Функции белков с примерами: Функции белков с примерами презентация. Презентация на тему: Функции белков

Содержание

Основные биологические функции белков

Белки входят в состав каждой клетки и составляют около 50% ее сухой массы. Они играют ключевую роль в обмене веществ, реализуют важнейшие биологические функции, лежащие в основе жизнедеятельности всех организмов.

Среди большого разнообразия функций, выполняемых белками, первостепенное значение имеют структурная, или пластическая, и каталитическая. Это универсальные функции, поскольку они присущи всем живым организмам.

Структурные белки формируют каркас внутриклеточных органелл и внеклеточных структур, а также участвуют в стабилизации клеточных мембран. Такие структурные белки, как коллаген и эластин составляют основу соединительной и костной тканей высших животных и человека. Структурными белками, в частности, являются кератины кожи, волос, ногтей, шерсти, когтей, рогов, копыт, перьев, клювов, а также фиброин шелка, паутины.

Каталитически активными белