствие половой хромосомы Y, а именно особо локуса этой хромосомы – SRY (Sex-determining Region on the Y chromosome). Важно отметить, что нарушения в этом локусе могут приводить не к внешним проявлениям, а к сниженной репродуктивной способности мужчины или ее полному отсутствию. Процесс дифференцировки пола у человека можно представить тремя стадиями: 1) какой набор хромосом получается при слиянии яйцеклетки (всегда несет хромосому X) и сперматозоида (с хромосомой X или Y), 2) формирование женских или мужских половых органов в зависимости от работы генов локуса SRY, 3) развитие вторичных половых органов в соответствии с типом половых органов. Нарушения на разных этапах приводят к разным проявлениям и разным заболеваниям.

Локус AZF – это участок Y-хромосомы, на котором располагаются так называемые факторы азооспермии (AZF — AZoospermia Factors). Это особые участки, которые названы так, потому что если какой-то из них отсутствует из-за мутации, то развивается азооспермия (отсутствие сперматозоидов) или олигозооспермия (малое количество сперматозоидов). Всего обнаружено три таких фактора AZFa, AZFb и AZFc. В норме наличие всех трех является минимальным необходимым условием нормального формирования сперматозоидов. Если в геноме отсутствует один из AZFa и AZFb или оба, то нарушается созревание сперматозоидов и, как следствие, полностью отсутствует репродуктивная функция. При отсутствии локуса AZFc нарушения могут быть не столь сильными, поэтому деторождение остается возможным в некоторых случаях.

Хромосомные аномалии – это крупные мутации, которые связаны с изменением последовательности ДНК не в рамках отдельного гена или нескольких, а в масштабе хромосомы или генома. Например, отсутствие (делеция) большой части или всей хромосомы, лишняя хромосома, или часть одной хромосомы соединена с частью другой хромосомы и т.д.

Наследственное заболевание – это заболевание, вызванное нарушениями в геноме, то есть мутациями, которые либо мешают формированию нормального белка (так как ген – инструкция по его построению – поврежден), либо изменяют регуляцию, то есть условия, когда, в каком месте или с кем такой белок или ген должен работать.

Моногенное заболевание – это наследственное заболевание, вызванное мутацией в одном только в одном гене. Несмотря на то, что все остальные почти 30000 генов могут быть в порядке, изменение последовательности ДНК в этом гене вызывает нарушения функционирования всего организма.

Хромосомное заболевание – наследственное заболевание, вызванное хромосомными аномалиями.

Носительство мутации – это состояние гетерозиготы по аллелю, обладающему какими-то негативными клиническими проявлениями, если он находится в геноме в виде гомозиготы.

Пробанд – человек, с которого начинается составление генеалогического дерева (родословной). Обычно пробанд – это носитель или пациент с наследственным заболеванием, проявление которого и вызвало необходимость генеалогического анализа.

Сиблинг – в генетике таким термином обозначают потомков одних родителей, то есть братьев и сестер, но не близнецов.

Автор: Жикривецкая Светлана

Биолог-исследователь

Что входит в состав молока: основные компоненты

В статье мы расскажем:

  1. Состав молока
  2. Аминокислоты в составе молока
  3. Классификацию белков в составе молока
  4. Аминокислотный состав белков молока
  5. Факторы, влияющие на состав молока

Что входит в состав молока, знает каждый из нас, – белки, жиры и углеводы. Но если копнуть глубже, то окажется, что это многокомпонентная сбалансированная система, полезная для детей и взрослых. В коровьем молоке есть витамины, микро- и макроэлементы.

Что входит в состав молока, что именно скрывается за надписями «белки, жиры и углеводы» на упаковке и почему молоко такое популярное и должно входить в недельное меню, расскажем в нашей статье.

Состав молока

Все вещества, входящие в состав коровьего молока, делятся на истинные и неистинные. Первые образуются в результате естественных процессов при секреции молока, тогда как вторые привносятся из кормов, других источников и на производстве. Это могут быть антибиотики, пестициды, тяжелые металлы, радиоактивные вещества, пр. Для вторых установлены нормы по допустимому содержанию, так как они опасны для человеческого здоровья.


С технологической точки зрения, интересующий нас продукт делится на воду и сухое вещество. Последнее включает в себя молочный жир и сухой обезжиренный остаток.

  • Соотношение макроэлементов.

Молоко богато калием и кальцием: на 100 г продукта приходится по 146 мг и 120 мг этих микроэлементов соответственно. Немаловажно, что кальций, содержащийся в данном напитке, усваивается человеком более чем на 90 %, а это очень высокий показатель.

Также в этом продукте содержится немало хлора: в 100 г его доля находится на уровне 110 мг, фосфора – 90 мг на ту же массу. Также в 100 г молока есть 50 мг натрия, 29 мг серы, 14 мг магния.

  • Соотношение микроэлементов.

Если говорить о том, что входит в состав молока, какие микроэлементы, то больше всего в этом продукте цинка – 0,4 мг и железа – 0,1 мг. Также отмечают содержание марганца – 0,006 мг.

Другие микроэлементы исчисляются микрограммами: алюминия – 50 мкг, фтора – 20 мкг, стронция – 17 мкг, олова – 13 мкг, меди – 12 мкг. Еще ниже содержание йода – 9 мкг, молибдена – 5 мкг, селена и хрома – по 2 мкг. Также анализ показывает небольшую долю кобальта – в пределах 1 мкг.

В 1 мл молока содержится 100–10 000 бактерий. В процессе доения и первичной обработки в напиток попадает с поверхности вымени, доильной аппаратуры и другого оборудования от 100 тысяч до 300 тысяч микроорганизмов на каждый миллилитр. В 1 л свежего молока содержится 50–80 см3 газов, из них 60–70 % составляет углекислый газ, 25–30 % – азот и оставшиеся 5–10 % занимает кислород. В процессе хранения их становится меньше, а кипячение позволяет вовсе избавиться от газов в продукте.

Всего 11–14 % приходится на долю сухих веществ от общей массы молока, при этом конкретная цифра связана с составом продукта. Массовая доля сухого обезжиренного остатка обозначается COMO и находится в пределах 8-9 %. Выше всего ценится сухой остаток, а именно содержащийся в нем белок, поэтому его стараются максимально сохранить во время изготовления сыров.

Аминокислоты в составе молока

В молоке содержатся необходимые человеческому организму аминокислоты. Одна из них – серин, который необходим для строительства белков головного мозга, миелиновых оболочек, призванных защищать нервную систему от внешнего негативного влияния.


Другая аминокислота, содержащаяся в молоке, считается основой нормального протекания жизненных процессов на Земле. Это гистидин, и он представляет собой протеиногенное вещество, участвующее в образовании белка, от которого зависят метаболические реакции организма.

Тирозин – еще одно заменимое вещество, входящее в состав белков молока.

Аминовалериановая кислота аргинин относится к незаменимым кислотам и помогает работе сердца и сосудов.

Полин является шетероциклической заменимой аминокислотой и необходим для регенерации тканей.

Тогда как серосодержащая аминокислота цистеин облегчает работу ЖКТ, нейтрализует действие токсинов в организме.

Нужно отметить, что в состав молока входит глицин, относящийся к простейшем аминоуксусным кислотам. Не секрет, что глицин способствует более активной умственной деятельности, благотворно сказывается на работоспособности, образовании мышечной ткани, необходим для быстрого восстановления мышечной массы и здорового сна. Он играет немаловажную роль в построении ДНК. Также данное вещество смягчает пагубное воздействие на организм алкогольных напитков, медикаментов. В целом, глицин является пробиотиком, который активизирует внутреннюю защиту человека.

Кроме того, в молоке есть аминокислоты триптофан, лизин, метионин.

Среди всех доступных людям продуктов только молоко может похвастаться наличием молочного жира, лактозы, казеина, альбумина, глобулина, так как все перечисленные вещества синтезируются в молочных железах.

Немаловажно, что в интересующем нас напитке есть ферменты дегидрогеназы, каталаза, плазмин, ксантиноксидаза, липаза, амилаза, пероксидаза, фосфатаза, лизоцим, пр. В нем содержится немало гормонов: пролактин, окситоцин, соматотропин, кортикостероиды, андрогены, эстрогены, прогестерон, пр. И, как уже говорилось выше, к сожалению, в данном продукте можно встретить посторонние химические вещества: антибиотики, токсины, в том числе бактериального характера, пестициды, радионуклиды (90Sr, 137Cs, 131J), диоксины, детергенты, пр., а также газы СО2, О2, Н2.

Классификация белков в составе молока

Если вас интересуют пищевые вещества, которые входят в состав молока, то наибольшую ценность среди них представляют белки, относящиеся к высокомолекулярным соединениям. Строительным материалом белков являются аминокислоты, скрепленные между собой пептидными связями.


В молоке содержится 2,8–3,6 % белков. Последние имеют различное строение, физико-химические свойства, биологические функции. Изначально они были призваны обеспечить нормальное развитие и рост теленка, сегодня же стали играть немаловажную роль в питании человека.

Молочные белки входят в группу казеинов или сывороточных белков. Первые составляют 75–85 % от общего содержания белков. Тогда как остальные 15–22 % – это сывороточные белки, то есть глобулины и альбумины. Оба типа не относятся к гомогенным, наоборот, в их состав входит целая смесь различных белков.

Таблица 1. Классификация и основные показатели белков молока.

Белок

Содержание в обезжиренном молоке, г/100 мл

Молекулярная масса

Изоэлектрическая точка, рН

Казеины:

     

αs1-казеин

1,2–1,5

~23 000

4,44–4,76

αs2-казеин

0,3–0,4

~25 000

χ-казеин

0,2–0,4

~19 000

5,45–5,77

β-казеин

0,9–1,1

~24 000

4,83–5,07

Сывороточные белки:

     

β-лактоглобулин

0,2–0,4

~18 000

5,1

α-лактальбумин

0,06–0,17

~14 000

4,2–4,5

Альбумин сыворотки крови

0,04

~66 000

4,7–4,9

Иммуноглобулины

0.04–0,09

150 000–1 000 000

5,5–8,3

Лактоферрин

2–35 или 10–30

76 500

В основе данной классификации веществ, входящих в состав молока, лежит схема, созданная Комитетом по номенклатуре и методологии молочных белков Американской научной ассоциации молочной промышленности.

Рекомендуем

«Производство молока в России: проблемы, перспективы, статистика» Подробнее

Говоря о белках, нужно упомянуть ферменты, ряд гормонов, например, пролактин, и белки оболочек жировых шариков.

На сегодняшний день ученым известны биологические функции практически всех белков, которыми богат интересующий нас продукт. Так, казеины являются непосредственно пищевыми белками, ведь без дополнительной обработки отлично расщепляются пищеварительными протеиназами. Тогда как обычным глобулярным белкам для этого необходимо пройти процесс денатурации.

Казеины сворачиваются в желудке новорожденного, образуя сгустки высокой степени дисперсности. Они играют роль важных источников кальция, фосфора и магния, большого перечня физиологически активных пептидов. Так, за счет частичного гидролиза χ-казеина из-за реакции с химозином в желудке освобождаются гликомакропептиды. Они отвечают за регуляцию процесса пищеварения, а именно поддерживают необходимый уровень желудочной секреции. Считается, что физиологическая активность свойственна и растворимым фосфопептидам, появляющимся в результате гидролизе β-казеина.

Перечисляя то, что входит в состав молока, нельзя не упомянуть сывороточные белки, ведь они выполняют не менее важные биологические функции. Иммуноглобулины защищают организм, будучи носителями пассивного иммунитета. Лактоферрин и лизоцим, являющиеся ферментами молока, имеют немаловажные антибактериальные свойства.

Также лактоферрин и β-лактоглобулин выполняют транспортную функцию, а именно помогают железу, витаминам и другим важным элементам попасть в кишечник новорожденного. Сывороточный белок α-лактальбумин имеет регуляторное действие и обеспечивают синтез лактозы. В-лактоглобулин считается ингибитором фермента плазмина.

Аминокислотный состав белков молока

В молочных белках есть практически все аминокислоты, свойственные любым другим разновидностям белков.


Таблица 2. Аминокислотный состав белков молока

Аминокислоты

Сокращенные обозначения

Содержание в белках молока, %

В казеине

В β-лакто-глобулине

В α-лактальбумине

В иммуноглобулине G

В альбумине сыворотки крови

В целом

В том числе по фракциям

α-казеин

χ-казеин

β-казеин

       

Незаменимые:

                 

Валин

Вал

7,2

5,6

5,1

10,2

5,8

4,7

9,6

12,3

Изолейцин

Иле

6,1

6

6,14

5,5

6,1

6,8

3,1

2,6

Лейцин

Лей

9,2

9,4

6,08

11,6

15,6

11,5

9,1

12,3

Лизин

Лиз

8,2

8,7

5,76

6,5

11,4

11,5

9,1

12,3

Метионин

Мет

2,8

3

1

3,4

3,2

1

1,1

0,8

Треонин

Тре

4,9

2,5

6,64

5,1

5,8

5,5

10,1

5,8

Триптофан

Три

1,7

2

1,05

0,83

1,9

7

2,7

0,7

Фемилаланин

Фен

5

5,6

4,07

5,8

3,5

4,5

3,8

6,6

Заменимые:

                 

Аланин

Ала

3

3,4

5,41

1,7

7,4

2,1

98

Аргинин

Арг

4,1

4,4

4

3,4

2,9

1,2

3,5

122

Аспарагиновая кислота

Асп

7,1

8,45

7,3

4,9

11,4

18,7

9,4

218

Гистидин

Гис

3,1

3,3

1,67

3,1

1,6

2,9

2,1

90

Глицин

Гли

2,7

3

1,31

2,40

1,4

3,2

47

Глутаминовая кислота

Глу

22,4

23,6

17,35

23,2

19,5

12,9

12,3

717

Пролин

Про

22,3

8,2

8,78

16

4,1

1,5

302

Серин

Сер

6,3

7,4

7,4

3,2

3,8

5,4

186

Тирозин

Тир

6,3

7,4

7,4

3,2

3,8

5,4

184

Цистеин + цистин

Цис

0,34

1,4

3,4

6,4

3

6

                     

Нужно понимать, что в состав белков молока входят и циклические, и ациклические аминокислоты, то есть нейтральные, кислые и основные, при этом среди последних большая доля приходится именно на кислые. Физико-химические свойства белков зависят от количества отдельных групп аминокислот. А этот показатель во многом связан с породой, индивидуальными особенностями животных, стадией лактации, временем года и другими особенностями.

Если сравнивать молочные белки с глобулярными белками других пищевых продуктов, то первые включают в себя больше лейцина, изолейцина, лизина, глутаминовой кислоты, также серина и пролина, при этом в них меньше цистеина. В то время как сывороточные белки отличаются большой долей серосодержащих аминокислот.

Рекомендуем

«Правила приемки молока: критерии оценки сырья» Подробнее

С точки зрения количества и соотношения незаменимых аминокислот, белки молока считаются биологически полноценными. Особенно ярко это прослеживается у сывороточных белков.

Факторы, влияющие на состав молока

Говоря о том, какие пищевые вещества входят в состав молока, нужно понимать, что его качество и состав во многом зависят от лактационного периода, породы коровы, условий кормления и содержания, состояния здоровья животного. В первые дни после отела молоко совсем не похоже на привычный нам продукт, его называют молозиво. Оно достаточно вязкое, имеет ярко выраженный кремовый цвет, солоноватый привкус, отличается высокой кислотностью, а при нагревании его белки сворачиваются.


Таблица 3. Состав молока коров различных пород, содержащихся в одинаковых условиях.

Порода

Среднесуточный удой

Содержание в молоке

Жира

Белка

Лактозы

Сухих веществ

 

Черно-пестрая

24,1

3,39

3,33

4,98

12,4

 

Костромская

18,1

3,7

3,51

5,06

12,97

 

Симментальская

20,2

3,79

3,42

4,94

12,85

 

Швицкая

21,2

3,53

3,42

5,1

12,85

 

Холмогорская

17

3,66

3,44

5

12,82

 

Лебединская

21,7

3,6

3,24

4,9

12,44

 

Ярославская

13,9

3,77

3,55

5

13,02

 

Красная степная

20,6

3,48

3,33

4,82

12,33

 

Красная горбатовская

15,9

3,96

3,51

4,92

13,12

 

Таблица 4. Химический состав молока, %.

Дни после отела

Жир

Общий белок

В том числе

Лактоза

Зола

Кислотность, 0 Т

Казеин

Альбумин + глобулин

1

5,4

15,08

2,68

12,4

3,31

1,2

49,5

2

5

11,89

2,65

8,14

3,77

0,93

40,9

3

4,1

5,25

2,22

3,02

3,77

0,82

29,8

4

3,4

4,68

2,28

1,8

4,46

0,85

28,7

5

4,6

3,45

2,47

0,97

3,88

0,81

26,7

6

3,4

3,23

2,48

0,75

3,97

0,8

25,6

7

4,1

3,56

2,94

0,62

4,49

0,77

25,5

8

3,3

3,25

2,68

0,58

4,89

0,8

24,7

9

3,3

3,41

2,78

0,63

4,89

0,79

23,7

10

3,4

3,3

2,61

0,69

4,74

0,79

22,5

11

3,4

3,34

2,27

0,62

4,74

0,75

21,8

Нужно понимать, что животные одной породы могут давать молоко разного состава, что связано с индивидуальными особенностями. Этот фактор обязательно принимают во внимание в процессе племенной работы.


Свойства и то, какие вещества входят в состав молока, зависят от качества и соотношения кормов, включенных в рацион скота. Улучшить состав продукта и удои позволяет кормление коров по порционам, которые формируются в соответствии с потребностью животных в питательных веществах, протеине, минералах, витаминах. Если у корма есть резкий запах, например, свойственный силосованным кормам, его можно давать скоту только после доения.

На составе молока негативно отражаются болезни животного. В случае субклинической формы мастита в каждой больной доле вымени теряется около 10–15 % молока за лактацию, при клиническом мастите эта цифра доходит до 50–80 %.

Защитная функция белков. Строение и функции белков

Белки являются основой всех живых организмов. Именно эти вещества выступают компонентом клеточных мембран, органелл, хрящей, сухожилий и роговых производных кожи. Однако защитная функция белков — одна из самых важных.

Белки: особенности строения

Наряду с липидами, углеводами и нуклеиновыми кислотами белки являются органическими веществами, составляющими основу живых существ. Все они — природные биополимеры. Эти вещества состоят из многократно повторяющихся структурных единиц. Они называются мономеры. Для белков такими структурными единицами являются аминокислоты. Соединяясь в цепочки, они образуют крупную макромолекулу.

Уровни пространственной организации белка

Цепочка, состоящая из двадцати аминокислот, может образовывать различные структуры. Это уровни пространственной организации или конформации белка. Первичная структура представлена цепью из аминокислот. Когда она закручивается в спираль, возникает вторичная. Третичная структура возникает при закручивании предыдущей конформации в клубок или глобулу. А вот следующая структура самая сложная — четвертичная. Она состоит из нескольких глобул.

Свойства белков

Если четвертичная структура разрушается до первичной, а именно до цепи аминокислот, то происходит процесс, который называется денатурацией. Он обратим. Цепочка аминокислот способна снова образовать более сложные структуры. А вот когда происходит деструкция, т.е. разрушение первичной структуры, белок восстановить уже невозможно. Такой процесс является необратимым. Деструкцию осуществлял каждый из нас, когда термически обрабатывал продукты, состоящие из белка — куриные яйца, рыбу, мясо.

Функции белков: таблица

Белковые молекулы очень многобразны. Это обусловливает широкий спектр их возможностей, которые обусловлены строением аминокислот. Функции белков (таблица содержит необходимую информацию) являются необходимым условием существования живых организмов.

Функция белкаЗначение и суть процессаНазвание белков, осуществляющих функцию

Строительная

(структурная)

Белок является строительным материалом для всех структур организма: от мембран клетки до мышц и связок.Коллаген, фиброин
ЭнергетическаяПри расщеплении белков выделяется энергия, необходимая для осуществления процессов жизнедеятельности организма (1 г белка — 17, 2 кДж энергии).Проламин
СигнальнаяБелковые соединения клеточных мембран способны распознавать специфические вещества из окружающей среды.Гликопротеиды
СократительнаяОбеспечение двигательной активности.Актин, миозин
РезервнаяЗапас питательных веществ.Эндосперм семян
ТранспортнаяОбеспечение газообмена.Гемоглобин
РегуляторнаяРегуляция химических и физиологических процессов в организме.Белки гормонов
КаталитическаяУскорение протекания химических реакций.Ферменты (энзимы)

Защитная функция белков в организме

Как видите, функции белков очень разнообразны и важны по своему значению. Но мы не упомянули еще об одной из них. Защитная функция белков в организме заключается в предотвращении проникновения чужеродных веществ, которые могут нанести существенный вред организму. Если же это произошло, специализированные белки способны их обезвредить. Эти защитники называются антителами или иммуноглобулинами.

Процесс формирования иммунитета

С каждым вздохом в наш организм проникают болезнетворные бактерии и вирусы. Они попадают в кровь, где начинают активно размножаться. Однако на их пути встает значительная преграда. Это белки плазмы крови — иммуноглобулины или антитела. Они являются специализированными и характеризуются способностью распознавать и обезвреживать чужеродные для организма вещества и структуры. Они называются антигенами. Так проявляется защитная функция белков. Примеры ее можно продолжить информацией об интерфероне. Этот белок также является специализированным и распознает вирусы. Это вещество даже является основой многих иммуностимулирующих лекарственных препаратов.

Благодаря наличию защитных белков организм способен противостоять болезнетворным частицам, т.е. у него формируется иммунитет. Он может быть врожденным и приобретенным. Первым все организмы наделены еще с момента появления на свет, благодаря чему и возможна жизнь. А приобретенный появляется после перенесения различных инфекционных заболеваний.

Механическая защита

Белки выполняют защитную функцию, непосредственно предохраняя клетки и весь организм от механических воздействий. К примеру, наружный скелет ракообразных играет роль панциря, надежно защищая все содержимое. Кости, мышцы и хрящи образуют основу организма, и не только предотвращают повреждение мягких тканей и органов, но и обеспечивают его передвижение в пространстве.

Образование тромбов

Процесс свертывания крови — это также защитная функция белков. Он возможен благодаря наличию специализированных клеток — тромбоцитов. При повреждении кровеносных сосудов они разрушаются. В результате растворимый белок плазмы фибриноген превращается в его нерастворимую форму — фибрин. Это сложный ферментативный процесс, в результате которого нити фибрина очень часто переплетаются и образуют густую сеть, которая препятствует вытеканию крови. Другими словами, образуется сгусток крови или тромб. Это является защитной реакцией организма. При нормальной жизнедеятельности этот процесс длится максимум до десяти минут. Но при болезни несвертываемости крови — гемофилии, которой страдают в основном мужчины, человек может погибнуть даже при незначительном ранении.

Однако если тромбы образуются внутри кровеносного сосуда, это может быть очень опасно. В некоторых случаях это даже приводит к нарушению его целостности и внутреннему кровоизлиянию. В этом случае рекомендованы препараты, наоборот, разжижающие кровь.

Химическая защита

Защитная функция белков проявляется и в химической борьбе с болезнетворными веществами. И начинается она уже в ротовой полости. Попадая в нее, пища вызывает рефлекторное выделение слюны. Основу этого вещества составляет вода, ферменты, которые расщепляют полисахариды и лизоцим. Именно последнее вещество обезвреживает вредоносные молекулы, защищая организм от их дальнейшего воздействия. Содержится он и в слизистых оболочках желудочно-кишечного тракта, и в слезной жидкости, которая омывает роговицу глаза. В большом количестве лизоцим находится в грудном молоке, слизи носоглотки и белке куриных яиц.

Итак, защитная функция белков проявляется в первую очередь в обезвреживании бактериальных и вирусных частиц в крови организма. В результате у него формируется способность противостоять болезнетворным агентам. Ее и называют иммунитетом. Белки, которые входят в состав наружного и внутреннего скелета, защищают внутреннее содержимое от механических повреждений. А белковые вещества, находящиеся в слюне и других средах, предотвращают действие на организм химических агентов. Другими словами, защитная функция белков заключается в обеспечении необходимых условий для всех процессов жизнедеятельности.

§ 10. Классификация белков

§ 10. КЛАССИФИКАЦИЯ  БЕЛКОВ

Существуют несколько подходов к классификации белков: по форме белковой молекулы, по составу белка, по функциям. Рассмотрим их.

 

Классификация по форме белковых молекул

По форме белковых молекул различают фибриллярные белки и глобулярные белки.

Фибриллярные белки представляют собой длинные нитевидные молекулы, полипептидные цепи которых вытянуты вдоль одной оси и скреплены друг с другом поперечными сшивками (рис. 18,б). Эти белки отличаются высокой механической прочностью, нерастворимы в воде. Они выполняют главным образом структурные функции: входят в состав сухожилий и связок (коллаген, эластин), образуют волокна шелка и паутины (фиброин), волосы, ногти, перья (кератин).

В глобулярных белках одна или несколько полипептидных цепей свернуты в плотную компактную структуру – клубок (рис. 18,а). Эти белки, как правило, хорошо растворимы в воде. Их функции многообразны. Благодаря им осуществляются многие биологические процессы, о чем подробнее будет изложено ниже.

Рис. 18. Форма белковых молекул:

а – глобулярный белок, б – фибриллярный белок

 

Классификация по составу белковой молекулы

Белки по составу можно разделить на две группы: простые и сложные белки. Простые белки состоят только из аминокислотных остатков и не содержат других химических составляющих. Сложные белки, помимо полипептидных цепей, содержат другие химические компоненты.

К простым белкам относятся РНКаза и многие другие ферменты. Фибриллярные белки коллаген, кератин, эластин по своему составу являются простыми. Запасные белки растений, содержащиеся в семенах злаков, – глютелины, и гистоны – белки, формирующие структуру хроматина, принадлежат также к простым белкам.

Среди сложных белков различают металлопротеины, хромопротеины, фосфопротеины, гликопротеины, липопротеины и др. Рассмотрим эти группы белков подробнее.

 

Металлопротеины

К металлопротеинам относят белки, в составе которых имеются ионы металлов. В их молекулах встречаются такие металлы, как медь, железо, цинк, молибден, марганец и др. Некоторые ферменты по своей природе являются металлопротеинами.

 

Хромопротеины

В составе хромопротеинов в качестве простетической группы присутствуют окрашенные соединения. Типичными хромопротеинами являются зрительный белок родопсин,  принимающий участие в процессе восприятие света, и белок крови гемоглобин (Hb), четвертичная структура которого рассмотрена в предыдущем параграфе. В состав гемоглобина входит гем, представляющий собой плоскую молекулу, в центре которой расположен ион Fe2+ (рис. 19). При  взаимодействии гемоглобина с кислородом образуется оксигемоглобин.  В альвеолах легких  гемоглобин  насыщается кислородом.  В тканях, где содержание кислорода незначительно, оксигемоглобин распадается с выделением  кислорода,  который  используется клетками:

Гемоглобин может  образовывать  соединение  с оксидом углерода (II), которое называется карбоксигемоглобином:

.

Карбоксигемоглобин не способен  присоединять  кислород. Вот почему происходит отравление угарным газом. 

Гемоглобин и другие гем-содержащие белки (миоглобин, цитохромы) называют еще гемопротеинами из-за наличия в их составе гема (рис. 19).

Рис. 19. Гем

 

Фосфопротеины

Фосфопротеины в своем составе содержат остатки фосфорной кислоты, связанные с гидроксильной группой аминокислотных остатков сложноэфирной связью (рис. 20). 

 

Рис. 20. Фосфопротеин 

К фосфопротеинам относится белок молока казеин. В его состав входят не только остатки  фосфорной кислоты, но и ионы кальция. Фосфор и кальций необходимы растущему организму в больших количествах, в частности, для формирования скелета. Кроме казеина, в клетках много и других фосфопротеинов. Фосфопротеины могут подвергаться дефосфорилированию, т.е. терять фосфатную группу:

фосфопротеин + Н протеин + Н3РО4

Дефосфорилированные белки могут при определенных условиях быть снова фосфорилированы. От наличия фосфатной группы в их молекуле зависит их биологическая активность. Одни белки проявляют свою биологическую функцию в фосфорилированном виде, другие – в дефосфорилированном. Посредством фосфорилирования – дефосфорилирования регулируются многие биологические процессы.

 

Липопротеины

К липопротеинам относятся белки, содержащие ковалентно связанные липиды. Эти белки встречаются в составе клеточных мембран. Липидный (гидрофобный) компонент удерживает белок в мембране (рис. 21). 

 

Рис. 21. Липопротеины в клеточной мембране 

К липопротеинам относят также белки крови, участвующие в транспорте липидов и не образующие  с ними ковалентную связь.

 

Гликопротеины

Гликопротеины содержат в качестве простетической группы ковалентно связанный углеводный компонент. Гликопротеины разделяют на истинные гликопротеины и протеогликаны. Углеводные группировки истинных гликопротеинов содержат обычно до 15 – 20 моносахаридных компонентов, у протеогликанов они построены из очень большого числа моносахаридных остатков (рис. 22).

 

 

Рис. 22. Гликопротеины

Гликопротеины широко распространены в природе. Они встречаются в секретах (слюне и т.д.), в составе клеточных мембран, клеточных стенок, межклеточного вещества, соединительной ткани и т.д. Многие ферменты и транспортные белки являются гликопротеинами.

 

Классификация по функциям

По выполняемым функциям белки можно разделить на структурные, питательные и запасные белки, сократительные, транспортные, каталитические, защитные, рецепторные, регуляторные и др.

 

Структурные белки

К структурным белкам относятся коллаген, эластин, кератин, фиброин. Белки принимают участие в формировании клеточных мембран, в частности, могут образовывать в них каналы или выполнять другие функции ( рис. 23).

 

 Рис. 23. Клеточная мембрана.

 

Питательные и запасные белки

Питательным белком является казеин, основная функция которого  заключается в обеспечении растущего организма аминокислотами, фосфором и кальцием. К запасным белкам относятся яичный белок, белки семян растений. Эти белки потребляются во время развития зародышей. В организме человека и животных белки в запас не откладываются, они должны систематически поступать с пищей, в противном случае может развиться дистрофия.

 

Сократительные белки

Сократительные белки обеспечивают работу мышц, движение жгутиков и ресничек у простейших, изменение формы клеток, перемещение органелл внутри клетки. Такими белками являются миозин и актин. Эти белки присутствуют не только в мышечных клетках, их можно обнаружить в клетках практически любой ткани животных.

 

Транспортные белки

Гемоглобин, рассмотренный в начале параграфа, является классическим примером транспортного белка. В крови присутствуют и другие белки, обеспечивающие транспорт липидов, гормонов и иных веществ. В клеточных мембранах находятся белки,  способные переносить через мембрану глюкозу, аминокислоты, ионы и некоторые  другие вещества. На рис. 24 схематически показана работа переносчика глюкозы.

 

Рис. 24. Транспорт глюкозы через клеточную мембрану

 

Белки-ферменты

Каталитические белки, или ферменты, представляют собой самую многообразную группу белков. Почти все химические реакции, протекающие в организме, протекают при участии ферментов. К настоящему времени открыто несколько тысяч ферментов. Более подробно они будут рассмотрены в следующих параграфах.

 

Защитные белки

К этой группе относятся белки, защищающие организм от вторжения других организмов или предохраняющие его от повреждений. Иммуноглобулины, или антитела, способны распознавать проникшие в организм бактерии, вирусы или чужеродные белки, связываться с ними и способствовать их обезвреживанию.

Другие компоненты крови, тромбин и фибриноген, играют важную роль в процессе свертывания крови. Они предохраняют организм от потери крови при повреждении сосудов. Под действием тромбина от молекул фибриногена отщепляются фрагменты полипептидной цепи, в результате этого образуется фибрин:

фибриноген  фибрин.

Образовавшиеся молекулы фибрина агрегируют, формируя длинные нерастворимые цепи. Сгусток крови вначале является рыхлым, затем он стабилизируется за счет межцепочечных сшивок. Всего в процессе свертывания крови участвует около 20 белков. Нарушения в структуре их генов является причиной такого заболевания, как гемофилия – сниженная свертываемость крови.

 

Рецепторные белки

Клеточная мембрана является препятствием для многих молекул, в том числе и для молекул, предназначенных для передачи сигнала внутрь клеток. Тем не менее клетка способна получать сигналы извне благодаря наличию на ее поверхности специальных  рецепторов, многие из которых являются белками. Сигнальная молекула, например, гормон, взаимодействуя с рецептором, образует гормон-рецепторный комплекс, сигнал от которого передается далее, как правило, на белковый посредник. Последний запускает серию химических реакций, результатом  которых является биологический ответ клетки на воздействие внешнего сигнала (рис. 25).

 

 Рис.25. Передача внешних сигналов в клетку

 

Регуляторные белки

Белки, участвующие в управлении биологическими процессами, относят к регуляторным белкам. К ним принадлежат некоторые гормоны. Инсулин и глюкагон регулируют уровень глюкозы в крови. Гормон роста, определяющий размеры тела, и паратиреоидный гормон, регулирующий обмен фосфатов и ионов кальция, являются регуляторными белками. К этому классу белков принадлежат и другие протеины, участвующие в регуляции обмена веществ.

 

Интересно знать! В плазме некоторых антарктических рыб содержатся белки со свойствами антифриза, предохраняющие рыб от замерзания, а у ряда насекомых в местах прикрепления крыльев находится белок резилин, обладающий почти идеальной эластичностью. В одном из африканских растений синтезируется белок монеллин с очень сладким вкусом.

Биохимический анализ крови

Общие белки крови Содержание белков косвенно характеризует обменные процессы в организме, функцию печени, так как большинство из них синтезируется именно в этом органе. По своему строению и функции белки могут быть очень разнообразными. Обезвоживание, травмы, холера, обширные ожоги, предшествующая активная физическая работа Голодание, заболевания почек, кровопотеря, сахарный диабет, заболевания печени, цирроз, отравление токсическими веществами, кишечные инфекции
Мочевина Содержание мочевины в крови – косвенный показатель функции почек, так как именно это вещество выводится с мочой в качестве конечного продукта обмена белков Заболевания почек: гломерулонефрит, пиелонефрит, гидронефроз, почечная недостаточность. Массивный распад тканей, например, при длительном сдавлении конечностей. Мочекаменная болезнь, опухоли системы мочевыделения, любое препятствие для оттока мочи.
Креатинин Показатель функции почек. Выделение креатинина с мочой, которое называется клиренсом. Является очень важным показателем Почечная недостаточность на далеко зашедших стадиях, увеличение функции щитовидной железы, сахарный диабет, непроходимость кишечника, большие и глубокие ожоги
Мочевая кислота Косвенная оценка состояния обмена веществ. Промежуточный продукт распада белков. Подагра, анемия, связанная с дефицитом витамина В12, болезни печени, некоторые инфекционные заболевания, сахарный диабет, экзема, отравление алкоголем
Глюкоза Содержание глюкозы в крови – показатель, который позволяет оценить функцию поджелудочной железы, а также косвенно – других желез, которые повышают ее содержание Сахарный диабет.Энцефалиты, нейросифилис, повышение функции щитовидной железы, надпочечников, гипофиза, черепно-мозговая травма, эпилепсия, стрессы Голодание. Заболевания пищеварительной системы, связанные с нарушением всасывания сахара, хроническая патология печени, некоторые заболевание головного мозга
Триглицериды Оценка жирового обмена, функционального состояния печени. Вирусные поражения печени, алкоголизм, цирроз алкогольного происхождения, панкреатит, недостаточность функции почек, артериальная гипертония, инфаркт миокарда, беременность, подагра. Инсульт, заболевания дыхательной системы с нарушением нормальной проходимости бронхов, повышение функции щитовидной железы, недоедание
Холестерин Уровень холестерина позволяет оценить функциональное состояние печени, так как это вещество является составляющей желчи. Также он важен сам по себе, так как повышенное содержание холестерина в крови вызывает атеросклероз Атеросклероз, заболевания печени, злокачественные опухоли поджелудочной железы и простаты, сахарный диабет, подагра, инфаркт миокарда, ИБС Наследственные заболевания, цирроз и злокачественные новообразования печени, снижение функции щитовидной железы, ревматоидный артрит
Билирубин Показатель, характеризующий функцию печени и степень распада эритроцитов. Именно это вещество является конечным продуктом распада гемоглобина, который происходит в печени. Затем с желчью он выделяется в кишечник. Обширные гематомы, анемии, хронические и острые диффузные заболевания печени, рак печени, токсическое повреждение печени, нарушения обмена веществ, новообразования поджелудочной железы, лекарственные отравления хлорпромазином, изониазидом, парацетамолом, рифампицином, желчнокаменная болезнь Перенесенная большая кровопотеря, дистрофия
Аспартатамино-трансфераза (АСТ) Определение в крови уровня вещества АСТ, которое выделяется из пораженных сердечных мышц. Фермент, необходимый для нормального функционирования мышечной ткани. Инфаркт миокарда, гепатиты, цирроз, рак печени
Аланинаминотрансфераза (АЛТ) АЛТ выделяется в кровь в чрезмерных количествах при поражении печеночной ткани. Так как это фермент содержится в данном органе, где выполняет ряд важных функций. Поражения печени любой природы. Инфаркт миокарда
Щелочная фосфатаза Фермент, который начинает массивно поступать в кровь при нарушении оттока желчи из печени Застой желчи при нарушении ее оттока, рак печени и метастазы в орган, отравление алкоголем больных алкоголизмом, прием некоторый лекарственных препаратов Снижение функции щитовидной железы, анемия
Натрий Определение содержания в крови элемента, который обеспечивает в ней большую часть осмотического давления, а также принимает участие в передаче электрических импульсов, необходимых для работы клетки. Большие потери жидкости при различных заболеваниях (в основном с мочой и потом), употребление в пищу слишком большого количества соли, либо внутривенное введение солевых растворов, патология почек, которая сопровождается уменьшением количества мочи Задержка жидкости в организме (недостаточность функции сердца, почек), большие потери натрия с мочой, цирроз печени, сахарный диабет. Недостаток соли в рационе.
Калий Определение содержания калия – элемента, который в основном содержится внутри клеток, а также в некотором количестве присутствует вне них Нарушение выведения калия с мочой при гормональных патологиях, введение некоторых медикаментозных препаратов Потеря калия, чаще всего при массивной рвоте. Введение некоторых медикаментозных препаратов
Кальций Минерал, содержание которого в крови зависит от достаточного количества в организме витамина D, функции околощитовидных желез, состояния костной ткани и т. д. В организме кальций выполняет большое количество разных функций. Недостаточность функции почек, снижение функции околощитовидных желез, панкреатит, распад ткани скелетной мускулатуры, опухоли, недостаток витамина Д Увеличение функции околощитовидных желез, злокачественные опухоли, прием большого количества препаратов кальция, рвота, понос
Фосфор Фосфаты практически всегда находятся в организме в связанном с кальцием состоянии. Поэтому их уровень связан с теми же самыми процессами Недостаточность функции почек, снижение функции околощитовидных желез, сахарный диабет, гипервитаминоз Д, сращение переломов костей Недостаточное всасывание фосфора в кишечнике, его избыточное выведение почками
Хлор Хлор – это отрицательный ион, который в крови находится в связанном состоянии с положительным ионом натрия, а также выполняет свои особенные функции. Нарушение функции почек при заболеваниях воспалительного характера и замещении почечной ткани фиброзной, потеря жидкости, обезвоживание Повышенное потоотделение, поносы, многократная рвота при заболеваниях желудка и двенадцатиперстной кишки, заболевания почек

6.3: Функции белков — Медицина LibreTexts

Белки являются «рабочими лошадками» организма и участвуют во многих функциях организма. Как мы уже обсуждали, белки бывают всех размеров и форм, и каждый из них специально структурирован для выполнения своей конкретной функции. На этой странице описаны некоторые важные функции белков. Читая их, имейте в виду, что для синтеза всех этих различных белков требуется адекватное количество аминокислот. Как вы понимаете, диета с дефицитом белка и незаменимых аминокислот может нарушить многие функции организма.(Подробнее об этом позже в разделе.)

Рисунок 6.9. Примеры белков с разными функциями, размерами и формами.

Основные типы и функции белков приведены в таблице ниже, а в последующих разделах этой страницы дается более подробная информация о каждом из них.

Типы и функции белков

Тип

Примеры

Функции

Структура

Актин, миозин, коллаген, эластин, кератин

Придает тканям (кости, сухожилия, связки, хрящи, кожу, мышцы) прочность и структуру

Ферменты

Амилаза, липаза, пепсин, лактаза

Переваривать макроэлементы в более мелкие мономеры, которые могут абсорбироваться; выполняет шаги в метаболических путях, чтобы обеспечить усвоение питательных веществ

Гормоны

Инсулин, глюкагон, тироксин

Посланники химических веществ, которые перемещаются в крови и координируют процессы в организме

Гидравлический и кислотно-щелочной баланс

Альбумин, гемоглобин

Поддерживает соответствующий баланс жидкости и pH в различных отделах тела

Транспорт

Гемоглобин, альбумин,

белковых каналов, белки-носители

Переносить вещества по телу в крови или лимфе; помочь молекулам пересечь клеточные мембраны

Оборона

Коллаген, лизоцим, антитела

Защитите организм от инородных патогенов

Таблица 6.2. Типы и функции белков

Конструкция

В организме человека было обнаружено более сотни различных структурных белков, но наиболее распространенным является коллаген , который составляет около 6 процентов от общей массы тела. Коллаген составляет 30 процентов костной ткани и включает большое количество сухожилий, связок, хрящей, кожи и мышц. Коллаген — это прочный волокнистый белок, состоящий в основном из аминокислот глицина и пролина.В его четвертичной структуре три белковых нити скручиваются друг с другом, как веревка, а затем эти коллагеновые нити перекрываются друг с другом.

Рисунок 6.10. Трехспиральная структура коллагена

Эта высокоупорядоченная структура даже прочнее, чем стальные волокна того же размера. Коллаген делает кости крепкими, но гибкими. Коллагеновые волокна в дерме кожи придают ей структуру, а сопутствующие белковые фибриллы эластина делают ее гибкой. Зажмите кожу на руке и отпустите; белки коллагена и эластина в коже позволяют ей вернуться к своей первоначальной форме.Гладкомышечные клетки, которые выделяют белки коллагена и эластина, окружают кровеносные сосуды, придавая им структуру и способность растягиваться назад после того, как через них прокачивается кровь. Другой сильный волокнистый белок — это кератин , важный компонент кожи, волос и ногтей.

Ферменты

Ферменты — это белки, которые проводят определенные химические реакции. Задача фермента — обеспечить место для химической реакции и снизить количество энергии и время, необходимое для того, чтобы эта химическая реакция произошла (это известно как «катализ»).В среднем каждую секунду в клетках происходит более 100 химических реакций, и для большинства из них требуются ферменты. Одна только печень содержит более 1000 ферментных систем. Ферменты специфичны и будут использовать только определенные субстраты, которые подходят их активному сайту, подобно тому, как замок может быть открыт только с помощью определенного ключа. К счастью, фермент может снова и снова выполнять свою роль катализатора, хотя в конечном итоге он разрушается и восстанавливается. Все функции организма, включая расщепление питательных веществ в желудке и тонком кишечнике, преобразование питательных веществ в молекулы, которые клетка может использовать, и построение всех макромолекул, включая сам белок, включают ферменты.

Рисунок 6.11. Ферменты — это белки. Задача фермента — обеспечивать место для веществ, которые химически реагируют и образуют продукт, а также уменьшают количество энергии и время, необходимое для того, чтобы это произошло.

ВИДЕО: «Фермент», автор kosasihiskandarsjah, YouTube (15 апреля 2008 г.), 0:47 мин. Это видео демонстрирует действие ферментов.

Гормоны

Белки отвечают за синтез гормонов. Гормоны — это химические посредники, вырабатываемые железами внутренней секреции.Когда эндокринная железа стимулируется, она выделяет гормон. Затем гормон транспортируется с кровью к своей клетке-мишени, где он передает сообщение, чтобы инициировать определенную реакцию или клеточный процесс. Например, после еды уровень глюкозы в крови повышается. В ответ на повышение уровня глюкозы в крови поджелудочная железа выделяет гормон инсулин. Инсулин сообщает клеткам тела, что глюкоза доступна и может забирать ее из крови и хранить или использовать для производства энергии или создания макромолекул.Основная функция гормонов — включать и выключать ферменты, поэтому некоторые белки могут даже регулировать действие других белков. Хотя не все гормоны состоят из белков, многие из них таковы.

Жидкостный и кислотно-щелочной баланс

Достаточное потребление белка позволяет основным биологическим процессам организма поддерживать гомеостаз (постоянные или стабильные условия) в изменяющейся окружающей среде. Одним из аспектов этого является баланс жидкости, позволяющий правильно распределять воду в различных отделах тела.Если слишком много воды внезапно переходит из крови в ткань, это приводит к отеку и, возможно, к гибели клеток. Вода всегда течет из области высокой концентрации в область низкой концентрации. В результате вода перемещается в области с более высокими концентрациями других растворенных веществ, таких как белки и глюкоза. Чтобы вода равномерно распределялась между кровью и клетками, белки постоянно циркулируют в крови в высоких концентрациях. Самый распространенный белок в крови — это белок в форме бабочки, известный как альбумин .Присутствие альбумина в крови делает концентрацию белка в крови похожей на таковую в клетках. Таким образом, обмен жидкости между кровью и клетками не является чрезмерным, а, скорее, сведен к минимуму для сохранения гомеостаза.

Рисунок 6.12. Белок в форме бабочки, альбумин, выполняет множество функций в организме, включая поддержание жидкостного и кислотно-щелочного баланса, а также транспортировку молекул.

Белок также необходим для поддержания правильного баланса pH (мера того, насколько кислым или основным является вещество) в крови.PH крови поддерживается между 7,35 и 7,45, что является слегка щелочным. Даже небольшое изменение pH крови может повлиять на функции организма. В организме есть несколько систем, которые удерживают pH крови в пределах нормы, чтобы этого не происходило. Один из них — циркулирующий альбумин. Альбумин имеет слабую кислотность и, поскольку он отрицательно заряжен, уравновешивает множество положительно заряженных молекул, циркулирующих в крови, таких как протоны водорода (H + ), кальций, калий и магний.Альбумин действует как буфер против резких изменений концентраций этих молекул, тем самым уравновешивая pH крови и поддерживая гомеостаз. Белок гемоглобин также участвует в кислотно-щелочном балансе, связывая протоны водорода.

Транспорт

Белки также играют жизненно важную роль в транспортировке веществ по телу. Например, альбумин химически связывается с гормонами, жирными кислотами, некоторыми витаминами, необходимыми минералами и лекарствами и переносит их по кровеносной системе.Каждый эритроцит содержит миллионы молекул гемоглобина, которые связывают кислород в легких и транспортируют его ко всем тканям организма. Плазматическая мембрана клетки обычно не проницаема для больших полярных молекул, поэтому для доставки необходимых питательных веществ и молекул в клетку многие транспортные белки существуют в клеточной мембране. Некоторые из этих белков являются каналами, которые позволяют определенным молекулам входить и выходить из клеток. Другие действуют как такси с односторонним движением и требуют энергии для работы.

Рисунок 6.13. Молекулы входят в клетки и выходят из них посредством транспортных белков, которые являются либо каналами, либо переносчиками.

ВИДЕО: «Натрий-калиевый насос», RicochetScience, YouTube (23 мая 2016 г.), 2:26 мин. В этом руководстве описывается, как натрий-калиевый насос использует активный транспорт для перемещения ионов натрия (Na +) из клетки и ионов калия (K +) в клетку.

Иммунитет

Белки также играют важную роль в иммунной системе организма. Сильные волокна коллагена в коже обеспечивают ей структуру и поддержку, но они также служат преградой для вредных веществ.Функции атаки и разрушения иммунной системы зависят от ферментов и антител, которые также являются белками. Например, фермент под названием лизоцим секретируется в слюне и атакует стенки бактерий, вызывая их разрыв. Определенные белки, циркулирующие в крови, могут быть направлены на создание молекулярного ножа, который пронзает клеточные мембраны чужеродных захватчиков. Антитела , секретируемые лейкоцитами, исследуют всю систему кровообращения в поисках вредных бактерий и вирусов, которые можно окружить и уничтожить.Антитела также запускают другие факторы иммунной системы для поиска и уничтожения нежелательных злоумышленников.

ВИДЕО: «Специфический иммунитет, антитела», Carpe Noctum, YouTube (11 декабря 2007 г.), 1 минута. Посмотрите это видео, чтобы увидеть, как антитела защищают от посторонних вторжений.

Производство энергии

Некоторые аминокислоты в белках можно разобрать и использовать для производства энергии. Только около 10 процентов пищевых белков катаболизируются каждый день для производства клеточной энергии.Печень способна расщеплять аминокислоты до углеродного скелета, которые затем могут быть включены в лимонную кислоту или цикл Кребса. Это похоже на то, как глюкоза используется для производства АТФ. Если диета человека не содержит достаточного количества углеводов и жиров, его организм будет использовать больше аминокислот для производства энергии, что может поставить под угрозу синтез новых белков и разрушить мышечные белки, если потребление калорий также будет низким.

Не только аминокислоты могут использоваться напрямую для получения энергии, но они также могут использоваться для синтеза глюкозы посредством глюконеогенеза. В качестве альтернативы, если человек придерживается диеты с высоким содержанием белка и потребляет больше калорий, чем необходимо его организму, лишние аминокислоты расщепляются и превращаются в жир. В отличие от углеводов и жиров, белок не имеет специальной системы хранения, которую можно было бы использовать в дальнейшем для получения энергии.

Незаменимые аминокислоты: таблица, сокращения и структура

Аминокислота Ala

Аланин, обнаруженный в белке в 1875 году, составляет 30% остатков в шелке.Его низкая реакционная способность способствует простой, удлиненной структуре шелка с небольшим количеством поперечных связей, что придает волокнам прочность, сопротивление растяжению и гибкость. В биосинтезе белков участвует только l-стереоизомер.

Аминокислота Arg

У человека аргинин вырабатывается при переваривании белков. Затем он может быть преобразован человеческим организмом в оксид азота, химическое вещество, которое, как известно, расслабляет кровеносные сосуды.

Благодаря своему сосудорасширяющему действию аргинин был предложен для лечения людей с хронической сердечной недостаточностью, высоким уровнем холестерина, нарушением кровообращения и высоким кровяным давлением, хотя исследования в этом направлении все еще продолжаются.Аргинин также может быть получен синтетическим путем, и родственные аргинину соединения можно использовать для лечения людей с дисфункцией печени из-за их роли в стимулировании регенерации печени. Хотя аргинин необходим для роста, но не для поддержания организма, исследования показали, что аргинин имеет решающее значение для процесса заживления ран, особенно у людей с плохим кровообращением.

Аминокислота Asn

В 1806 году аспарагин был очищен из сока спаржи, что сделало его первой аминокислотой, выделенной из природного источника.Однако только в 1932 году ученые смогли доказать, что аспарагин присутствует в белках. Только l-стереоизомер участвует в биосинтезе белков млекопитающих. Аспарагин важен для удаления токсичного аммиака из организма.

Аминокислота Asp

Открытая в 1868 г. в белках аспарагиновая кислота обычно содержится в белках животных, однако только l-стереоизомер участвует в биосинтезе белков. Растворимость этой аминокислоты в воде обусловлена ​​наличием рядом с активными центрами ферментов, таких как пепсин.

Аминокислота Cys

Цистеин особенно богат белками волос, копыт и кератином кожи, который был выделен из мочевого камня в 1810 году и из рога в 1899 году. Впоследствии он был химически синтезирован. и структура решена в 1903–1904 гг.

Серосодержащая тиоловая группа в боковой цепи цистеина является ключевой для его свойств, обеспечивая образование дисульфидных мостиков между двумя пептидными цепями (как в случае с инсулином) или образование петли в одной цепи, влияя на окончательную структуру белка.Две молекулы цистеина, связанные между собой дисульфидной связью, составляют аминокислоту цистин, которая иногда указывается отдельно в общих списках аминокислот. Цистеин вырабатывается в организме из серина и метионина и присутствует только в l-стереоизомере в белках млекопитающих.

Люди с генетическим заболеванием цистинурия не могут эффективно реабсорбировать цистин в кровоток. Следовательно, в их моче накапливается высокий уровень цистина, где он кристаллизуется и образует камни, которые блокируют почки и мочевой пузырь.

Аминокислота Gln

Глутамин был впервые выделен из свекольного сока в 1883 году, выделен из белка в 1932 году и впоследствии химически синтезирован в следующем году. Глютамин — самая распространенная в нашем организме аминокислота, которая выполняет несколько важных функций. У людей глутамин синтезируется из глутаминовой кислоты, и этот этап преобразования жизненно важен для регулирования уровня токсичного аммиака в организме, образуя мочевину и пурины.

Аминокислота Glu

Глутаминовая кислота была выделена из глютена пшеницы в 1866 году и химически синтезирована в 1890 году.Обычно встречается в белках животных, только l-стереоизомер встречается в белках млекопитающих, которые люди могут синтезировать из обычного промежуточного продукта α-кетоглутаровой кислоты. Мононатриевая соль l-глутаминовой кислоты, глутамат натрия (MSG) обычно используется в качестве приправы и усилителя вкуса. Карбоксильная боковая цепь глутаминовой кислоты способна действовать как донор и акцептор аммиака, который токсичен для организма, обеспечивая безопасную транспортировку аммиака в печень, где он превращается в мочевину и выводится почками.Свободная глутаминовая кислота также может разлагаться до диоксида углерода и воды или превращаться в сахара.


Аминокислота Gly

Глицин был первой аминокислотой, выделенной из белка, в данном случае желатина, и единственной неактивной оптически (без d- или l-стереоизомеров ). Структурно простейшая из α-аминокислот, она очень инертна при включении в белки. Тем не менее, глицин играет важную роль в биосинтезе аминокислоты серина, кофермента глутатиона, пуринов и гема, жизненно важной части гемоглобина.


His-аминокислота

Гистидин был выделен в 1896 году, и его структура была подтверждена химическим синтезом в 1911 году. Гистидин является прямым предшественником гистамина, а также важным источником углерода в синтезе пуринов. При включении в белки боковая цепь гистидина может действовать как акцептор и донор протонов, передавая важные свойства при объединении с ферментами, такими как химотрипсин, и ферментами, участвующими в метаболизме углеводов, белков и нуклеиновых кислот.

Для младенцев гистидин считается незаменимой аминокислотой, взрослые могут в течение короткого времени обходиться без диетического питания, но по-прежнему считается незаменимой.


Иле-аминокислота

Изолейцин был выделен из сахарной патоки свеклы в 1904 году. Гидрофобная природа боковой цепи изолейцина важна для определения третичной структуры белков, в которые она включена.

У тех, кто страдает редким наследственным заболеванием, называемым болезнью мочи кленового сиропа, есть дефектный фермент в пути разложения, который является общим для изолейцина, лейцина и валина.Без лечения метаболиты накапливаются в моче пациента, вызывая характерный запах, который и дал название состоянию.


Аминокислота лей

Лейцин был выделен из сыра в 1819 году и из мышц и шерсти в его кристаллическом состоянии в 1820 году. В 1891 году он был синтезирован в лаборатории.

Только l-стереоизомер присутствует в белке млекопитающих и может расщепляться на более простые соединения ферментами организма.Некоторые связывающие ДНК белки содержат области, в которых лейцины расположены в конфигурации, называемые лейциновыми застежками-молниями.


Аминокислота Lys

Лизин был впервые выделен из казеина молочного белка в 1889 году, а его структура была выяснена в 1902 году. Лизин важен для связывания ферментов с коферментами и играет важную роль в способ функционирования гистонов.

Многие зерновые культуры содержат очень мало лизина, что привело к его дефициту у некоторых групп населения, которые сильно зависят от них в продуктах питания, а также у вегетарианцев и людей, сидящих на низкожирной диете.Следовательно, были предприняты усилия по разработке штаммов кукурузы, богатых лизином.


Аминокислота Met

Метионин был выделен из казеина молочного белка в 1922 году, и его структура была решена путем лабораторного синтеза в 1928 году. Метионин является важным источником серы для многих соединений в организме, включая цистеин и таурин. Связанный с содержанием серы, метионин помогает предотвратить накопление жира в печени и помогает выводить токсины и шлаки метаболизма.

Метионин — единственная незаменимая аминокислота, которая не присутствует в значительных количествах соевых бобов и поэтому производится коммерчески и добавляется во многие продукты из соевого шрота.


Фенилаланин

Фенилаланин был впервые выделен из природного источника (ростки люпина) в 1879 году и впоследствии химически синтезирован в 1882 году. Человеческий организм обычно способен расщеплять фенилаланин на тирозин, однако У людей с наследственной фенилкетонурией (ФКУ) фермент, который выполняет это преобразование, неактивен.Если не лечить, фенилаланин накапливается в крови, вызывая задержку умственного развития у детей. Примерно 10 000 детей рождаются с этим заболеванием, поэтому диета с низким содержанием фенилаланина в раннем возрасте может облегчить его последствия.


Pro аминокислота

В 1900 году пролин был синтезирован химическим путем. На следующий год он был выделен из казеина из молочного белка, и его структура оказалась такой же. Люди могут синтезировать пролин из глутаминовой кислоты, которая присутствует только как l-стереоизомер в белках млекопитающих.Когда пролин включается в белки, его особая структура приводит к резким изгибам или перегибам в пептидной цепи, что в значительной степени способствует окончательной структуре белка. Пролин и его производное гидроксипролин составляют 21% аминокислотных остатков волокнистого белка коллагена, необходимого для соединительной ткани.


Аминокислота Ser

Серин был впервые выделен из белка шелка в 1865 году, но его структура не была установлена ​​до 1902 года.Люди могут синтезировать серин из других метаболитов, включая глицин, хотя только l-стереоизомер присутствует в белках млекопитающих. Серин важен для биосинтеза многих метаболитов и часто важен для каталитической функции ферментов, в которые он включен, включая химотрипсин и трипсин.

Нервные газы и некоторые инсектициды действуют путем объединения с остатком серина в активном центре ацетилхолинэстеразы, полностью ингибируя фермент. Активность эстеразы важна для расщепления нейромедиатора ацетилхолина, в противном случае повышается опасно высокий уровень, что быстро приводит к судорогам и смерти.


Thr аминокислота

Треонин был выделен из фибрина в 1935 году и синтезирован в том же году. Только l-стереоизомер появляется в белках млекопитающих, где он относительно инертен. Хотя он играет важную роль во многих реакциях бактерий, его метаболическая роль у высших животных, включая человека, остается неясной.


Аминокислота Trp

Структура триптофана, выделенная из казеина (молочного белка) в 1901 году, была установлена ​​в 1907 году, но только l-стереоизомер присутствует в белках млекопитающих.В кишечнике человека бактерии расщепляют пищевой триптофан, выделяя такие соединения, как скатол и индол, которые придают фекалиям неприятный аромат. Триптофан превращается в витамин B3 (также называемый никотиновой кислотой или ниацином), но не в достаточной степени, чтобы поддерживать наше здоровье. Следовательно, мы также должны принимать витамин B3, несоблюдение этого правила приводит к его дефициту, называемому пеллагрой.


Аминокислота Tyr

В 1846 году тирозин был выделен в результате разложения казеина (сырного белка), после чего он был синтезирован в лаборатории и его структура была определена в 1883 году.Присутствующий только в l-стереоизомере в белках млекопитающих, люди могут синтезировать тирозин из фенилаланина. Тирозин является важным предшественником гормонов надпочечников адреналина и норадреналина, гормонов щитовидной железы, включая тироксин, а также пигмента волос и кожи меланина. В ферментах остатки тирозина часто связаны с активными центрами, изменение которых может изменить специфичность фермента или полностью уничтожить активность.

Страдающие серьезным генетическим заболеванием фенилкетонурия (ФКУ) неспособны превращать фенилаланин в тирозин, в то время как у пациентов с алкаптонурией метаболизм тирозина нарушен, и моча становится отчетливой и темнеет при контакте с воздухом.


Val аминокислота

Структура валина была установлена ​​в 1906 году после его первого выделения из альбумина в 1879 году. В белке млекопитающих присутствует только l-стереоизомер. Валин может разлагаться в организме на более простые соединения, но у людей с редким генетическим заболеванием, называемым болезнью мочи кленового сиропа, неисправный фермент прерывает этот процесс и может оказаться фатальным при отсутствии лечения.

20 аминокислот, входящих в состав белков | Улучшение жизни с помощью аминокислот | О нас | Глобальный веб-сайт Ajinomoto Group

Как известно, различные аминокислоты являются основными компонентами, из которых состоят белки.Аминокислоты составляют отличительную часть человеческого тела и диеты. Они чрезвычайно важны для правильного функционирования человеческого тела; следовательно, важно понимать, сколько аминокислот составляют белки. Давайте перейдем к выяснению, сколько аминокислот действительно составляют белки.

Сколько аминокислот помогает вырабатывать белки?

В природе идентифицировано около 500 аминокислот, но только 20 аминокислот составляют белки, обнаруженные в организме человека. Давайте узнаем обо всех этих 20 аминокислотах и ​​типах различных аминокислот.

Типы всех аминокислот

Все 20 аминокислот подразделяются на две разные аминокислотные группы. Незаменимые и заменимые аминокислоты вместе составляют 20 аминокислот. Из 20 аминокислот 9 являются незаменимыми аминокислотами, а остальные — заменимыми аминокислотами. Давайте посмотрим на каждую аминокислоту в соответствии с их классификацией.

Незаменимые аминокислоты

BCAA (валин, лейцин и изолейцин)

Аминокислоты с разветвленной цепью (BCAA) представляют собой группу из трех аминокислот (валин, лейцин и изолейцин), которые имеют молекулярную структуру с разветвлением.BCAA богаты мышечными белками, стимулируют рост мышц в организме и обеспечивают энергию во время упражнений.

Лизин

Лизин — одна из наиболее часто упоминаемых незаменимых аминокислот. Такие продукты, как хлеб и рис, как правило, содержат мало лизина. Например, по сравнению с идеальным аминокислотным составом в пшенице мало лизина. Университет Организации Объединенных Наций провел исследование о людях в развивающихся странах, которые зависят от пшеницы как источника белка, и обнаружил недостаток лизина в их рационе.Недостаток лизина и других аминокислот может привести к серьезным проблемам, таким как задержка роста и тяжелые заболевания.

Треонин

Незаменимая аминокислота, которая используется для создания активного центра ферментов.

Фенилаланин

Незаменимая аминокислота, которая используется для производства многих типов полезных аминов.

метионин

Незаменимая аминокислота, которая используется для производства множества различных веществ, необходимых организму.

Гистидин

Незаменимая аминокислота, используемая для производства гистамина.

Триптофан

Незаменимая аминокислота, используемая для производства многих типов полезных аминов.

Незаменимые аминокислоты

Глютамин

Глютамин — одна из самых распространенных аминокислот в организме. Глютамин защищает желудок и желудочно-кишечный тракт. В частности, глутамин используется для выработки энергии в желудочно-кишечном тракте. Глютамин способствует метаболизму алкоголя для защиты печени.

аспартат

Аспартат — одна из аминокислот, наиболее пригодных для получения энергии.Аспартат — одна из аминокислот, наиболее близко расположенных к циклу трикарбоновых кислот (ТСА) в организме, который производит энергию. Цикл TCA подобен двигателю, который приводит в движение автомобили. Каждая клетка нашего тела производит энергию.

Глутамат

Бульон комбу, используемый в японской кулинарии, содержит глутамат. Глутамат является основой умами, а свободный глутамат содержится в комбу, помидорах и сыре. Внутри организма глутамат используется как важный источник незаменимых аминокислот.

Аргинин

Аргинин играет важную роль в открытии вен для улучшения кровотока. Оксид азота, открывающий вены, сделан из аргинина. Аргинин — полезная аминокислота для удаления избытка аммиака из организма. Аргинин повышает иммунитет.

Аланин

Аланин поддерживает функцию печени. Аланин используется для производства глюкозы, необходимой организму. Аланин улучшает метаболизм алкоголя.

Proline

Пролин — одна из аминокислот, содержащихся в коллагене, который составляет ткань кожи.Пролин — одна из важнейших аминокислот естественного увлажняющего фактора (NMF), который сохраняет кожу влажной.

Цистеин

Цистеин уменьшает количество производимой черной пигментации меланина. Цистеин много в волосах на голове и теле. Цистеин увеличивает количество желтого меланина, производимого вместо черного меланина.

Аспарагин

Аминокислота, обнаруженная из спаржи. И аспарагин, и аспартат расположены близко к циклу трикарбоновой кислоты (TCA), который производит энергию.

Серин

Аминокислота, используемая для производства фосфолипидов и глицериновой кислоты.

Глицин

Незаменимая аминокислота, вырабатываемая в организме. В организме много глицина. Он действует как передатчик в центральной нервной системе и помогает регулировать такие функции организма, как движение и сенсорное восприятие. Глицин составляет одну треть коллагена.

Тирозин

Тирозин используется для получения многих типов полезных аминов. Тирозин относится к группе ароматических аминокислот вместе с фенилаланином и триптофаном.


Контент, который может вам понравиться

Что такое аминокислоты?

Аминокислоты — незаменимые соединения, общие для всех живых существ, от микробов до человека. Все живые тела содержат одни и те же 20 типов аминокислот. Что такое …

Факты об аминокислотах

Часто задаваемые вопросы об аминокислотахОбщие вопросы об аминокислотахВ чем разница между аминокислотой и пептидом? Белки состоят из сотен…

белков


БЕЛКИ

Вы когда-нибудь замечали, что практически в каждой организации всегда есть тот человек, который может все? Независимо от того, что нужно сделать, этот человек каким-то образом может это сделать. Подумайте о том дяде из вашей семьи, который является «мастером на все руки», которого всегда вызывают, когда возникает проблема или необходимость. В каждой бейсбольной команде есть вспомогательный игрок, который может занять любую позицию, когда он понадобится.Эти люди незаменимы для своих организаций. Клетка ничем не отличается. Нужен в ячейке «служебный» плеер. Кто такая биологическая молекула в молекулярном мире клетки, которая может делать почти все? Если вы предполагаете, что это белки, вы правы (конечно, заголовок этого раздела мог вас предупредить). Из четырех классов биологических молекул белки наиболее разнообразны по своим функциям. По некоторым оценкам, наши клетки производят более 50 000 различных белков.В таблице 1 перечислены некоторые основные функции белков, но этот список не является исчерпывающим, на самом деле трудно представить себе какую-либо функцию в организме, в которой белки не были бы неотъемлемой частью. В этом разделе мы узнаем о молекулярной структуре белков и обсудим некоторые из их важных функций.

Функция

Пример

Структура

Коллаген в сухожилиях и связках, Кератин в ногтях и коже

Транспорт

Гемоглобин в крови, Na + , K + -АТФаза в клеточных мембранах

Защита

Антитела иммунной системы

Механизм

Актин и миозин в мышцах

Ферменты

Пищеварительные ферменты тонкого кишечника (лактаза, сахароза, трипсин)

Рецепторы

Мембранные белки, отвечающие на химические посредники (рецепторы инсулина)

Постановление

Химические посланники: гормоны, нейромедиаторы, цитокины

Аминокислоты

Подобно полисахаридам и нуклеиновым кислотам, белки представляют собой полимеры из более мелких субъединиц или мономеров.Мономеры, из которых состоят белки, — это аминокислот . Хотя существует 20 различных аминокислот, из которых состоят белки у человека, все они имеют одинаковую базовую структуру. Каждый из них имеет центральный углерод с прикрепленными к нему 4 разными группами. На рисунке ниже показана основная структура аминокислоты. К центральному углероду присоединена аминогруппа (зеленый) и карбоксильная группа (красный). Напомним, что карбоксильная группа — это кислотная группа. Название аминокислота происходит от этих двух групп.Кроме того, есть водород (синий) и, наконец, группа R . В сокращении химиков-органиков группа R представляет собой некоторую другую органическую группу. В случае аминокислот имеется 20 различных групп R, следовательно, 20 различных аминокислот. Это разные группы R, которые придают разные свойства аминокислотам. Некоторые группы R неполярны (гидрофобны), другие полярны (гидрофильны). Некоторые группы R являются ионами, анионами или катионами (гидрофильными).

Изображение создано MG BYU-I; 2013.

На изображении выше представлена ​​основная структура аминокислоты. Центральный углерод (черный) имеет 4 присоединенные к нему группы: аминогруппу (зеленый), карбоксильную группу (красный), водород (синий) и одну из 20 различных R-групп. Что касается аминокислоты, «R» может означать разные вещи, и на этом изображении он просто представляет собой какой-то тип органической группы.

В этом классе вам не нужно будет изучать названия и структуры отдельных аминокислот, однако, если вы хотите узнать больше об их структуре и характеристиках, перейдите по следующим ссылкам:

http: // www.aminoacidsguide.com/

http://en.wikipedia.org/wiki/Amino_acid

Пептидные связи и полипептиды

Как упоминалось во введении, белки представляют собой полимеры аминокислот. Как и все полимеры, которые мы обсуждали до сих пор, аминокислоты связаны друг с другом посредством реакций синтеза дегидратации (конденсации). Связь, которая образуется между аминокислотами, называется пептидной связью . На рисунке ниже показано, как формируются эти связи.В этом простом примере мы назвали бы полученный полимер дипептидом . Малые пептиды обозначают трипептиды, тетрапептиды, пентапептиды и т.д. Общий термин полипептид используется для обозначения многих аминокислот, связанных вместе. Термины «полипептид» и «белок» часто используются как взаимозаменяемые, и нет установленного правила, когда следует использовать каждый из них. Некоторые авторитеты предлагают сократить количество аминокислот до 50, все, что меньше 50, называется полипептидом, а все, что больше 50, — белком.Другие используют отсечку по молекулярной массе, где 10 000 — это разделение между полипептидами и белками. Назовем ли мы их белками или полипептидами, это не имеет особого значения; они по-прежнему будут выполнять свою работу, как бы мы их ни называли. Обратите внимание, что концевые аминокислоты в полипептиде будут иметь либо несвязанную аминогруппу, либо несвязанную карбоксильную группу. Эти концы обозначены как амино- или N-конец и карбоксильный или С-конец соответственно.

Изображение создано MG BYU-I; 2013.

На изображении выше представлена ​​реакция синтеза дегидратации между 2 аминокислотами с образованием пептидной связи. Пептидные связи образуются между карбоксильной группой одной аминокислоты и аминогруппой другой.

Как упоминалось выше, почти все живые существа (за исключением нескольких бунтарских штаммов бактерий) содержат белки, состоящие из 20 аминокислот. Наша печень — довольно эффективная фабрика аминокислот, и она может синтезировать 11 из этих 20 аминокислот, даже если мы не потребляем их с пищей.Однако девять аминокислот составляют незаменимых аминокислот . Если мы не потребляем эти незаменимые аминокислоты с пищей, у нашего тела не будет необходимых запасов, когда необходимо производить новые белки.

Для тех из вас, кто еще не задремал, давайте закрепим эти базовые концепции. Думайте об аминокислотах как о блоках Lego. Если бы вам дали 20 упаковок этих блоков, каждая из которых имела свой цвет, вы могли бы начать производство белков Lego. Подумайте только о возможных комбинациях ваших лего.Возможности практически безграничны. Некоторые из ваших белков могут содержать только несколько Lego, в то время как другие могут содержать тысячи. Это потенциал наших клеток для производства молекул, выполняющих многие функции белков.

Структура белка

К настоящему времени вы должны начать осознавать важность белков для правильного функционирования различных систем нашего тела. Что такого особенного в белках, что позволяет им выполнять все эти различные задачи? Ответ на этот вопрос можно описать тремя словами: форма, форма и форма.Позвольте мне еще раз сказать, что функция белка определяется его формой. Судя по многочисленным функциям белков, вы можете себе представить, что они имеют очень сложную форму. Если мы думаем о белках как о машинах, мы все быстро понимаем, что наличие колес на днище автомобиля и рулевого колеса для управления автомобилем — довольно важное стандартное оборудование. Точно так же, если наша белковая «машина» не имеет нужных частей в нужных местах, а каждый компонент должным образом соединен вместе, белок приносит нашему телу столько же пользы, сколько машина, прошедшая автодробление.Изучая форму белков, биохимики разделили их на 4 уровня сложности или структуры. Когда мы переходим от уровня структуры 1 к уровню структуры 4 , предыдущий уровень добавляется к следующему. Например, у вас не может быть вторичной структуры без первичной структуры.

Первичная структура: Первичная структура белка представляет собой последовательность аминокислот в его полипептидной цепи. Если бы белки были нитями для попкорна, сделанными для украшения рождественской елки, первичная структура белка — это последовательность, в которой нанизаны вместе различные формы и разновидности кукурузных хлопьев.Первичная структура белка поддерживается ковалентными пептидными связями, соединяющими аминокислоты вместе. На рисунке ниже показана первичная структура инсулина, первого белка, который нужно секвенировать. Обратите внимание, что в правой части рисунка пронумерована позиция каждой аминокислоты. По соглашению биохимики всегда нумеруют аминокислоты, начиная с N-конца полипептидной цепи.

Изображение, сделанное студентом BYU-I Нейтом Шумейкером Весна 2016 г.

На изображении выше представлена ​​первичная структура белка (цепочка аминокислот).Как и следовало ожидать, последовательность аминокислот в полипептидной цепи имеет решающее значение для правильного функционирования белка. Эта последовательность закодирована в генетическом коде ДНК. Если есть мутация в ДНК и изменена аминокислотная последовательность, это может повлиять на функцию белка. Все известные генетические заболевания, такие как муковисцидоз, серповидно-клеточная анемия, альбинизм и т. Д., Происходят из-за мутаций, которые приводят к изменениям в первичных структурах белков, которые затем, в свою очередь, вызывают изменения во вторичных, третичных и, возможно, четвертичных. состав.

Изображение, сделанное студентом BYU-I Нейтом Шумейкером Весна 2016 г.

Вторичная структура: Вторичная структура белков включает скручивание или сворачивание полипептидов в очень регулярные субструктуры. В то время как первичная структура белка в значительной степени двумерна, вторичная структура белков начинает очень важную трехмерную конфигурацию белков.

Два типа вторичных элементов — это alpha helix (представьте себе «обтягивающий» и слева на картинке чуть выше) и beta гофрированный лист, или просто гофрированный лист (подумайте об одном из тех складчатых картонных щитков для лобового стекла, которые может быть размещен на внутренней стороне лобового стекла вашего автомобиля в жаркий день, чтобы внутри вашего автомобиля не было температуры, примерно такой же, как внутренняя часть нашего солнца (находится справа на картинке чуть выше). Вторичная структура белков является результатом последовательности аминокислот в первичной структуре и поддерживается водородными связями .Некоторые белки, такие как коллаген, почти полностью представляют собой альфа-спираль, в то время как другие, такие как шелк, в основном состоят из гофрированного полотна. Другие белки могут иметь в своей структуре короткие сегменты альфа-спирали и / или складчатый лист.

Изображение, сделанное студентом BYU-I Нейтом Шумейкером Весна 2016 г.

Третичная структура: Третичная структура белка — это общая укладка полипептидной цепи.Это складывание включает в себя нечто большее, чем просто альфа-спираль и гофрированный лист. Существуют и другие химические взаимодействия, которые могут помочь определить трехмерную третичную структуру. Помните, что группы R некоторых аминокислот являются гидрофильными, а другие — гидрофобными. Поскольку белки в организме находятся в водном растворе, гидрофильные группы R будут стремиться ориентироваться в сторону воды, а гидрофобные группы R будут отворачиваться от воды (к центру белка). Это может привести к образованию петель и складок в структуре белка.Иногда гидрофильные группы образуют ионные связи или водородные связи между различными R-группами. Это помогает стабилизировать третичную структуру. Слабые кислоты и основания могут отдавать или принимать протоны в водных растворах, в которых существуют белки. Это может создавать положительные и отрицательные заряды на аминокислотах, которые создают притяжение. pH, безусловно, может влиять на то, как происходит это притяжение между кислотными и основными R-группами. Это помогает объяснить, почему радикальные изменения pH могут привести к распаду структур белков и нарушению способности белка функционировать.Это называется денатурированием белка. Кстати, очень высокие температуры также могут вызвать разрушение некоторых из этих третичных структурных связей, и это еще один способ денатурировать белок. Одна очень важная и очень прочная связь третичной структуры на самом деле является ковалентной связью, которая возникает между определенными группами R (дисульфидные связи между соседними остатками цистеина).

Изображение разработал студент BYU-I Нейт Шумейкер Весна 2016 г.

Четвертичная структура: Не все белки имеют четвертичную структуру.Только белки, состоящие из более чем одной полипептидной цепи, имеют четвертичную структуру. Например, белок на картинке выше имеет 4 полипептидные цепи, которые работают вместе, образуя один функциональный белок. Белок, подобный показанному на этой картинке, который имеет 4 полипептидные цепи (называемые субъединицами), с которыми вы, возможно, знакомы, — это гемоглобин. Гемоглобин содержится в красных кровяных тельцах и переносит кислород по всему телу. Гемоглобин состоит из 2-х альфа- и 2-бета-цепей.Возможно, вы слышали о серповидно-клеточной анемии? Это мутация, которая приводит к изменению только одной аминокислоты в первичной структуре бета-цепей. Но этого небольшого изменения достаточно, чтобы вызвать изменения вторичной, третичной и четвертичной структуры гемоглобина. Изменения влияют на способность гемоглобина функционировать правильно, что приводит к появлению большого количества патологических симптомов.

Это следующее изображение ниже представляет собой краткую сводку, которая показывает все уровни структуры белка на одном изображении.Вы можете увидеть, как каждый уровень структуры приводит к более сложному развитию очень специфического трехмерного белка.

Изображение разработал студент BYU-I Нейт Шумейкер Весна 2016 г.

Классы белков

Существует два основных класса или типа белков: глобулярные и волокнистые белки. Шаровидный означает шарообразный. Гемоглобин — хороший пример глобулярного белка.Глобулярные белки довольно хрупкие и могут быть инактивированы ( денатурировано ) такими вещами, как тепло (вспомните белковый альбумин в яичном белке, когда вы его жарите), органические растворители или сильные ионные растворы.

Волокнистые белки намного прочнее и жестче. Как следует из названия, эти белки больше похожи на веревки или тросы. Мы все должны быть благодарны за волокнистые белки, потому что, если бы их у нас не было, мы все были бы похожи на растопленный молочный коктейль на горячем тротуаре. Волокнистые протеины обеспечивают структурную поддержку тела и помогают сопротивляться механическим воздействиям.Общие примеры структур тела, содержащих волокнистые белки, включают кости, хрящи, сухожилия (которые прикрепляют мышцы к кости), связки (которые прикрепляют кости к другим костям) и капсулы вокруг наших внутренних органов.

Два изображения ниже показывают молекулярные изображения сначала глобулярного, а затем волокнистого белка.

Файл: Поверхность Hras раскрашена консервацией.png; Автор: ElaineMeng; Сайт: https: // commons.wikimedia.org/wiki/File:Hras_surface_colored_by_conservation.png; Лицензия: под лицензией Creative Commons Attribution-Share Alike 3.0 Unported.

Файл: 1bkv collagen 02.png; Автор: Невит Дильмен; Сайт: https://commons.wikimedia.org/wiki/File:1bkv_collagen_02.png; Лицензия: под лицензией Creative Commons Attribution-Share Alike 3.0 Unported.

Ферменты

Одна из самых разнообразных и важных ролей белков — это роль ферментов.Цель ферментов в основном состоит в том, чтобы ускорить скорость химической реакции, и они достигают этого за счет уменьшения энергии активации, необходимой для запуска процесса. Давайте воспользуемся аналогией со свиданиями, чтобы попытаться понять этот важный процесс!

Предположим, парень видит привлекательную девушку и хочет пригласить ее на свидание, чтобы лучше узнать ее и, возможно, даже жениться на ней. Чтобы начать процесс свиданий / ухаживания, он должен вложить определенное количество смелости или «энергии активации».Чтобы просто подойти и начать с ней разговаривать, может потребоваться больше смелости, чем он может собрать, и без какой-либо помощи он, возможно, никогда не сможет инициировать процесс свидания или «реакцию». В химическом мире фермент играет очень важную роль, а в мире свиданий здесь очень кстати общий друг или сваха. Ваш общий друг признает, что вы можете быть совместимы, и назначает вас на свидание ……. Помните, что это то, что парень хотел сделать, но не смог набраться смелости или «энергии активации», чтобы сделать это самостоятельно.Теперь трудная часть позади, и двое людей идут на свидание, yada yada yada, и становятся одной парой! При использовании ферментов следует помнить о нескольких очень важных моментах:

  1. Ферменты не расходуются и не расходуются во время химической реакции. Другими словами, один фермент может служить катализатором одной реакции за другой. В приведенном выше примере сваха может назначить другие свидания между другими юношами и девушками.
  2. Ферменты довольно специфичны, поэтому один фермент способен катализировать реакцию между определенными реагентами (субстратами), но не другими, поэтому нам нужно так много разных ферментов.Пример, который вам знаком, — это преобразование обычного дисахарида, сахарозы, в два моносахарида, глюкозу и фруктозу. Фермент, который участвует в этой реакции, не сможет преобразовать дисахарид лактозу в моносахариды глюкозу и галактозу. Наша сваха, представленная выше, отлично подходит для организации свиданий между молодыми мужчинами и женщинами, но совершенно бесполезна в том, чтобы помочь собакам найти свою настоящую любовь!
  3. Ферменты часто называют в честь субстратов, на которых они действуют. Таким образом, ферментами, участвующими в вышеуказанных реакциях, будут сахароза и лактаза соответственно.Обратите внимание, что к названию субстрата добавлен суффикс –ase.
  4. Форма фермента определяет его функцию. У каждого фермента есть активный сайт, с которым могут связываться только определенные молекулы (субстраты). Когда субстрат (субстраты) связывается с активным центром, фермент катализирует химическую реакцию, а затем они высвобождаются в виде нового продукта.
  5. Ферменты чувствительны к изменениям температуры и pH. Один из способов ускорить химические реакции — увеличить нагрев, но слишком сильное повышение температуры может изменить или даже разрушить клетки.Ферменты в организме человека оптимально функционируют при температуре 35-40 ° C (95-104 ° F). Они также лучше всего работают при нейтральном pH, обычно в диапазоне 6-8. Если мы изменим температуру или pH до значений, выходящих за рамки оптимума, ферменты могут изменить форму и потерять свою функцию.
  6. Ферментам могут потребоваться «вспомогательные» вещества для катализа химических реакций. Эти помощники называются кофакторами или коферментами. Кофакторы — это неорганические вещества, такие как цинк или железо. Коферменты — это органические молекулы, подобные витаминам.
  7. ** Вы можете использовать кнопки ниже, чтобы перейти к следующему или предыдущему чтению в этом модуле **

    Распечатать эту страницу

Глава 3. Белки и аминокислоты

Глава 3. Белки и аминокислоты



1. БЕЛКИ
2. ПИЩЕВАРЕНИЕ БЕЛКОВ И МЕТАБОЛИЗМ
3.ОБЩИЕ ПОТРЕБНОСТИ В БЕЛКАХ
4. АМИНОКИСЛОТЫ
5. КОЛИЧЕСТВО ТРЕБОВАНИЯ К АМИНОКИСЛОТЕ
6. ДОБАВКА ДИЕТЫ С АМИНОКИСЛОТАМИ
7. ССЫЛКИ


Дж. Э. Халвер
Вашингтонский университет
Сиэтл, Вашингтон

1.1 Классификация
1.2 Структура
1.3 Свойства
1.4 Химическое определение


Белки представляют собой сложные органические соединения, состоящие из многих аминокислот, связанных вместе пептидными связями и поперечно связанных между цепями сульфгидрильными связями, водородными связями и силами Ван-дер-Ваальса.Химический состав белков больше, чем у любой другой группы биологически активных соединений. Белки в различных клетках животных и растений придают этим тканям их биологическую специфичность.

1.1 Классификация

Белки можно разделить на:

(а) Простые белки. При гидролизе они дают только аминокислоты и иногда небольшие углеводные соединения. Примеры: альбумины, глобулины, глютелины, альбуминоиды, гистоны и протамины.

(б) Конъюгированные белки. Это простые белки в сочетании с некоторыми небелковыми веществами в организме. Примеры: нуклеопротеины, гликопротеины, фосфопротеины, гемоглобины и лецитопротеины.

(c) Производные белки. Это белки, полученные из простых или конъюгированных белков физическими или химическими способами. Примеры: денатурированные белки и пептиды.

1,2 Конструкция

Потенциальная конфигурация белковых молекул настолько сложна, что многие типы белковых молекул могут быть сконструированы и обнаружены в биологических материалах с различными физическими характеристиками.Глобулярные белки обнаруживаются в крови и тканевых жидкостях в аморфной глобулярной форме с очень тонкими или отсутствующими мембранами. Коллагеновые белки находятся в соединительной ткани, такой как кожа или клеточные мембраны. Волокнистые белки содержатся в волосах, мышцах и соединительной ткани. Кристаллические белки представлены хрусталиком глаза и подобными тканями. Ферменты — это белки с определенными химическими функциями, которые опосредуют большинство физиологических процессов жизни. Несколько небольших полипептидов действуют как гормоны в тканевых системах, контролируя различные химические или физиологические процессы.Мышечный белок состоит из нескольких форм полипептидов, которые позволяют мышцам сокращаться и расслабляться при физических движениях.

1.3 Недвижимость

Белки также можно охарактеризовать по их химическим реакциям. Большинство белков растворимы в воде, спирте, разбавленной основе или в различных концентрациях солевых растворов. Белки имеют характерную спиралевидную структуру, которая определяется последовательностью аминокислот в первичной полипептидной цепи и стереоконфигурацией радикальных групп, присоединенных к альфа-углероду каждой аминокислоты.Белки термолабильны, проявляя различную степень лабильности в зависимости от типа белка, раствора и температурного профиля. Белки могут быть обратимыми или необратимыми, денатурированными при нагревании, концентрации соли, замораживании, ультразвуковом воздействии или старении. Белки подвергаются характерному связыванию с другими белками в так называемой пластеиновой реакции и соединяются со свободными альдегидными и гидроксильными группами углеводов с образованием соединений типа Майяра.

1.4 Химическое определение

Содержание азота в большинстве белков, обнаруженных в тканях животных, орехов и зерна, составляет около 16 процентов; поэтому содержание белка обычно выражается как содержание азота × 6.25.

Проглоченные белки сначала расщепляются на более мелкие фрагменты пепсином в желудке или трипсином или химотрипсином из поджелудочной железы. Эти пептиды затем дополнительно восстанавливаются под действием карбоксипептидазы, которая гидролизует одну аминокислоту за раз, начиная со свободного карбоксильного конца молекулы, или с помощью аминопептидазы, которая отщепляет одну аминокислоту за раз, начиная со свободного амино-конца полипептида. цепь. Свободные аминокислоты, высвобождаемые в пищеварительную систему, затем всасываются через стенки желудочно-кишечного тракта в кровоток, где они затем повторно синтезируются в новые тканевые белки или катаболизируются для получения энергии или фрагментов для дальнейшего тканевого метаболизма.

Валовая потребность в белке была определена для нескольких видов рыб (см. Таблицу 1). Имитация цельного яичного протеина в тестовых диетах содержит избыток незаменимых аминокислот. Эти диеты поддерживались приблизительно изокалорийными за счет корректировки общего белка и усвояемых углеводных компонентов до фиксированного количества, поскольку лечение белковыми диетами варьировалось в испытанных диапазонах. Испытания на кормлении мальков, сеголетков и годовалых рыб показали, что общие потребности в белке наиболее высоки у начальных кормовых мальков и что они уменьшаются по мере увеличения размера рыбы.Чтобы расти с максимальной скоростью, мальки должны иметь диету, в которой почти половина легкоусвояемых ингредиентов состоит из сбалансированного белка; через 6-8 недель это требование снижается примерно до 40 процентов рациона лосося и форели и примерно до 35 процентов рациона годовалых лососевых, выращенных при стандартной температуре окружающей среды (SET). См. Рисунки 1 и 2. Общие потребности в белке молоди сома, по-видимому, меньше, чем у лососевых. Первоначально кормление мальков требует, чтобы около 50 процентов усвояемых компонентов рациона составлял белок, и потребность в них уменьшается с увеличением размера.Некоторые испытания кормления лососем показали прямую связь между изменениями потребности в белке молоди рыбы и изменениями температуры воды. Лосось чавычи в воде с температурой 7 ° C требует около 40 процентов цельного яичного белка для максимального роста; той же рыбе в воде с температурой 15 ° C требуется около 50% белка. Лосось, форель и сом могут использовать больше белка, чем требуется для максимального роста, благодаря эффективному удалению азотистых отходов в виде растворимых соединений аммиака через ткань жабр непосредственно в водную среду.Эта система удаления азота более эффективна, чем система, доступная для птиц и млекопитающих. Птица и млекопитающие потребляют энергию для синтеза мочевины, мочевой кислоты или других соединений азота, которые выводятся через ткань почек и выводятся с мочой. Перевариваемые углеводы и жиры сохранят избыток белка в рационе до тех пор, пока удовлетворяются потребности в белке для максимального роста (рисунки 1 и 2).

Таблица 1 — Расчетная потребность в белке с пищей для некоторых видов рыб 1/

Виды

Уровень сырого протеина в рационе для оптимального роста (г / кг)

Форель радужная ( Salmo gairdneri )

400-460

Карп ( Cyprinus carpio )

380

Чавыча ( Oncorhynchus tshawytscha )

400

Угорь ( Ангилья japonica )

445

Камбала ( Pleuronectes platessa )

500

Золотистый лещ ( Chrysophrys aurata )

400

Белый амур ( Ctenopharyngodon idella )

410-430

Brycon sp.

356

Морской лещ ( Chrysophrys major )

550

Желтохвост ( Seriola quinqueradiata )

550

1/ По материалам C.B. Cowey, 1978

Рис. 1. Потребность в белке чавычи при 47 ° F. Верхняя кривая: исходный индивидуальный средний вес рыбы, 1.5г. Нижняя кривая: исходная индивидуальная средняя масса рыбы 5,6 г.

Рис. 2. Потребность в белке чавычи при температуре 58 ° F. Верхняя кривая: исходный индивидуальный средний вес рыбы 2,6 г. Нижняя кривая: исходная индивидуальная средняя масса рыбы 5,8 г.

(Оба рисунка взяты из: DeLong, D.C., J.E. Halver and E.T. Mertz, 1958, J.Nutr ., 65: 589-99)

Обычно рыбе нужно давать диету, содержащую дифференцированный уровень высококачественного белка и энергии, а также адекватный баланс незаменимых жирных кислот, витаминов и минералов в течение длительного периода времени.Из полученной кривой доза / ответ потребность в белке обычно получают по графику Альмквиста. Считается, что эти различия в очевидной потребности в белке связаны с различиями в методах культивирования и составе рациона.

Относительно высокий уровень пищевого белка, необходимый для максимального роста некоторых рыб, таких как белый амур, Ctenopharyngodon idella, и Brycon spp. Удивительны тем, что эти рыбы всеядны. Brycon spp.выращиваются на нежелательных фруктах и ​​другом растительном материале с низким содержанием белка, и в этих условиях, по-видимому, существенный вклад в потребление ими белка вносит естественная пищевая цепь.

Потребность в белке эвриталиновых рыб, таких как радужная форель, Salmo gairdneri, и кижуч, Oncorhynchus kisutch, , выращенных в воде с соленостью 20 ppt, примерно такая же, как потребность в пресной воде. Нет данных о потребности этих видов в белке в морской воде с полной концентрацией.(35 п.


4.1 Essential и заменимые аминокислоты
4.2 Незаменимые Аминокислоты и качество протеина


Аминокислоты являются строительными блоками белков; около 23 аминокислот были выделены из природных белков. Десять из них незаменимы для рыб. Животное не способно синтезировать незаменимые аминокислоты и поэтому должно получать их с пищей.

4.1 Незаменимые и заменимые аминокислоты

Корм ​​для лосося, форели и канального сома, лишенный аргинина, гистидина, изолейцина, лейцина, лизина, метионина, фенилаланина, треонина, триптофана или валина, не рос (рис.3). Те же самые рыбы, которых кормили рационами, лишенными других L-аминокислот, росли так же, как и рыбы, получавшие все 18 протестированных аминокислот (рис. 4). Азотный компонент в тестируемых диетах состоял из 18 L-аминокислот по образцу цельного яичного белка. Вся тестируемая рыба быстро выздоравливала, когда в рационе была заменена недостающая аминокислота. Наклон кривой роста в группе восстановления был идентичен таковому у рыб, получавших полный тест на аминокислотный рацион.

Испытывали незаменимые аминокислоты: аланин, аспарагиновая кислота, цистин, глутаминовая кислота, глицин, пролин, серин и тирозин.Было обнаружено, что эти аминокислоты не являются необходимыми для роста лосося, форели и канального сома.

Для количественных исследований потребности в 10 незаменимых аминокислотах использовалась смесь казеина и желатина с добавлением кристаллических L-аминокислот. Тестируемая диета содержала 40 процентов цельного яичного белка для азотного компонента. Эксперименты, проведенные с карпом и угрем, показали аналогичное отсутствие роста, когда в рационе отсутствовала незаменимая аминокислота.

Рис. 3. Рост рыб с дефицитом аргинина. Группа с дефицитом была разделена через шесть недель на диете с дефицитом, и недостающая аминокислота была заменена в одной из двух частей.

Рис. 4. Рост рыб с дефицитом цистина.

(Оба рисунка взяты из: DeLong, D.C., J.E. Halver and E.T. Mertz, 1958, J.Nutr., 65: 589-99)

4.2 Основные аминокислоты и качество белка

Если известны потребности рыбы в незаменимых аминокислотах, должно быть возможно удовлетворить эти потребности в системах культивирования различными способами за счет различных пищевых белков или комбинаций пищевых белков.

Фенилаланин избавлен от тирозина. Неизвестно, что он химически модифицирован или становится недоступным из-за суровых условий, которым обычно подвергаются кормовые белки во время обработки. Измерение фенилаланина в белках несложно, поэтому обеспечение и оценка фенилаланина в белках в практических диетах не представляет особых трудностей.

Лизин — основная аминокислота. В дополнение к -аминокислотной группе, обычно связанной пептидной связью, он также содержит вторую, -аминогруппу.Эта альфа-аминогруппа должна быть свободной и реакционной, иначе лизин, хотя и поддается химическому измерению, не будет доступен биологически. Во время обработки белков корма α-аминогруппа лизина может реагировать с небелковыми молекулами, присутствующими в корме, с образованием дополнительных соединений, которые делают лизин биологически недоступным.

Цистин избавлен от метионина. Однако измерить содержание метионина в кормовых белках непросто, поскольку аминокислота подвержена окислению во время обработки.После обработки метионин может присутствовать как таковой, или как сульфоксид, или как сульфон. Сульфоксид может образовываться из метионина во время кислотного гидролиза кормового белка перед измерением его кислотного состава, не содержащего кислоты. Кислотный гидролиз белков перед анализом нарушает исходное равновесие между двумя соединениями, так что состав гидролизата больше не отражает состав белка. При определении содержания метионина в чистых белках окисление аминокислоты до метионинсульфона обычно является количественным.В случае кормовых белков, однако, это не покажет, сколько метионина или сульфоксида метионина присутствовало в белке до его окисления и гидролиза.

Сульфоксид метионина может иметь некоторую биологическую ценность для рыб, которые могут иметь некоторую способность обратного преобразования его в метионин и, таким образом, частично восполнять часть метионина, окисленного во время обработки.

Недавно появились сообщения о методах измерения метионина в белках с использованием йодоплатинатного реагента до и после восстановления трихлоридом титана, чтобы получить значения как для метионина, так и для сульфоксида в исходном белке.Также был описан способ измерения метионина конкретно по расщеплению цианогенбромида. Оба метода еще предстоит оценить независимо. Микробиологический анализ метионина в белках кормов является ценным инструментом, хотя существует опасность того, что оксиды метионина могут различаться по своей активности в отношении микроорганизмов и искажать значения.

Количественные потребности лососевых в десяти незаменимых аминокислотах определялись путем кормления линейными приращениями одной аминокислоты за раз в тестируемой диете, содержащей аминокислотный профиль, идентичный цельному яичному белку, за исключением тестируемой аминокислоты.Повторяющиеся группы рыб подвергались диетическому лечению до тех пор, пока не появлялись большие различия в росте исследуемых партий. График реакции роста Альмквиста показывает уровень аминокислот, необходимый для максимального роста в этих конкретных условиях испытания. Рационы были разработаны таким образом, чтобы содержать белок на уровне или немного ниже оптимальной потребности в белке для данного вида и условий испытаний, чтобы гарантировать максимальное использование ограничивающей аминокислоты. Сравнение требований к десяти незаменимым аминокислотам между видами показано в таблице 2.

Недавним нововведением стало использование в тестовых диетах белков, относительно дефицитных по данной незаменимой аминокислоте. Таким образом, комбинации рыбной муки и зеина использовались в тестовых диетах для определения потребности радужной форели в аргинине. Рационы, содержащие различные относительные количества казеина и желатина, показали, что увеличение уровня связанного с белками аргинина с 11 до 17 г / кг привело к значительному увеличению роста канального сома.

Таблица 2 Потребность семи животных в аминокислотах 1/

Аминокислота

Молодь угря

Мальки карпа

Сом канальный

Молодь чавычи

Цыпленок

Молодой поросенок

Крыса

Аргинин

3.9 (1,7 / 42)

4,3 (1,65 / 38,5)

6,0 (2,4 / 40)

6,1 (1,1 / 18)

1,5 (0,2 / 13)

1,0 (0,2 / 19)

Гистидин

1,9 (0,8 / 42)

1,8 (0,7 / 40)

1,7 (0,3 / 18)

1.5 (0,2 / 13)

2,1 (0,4 / 19)

Изолейцин

3,6 (1,5 / 42)

2,6 (1,0 / 38,5)

2,2 (0,9 / 41)

4,4 (0,8 / 18)

4,6 (0,6 / 13)

3,9 (0,5 / 13)

лейцин

4.1 (1,7 / 42)

3,9 (1,5 / 38,5)

3,9 (1,6 / 41)

6,7 (1,2 / 18)

4,6 (0,6 / 13)

4,5 (0,9 / 19)

Лизин

4,8 (2,0 / 42)

5,1 (1,23 / 24,0)

5,0 (2,0 / 40)

6.1 (1.1 / 18)

4,7 (0,65 / 13)

5,4 (1,0 / 19)

Метионин 2/

4,5 (2,1 / 42) 3/

3,1 (1,2 / 38,5)

2,3 (0,56 / 24,0)

4,0 (1,6 / 40) 3/

4.4 (0,8 / 18)

3,0 (0,6 / 20)

3,0 (0,6 / 20)

Фенилаланин 4/

5,1 (2,1 / 41) 5/

7,2 (1,3 / 18)

3.6 (0,45 / 13)

5,3 (0,9 / 17)

Треонин

3,6 (1,5 / 42)

2,2 (0,9 / 40)

3,3 (0,6 / 18)

3,0 (0,4 / 13)

3,1 (0,2 / 19)

Триптофан

1,0 (0,4 / 42)

0.5 (0,2 / 40)

1,1 (0,2 / 18)

0,8 (0,2 / 25)

1,0 (0,2 / 19)

Валин

3,6 (1,5 / 42)

3,2 (1,3 / 40)

4,4 (0,8 / 18)

3,1 (0,4 / 13)

3,1 (0,4 / 13)

1/ Выражается в процентах от диетического белка.В скобках числители — это потребности в процентах от сухого рациона, а знаменатели — это процент общего содержания белка в рационе.

2/ При отсутствии цистина

3/ Метионин плюс цистин

4/ При отсутствии tyro sine

5/ фенилаланин плюс тирозин

(по материалам: Национальный исследовательский совет, 1977 г.)

Потребность радужной форели в аргинине была определена по стандартной кривой доза / реакция (рост), а также путем измерения уровней свободного аргинина в тканях (крови и мышцах) в группах форели, получавших возрастающее количество аргинина в рационе.После того, как диетическая потребность форели в аргинине была удовлетворена, любое дальнейшее увеличение потребления аргинина привело к увеличению концентрации свободного аргинина в крови и мышцах. Было получено хорошее согласие между двумя методами.

Данные, представленные в таблице 2, предполагают, что между видами рыб существуют реальные различия в их потребностях в определенных аминокислотах. Это приводит к трудностям при составлении белкового компонента практического рациона для тех видов, потребности которых в аминокислотах еще не известны.Возможное решение — использовать для каждой аминокислоты наивысший уровень, необходимый для любого из тех видов, по которым имеются данные. Необходимость дополнительных количественных данных о потребностях рыб в аминокислотах, особенно тех, которые действительно или потенциально могут использоваться в качестве сельскохозяйственных животных, очевидна.

Одним из решений использования белков, относительно дефицитных по одной или нескольким аминокислотам, является добавление к белку соответствующих количеств аминокислоты, необходимых в практических диетах. Рыба, по-видимому, использует свободные аминокислоты с разной степенью эффективности.

Молодой карп, Cyprinus carpio, оказался неспособным расти на диетах, в которых белковый компонент (казеин, желатин) был заменен смесью аминокислот, аналогичных по общему составу. Гидролизат трипсина казеина также оказался неэффективным. Однако, если диета, содержащая свободные аминокислоты в качестве белкового компонента, тщательно нейтрализуется NaOH до pH 6,5-6,7, то некоторый рост молоди карпа действительно происходит. Этот рост был заметно ниже, чем при сопоставимой казеиновой диете в тех же условиях.

Канальный сом также не может использовать свободные аминокислоты в качестве добавок к дефицитным белкам. Когда соевый шрот был заменен изоназотом на муку менхадена, рост и эффективность корма канального сома были значительно снижены. Добавление свободного метионина, цистина или лизина, наиболее ограничивающих аминокислот, к этим заменителям сои не привело к увеличению веса.

Повышение уровня аргинина в рационе сома с 11 до 17 г / кг путем изонитрогенной замены желатина на казеин значительно увеличивало набор веса, но добавление свободного аргинина, цистина, триптофана или метионина к казеину мало влияло на рост или преобразование пищи.

Лососевые могут использовать свободные аминокислоты для роста. Было показано, что зеин-желатиновая диета с добавлением лизина и тритофана заметно превосходит зеин-желатиновую диету для радужной форели, когда в качестве критериев использовались прибавка в весе и использование белка.

Несколько исследователей продемонстрировали потенциал дополнения белков с дефицитом аминокислот ограничивающими аминокислотами в рационах лососевых. Казеин с добавкой шести аминокислот давал коэффициенты конверсии корма для атлантического лосося, аналогичные тем, которые были получены при использовании изолированного рыбного белка в качестве источника пищевого белка.Соевый шрот с добавлением пяти или более аминокислот (включая метионин и лизин) был лучшим источником белка для радужной форели по сравнению с соевым шротом. Однако однократное добавление метионина и лизина не привело к повышению ценности соевого шрота. Эти результаты позволяют предположить, что аминокислотный спектр выделенного рыбьего белка, который они использовали, может приблизительно соответствовать потребности в аминокислотах радужной форели. Пищевая ценность изолята соевого белка может быть увеличена путем добавления в него первой ограничивающей аминокислоты; я.е., метионин.

Рационы, содержащие в качестве белкового компонента рыбную муку, мясокостную муку, а также дрожжевую и соевую муку, можно улучшить путем одновременного добавления цистина (10 г / кг) и триптофана (5 г / кг). Рыбную муку можно полностью заменить без снижения конверсии корма в рационах для радужной форели смесью из субпродуктов домашней птицы и перьевой муки вместе с 17 г лизина HCL / кг, 4,8 г DL-метионина / кг и 1,44 г DL. -триптофан / кг.

Коуи, К.Б. и Дж. Р. Сардженты, 1972 Кормление рыб. Adv.Mar.Biol., 10: 383-492

Cowey, C.B., 1979 Потребности рыб в белках и аминокислотах. В Технология кормления и кормления рыб для рыб, под редакцией Дж. Э. Халвера и К. Тьюса. Материалы Всемирного симпозиума, спонсируемого EIFAC / FAO, ICES и IUNS, Гамбург, 20-23 июня 1978 г. Schr . Bundesforschungsanst . Fisch ., Hamb ., (14/15) vol. 1: 3-16

Мерц, Э.Т., 1972 г. Потребности в белке и аминокислотах. В Питание рыб, под редакцией Дж. Э. Халвера. Нью-Йорк, Academic Press, стр. 106-43.

Национальный исследовательский совет, Подкомитет по тепловодным рыбам 1977 года, Потребности теплопроводных рыб в питательных веществах. Вашингтон, округ Колумбия, Национальная академия наук (потребности домашних животных в питательных веществах) 78 стр.


Неправильная укладка белков и дегенеративные заболевания

Alper, T. et al. Реплицируется ли агент скрепи без нуклеиновой кислоты? Nature 214 , 764–766 (1967)

Анфинсен, К. Б. Формирование и стабилизация структуры белка. Биохимический журнал 128 , 737–749 (1972)

Бидл, Г. У. и Татум, Э. Л. Генетический контроль биохимических реакций в Neurospora . PNAS 27 , 499–506 (1941)

Чити, Ф. и Добсон, К. М.Неправильная укладка белков, функциональный амилоид и болезнь человека. Ежегодный обзор биохимии 75 , 333–366 (2006)

Дилл К. А. и Чан Х. С. От Левинталя до путей к воронкам. Nature Structural Biology 4 , 10–19 (1997)

Добсон, К. М. Сворачивание и неправильная укладка белков. Nature 426 , 884–890 (2003) doi: 10.1038 / nature02261

Добсон, К. М. Болезни неправильной упаковки белка: потеря формы. Nature 418 , 729–730 (2002) doi: 10.1038 / 418729a

Ellis, J. Белки как молекулярные шапероны. Nature 328 , 378–379 (1987) doi: 10.1038 / 328378a0

Fändrich, M. & Dobson, CM Поведение полиаминокислот выявляет эффект обратной боковой цепи в образовании амилоидной структуры The EMBO Journal 21 , 5682-5690 (2002).

Финкель Т. Радикальная медицина: лечение старения для лечения болезней. Nature Reviews Молекулярная клеточная биология 6 ​​, 971–976 (2005)

Гайдусек, Д. К., Гиббс, К. Дж., Младший, и Альперс, М. Передача и передача экспериментального куру шимпанзе. Science 155 , 212–214 (1967)

Gamow, G. & Ycas, M. Статистическая корреляция белков и состава рибонуклеиновой кислоты. PNAS 41 , 1011–1019 (1955)

Гриффит, Дж. С. Самовоспроизведение и скрепи. Nature 215 , 1043–1044 (1967)

Кауфман Р.J., et al. Развернутый белковый ответ при восприятии и различении питательных веществ. Nature Reviews Molecular Cell Biology 3 , 411-421 (2002)

Laskey, R.A. et al. Нуклеосомы собираются кислым белком, который связывает гистоны и передает их ДНК. Nature 275 , 416–420 (1978) doi: 10.1038 / 275416a0

Levinthal, C. Существуют ли пути для сворачивания белка? Journal de Chimie Physique et de Physico-Chimie Biologique 65 , 44–45 (1968)

Lin, M.Y. & Beal, M. F. Дисфункция митохондрий и оксидативный стресс при нейродегенеративных заболеваниях. Nature 443 , 787–795 (2006)

Nirenberg, M. W. & Matthaei, H. Зависимость бесклеточного синтеза белка в E. coli от РНК, полученной из рибосом. Сообщения биохимических и биофизических исследований 4 , 404–408 (1961)

Полинг, Л., Кори, Р. Б. и Брэнсон, Х. Р. Структура белков: две спиральные конфигурации полипептидной цепи с водородными связями. PNAS 37 , 205–211 (1951)

Прусинер, С. Б. Новые белковые инфекционные частицы вызывают скрейпи. Science 216 , 136–144 (1982)

Smith, M. A. et al. Влияние длины цепи полиадениловой кислоты на распределение лизиновых пептидов по размерам. Acta Biochimica Polonica 13 , 361–365 (1966)

(PDF) Потребление белка с пищей и здоровье человека

49 ACSM, Med. Sci. Спортивные упражнения., 2009, 41, 709–731.

50 М. Дж. Ренни, Р. Х. Эдвардс, С. Кривавич, К. Т. Дэвис,

Д. Холлидей, Дж. К. Уотерлоу и Д. Дж. Миллуорд, Clin. Sci.,

1981, 61, 627–639.

51 В. Р. Янг и Б. Торун, Отчет № EPR / 81 / 28A, FAO /

ВОЗ / УООН, 1981.

52 Л. Е. Нортон и Д. К. Лейман, J. Nutr., 2006, 136, 533S–

S537.

53 P. W. Lemon, D. G. Dolny, K. E. Yarasheski,

Can. J. Appl. Physiol., 1997, 22, 494–503.

54 Г. Биоло, К. Д. Типтон, С. Кляйн и Р. Р. Вулф,

Am. J. Physiol., 1997, 273, E122 – E129.

55 S. M. Phillips, K. D. Tipton, A. Aarsland, S. E. Wolf и

R. R. Wolfe, Am. J. Physiol., 1997, 273, E99–107.

56 Б. Б. Расмуссен, С. М. Филлипс, Exerc. Sport Sci. Rev.,

2003, 31, 127–131.

57 Д. А. Колумбус, М. Л. Фиоротто и Т. А. Дэвис, Amino

Acids, 2015, 47, 259–270.

58 C. He, R. Sumpter Jr.и Б. Левин, Аутофагия, 2012, 8,

1548–1551.

59 А. Х. Форслунд, А. Э. Эль-Хури, Р. М. Олссон,

А. М. Сьодин, Л. Хамбреус и В. Р. Янг,

Am. J. Physiol., 1999, 276, E964 – E976.

60 Д. К. Лейман, Э. Эванс, Дж. И. Баум, Дж. Сейлер, Д. Дж. Эриксон

и Р. А. Буало, J. Nutr., 2005, 135, 1903–1910.

61 С. ван Влит, Н. А. Бурд и Л. Дж. К. ван Лун, J. Nutr.,

2015, 145, 1981–1991.

62 Д.K. Levenhagen, J. D. Gresham, M. G. Carlson,

D. J. Maron, M. J. Borel и P. J. Flakoll, Am. J. Physiol.

Эндокринол. Метаб., 2001, 280, E982 – E993.

63 M. Leenders, LB Verdijk, L. van der Hoeven, J. van

Kranenburg, F. Hartgens, WK Wodzig, WH Saris и

LJ van Loon, J. Nutr., 2011, 141, 1070– 1076.

64 W. S. Jobgen, S. K. Fried, W. J. Fu, C. J. Meininger и

G. Wu, J. Nutr. Биохимия, 2006, 17, 571–588.

65 Э. Агостинелли, Аминокислоты, 2004, 46, 475–485.

66 A. Lombardi, M. Moreno, P. de Lange, S. Iossa,

R. A. Busiello and F. Goglia, Front. Physiol., 2015, 6, 237.

67 J. T. Brosnan, M. E. Brosnan, Annu. Ред. Nutr., 2007,

27, 241–261.

68 А. Р. Хоссе, С. А. Аткинсон, М. А. Тарнопольски и

С. М. Филлипс, J. Nutr., 2011, 141, 1626–1634.

69 Дж. Р. Макнайт, М. К. Саттерфилд, В. С. Джобген,

S.Б. Смит, Т. Е. Спенсер, К. Дж. Мейнингер, К. Дж. МакНил

и Г. Ву, Аминокислоты, 2010, 39, 349–357.

70 H. J. Leidy, P. M. Clifton, A. Astrup, T. P. Wycherley,

M. S. Westerterp-Plantenga, N. D. Luscombe-Marsh,

S. C. Woods and R. D. Mattes, Am. J. Clin. Нутр., 2015, 101,

1320С – 1329С.

71 C. Fromentin, D. Tomé, F. Nau, L. Flet, C. Luengo,

D. Azzout-Marniche, P. Sanders, G. Fromentin и

C. Gaudichon, Diabetes, 2013, 62 , 1435–1442.

72 MM Mamerow, JA Mettler, KL English,

SL Casperson, E. Arentson-Lantz, M. She eld-Moore,

DK Layman and D. Paddon-Jones, J. Nutr., 2014, 144,

876–880.

73 X. L. Li, R. Rezaei, P. Li и G. Wu, Amino Acids, 2011, 40,

1159–1168.

74 Г. Ву, Ф. В. Базер и Х. Р. Кросс, Наземное производство животного белка

: влияние, эффективность и устойчивость,

устойчивость, Ann. Акад. Sci., 2014, 1328,18–28.

75 Дж. У. Хартман, Дж. Э. Танг, С. Б. Уилкинсон,

М. А. Тарнопольски, Р. Л. Лоуренс, А. В. Фуллертон и

С. М. Филлипс, Am. J. Clin. Nutr., 2007, 86, 373–381.

76 Дж. С. Волек, Б. М. Волк, А. Л. Гомес, Л. Дж. Кунсес,

Б. Р. Купчак, Д. Дж. Фрейденрайх, Дж. К. Аристизабал,

К. Саенс, К. Данн-Льюис, К. Д. Баллард и др., J. Являюсь. Coll.

Nutr., 2013, 32, 122–135.

77 М. Обертен-Лехёдр и Э.Adlercreutz, Br. J. Nutr.,

2009, 102, 1803–1810.

78 Б. Пеннингс, Й. Бури, Дж. М. Зенден, А. П. Гийсен,

Х. Кейперс и Л. Дж. Ван Лун, Am. J. Clin. Nutr., 2011, 93,

997–1005.

79 L. Holm, J. L. Olesen, K. Matsumoto, T. Doi, M. Mizuno,

T. J. Alsted, A. L. Mackey, P. Schwarz and M. Kjaer, J. Appl.

Physiol., 2008, 105, 274–281.

80 Л. Б. Вердейк, Р. А. М. Йонкерс, Б. Г. Глисон, М. Белен,

К.Meijer, H. H. Savelberg, W. K. Wodzig, P. Dendale и

L. J. van Loon, Am. J. Clin. Nutr., 2009, 89, 608–616.

81 С. Акибоде и М. Маредиа, Глобальные и региональные тенденции в производстве, торговле и потреблении продовольственных бобовых культур

,

Государственный университет штата Мичиган, 2011 г.

82 Б. Дорнер, Э. К. Фридрих и М. Е. Постхауэр, Дж. . Являюсь. Диета.

доц., 2010, 110, 1549–1553.

83 С. Додсон, В. Э. Баракос, А. Ятой, В. Дж. Эванс, Д. Селла,

J.T. Dalton и M. S. Steiner, Annu. Rev. Med., 2011, 62,

265–279.

84 Организация Объединенных Наций, Перспективы народонаселения мира. http: // www.

un.org, 2014.

85 Ф. Витери, М. Бехар, Г. Аррояв и Н. С. Скримшоу, в

«Метаболизм белков млекопитающих», изд. H. N. Munro и

J. B. Allison, Academic Press, New York, 1964, vol. 2.

86 L. Q. He, L. Wu, Z. Q. Xu, T. J. Li, K. Yao, Z. J. Cui,

Y. L. Yin и G. Wu, Amino Acids, 2016, 48,21–30.

87 А. Э. Харпер и Н. Н. Йошимура, Nutrition, 1993, 9, 460–

469.

88 Г. Ву, Б. Имхо-Кунш и А. В. Жирар, педиатр.

Перинат. Эпидемиол., 2012, 26 (Прил. 1), 4–26.

89 М. Грилленбергер, К. Г. Нойман, С. П. Мерфи,

Н. О. Бвибо, П. ван’т Вир, Дж. Г. Хаутваст и К. Э. Вест,

J. Nutr., 2003, 133, 3957S – 3964S.

90 Д. К. Дрор, Л. Х. Аллен, Food Nutr. Бюл., 2011, 32, 227–

243.

91 К.Ф. Майклсен, Acta Paediatr., 1997, 86,1–36.

92 M. F. Rolland-Cachera, M. Deheeger и F. Bellisle, Acta

Paediatr., 1999, 88, 365–367.

93 C. Hoppe, T. R. Udam, L. Lauritzen, C. Mølgaard, A. Juul

и K. F. Michaelsen, Am. J. Clin. Nutr., 2004, 80, 447–

452.

94 О. К. Витард, С. Р. Джекман, А. К. Кис, А. Э. Джукендруп

и К. Д. Типтон, Med. Sci. Sports Exerc., 2011, 43,

598–607.

Обзор Food & Function

1264 | Food Funct., 2016,7,1251–1265 Этот журнал находится в открытом доступе © Королевское химическое общество, 2016 г.

. Опубликовано 11 января 2016 г.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *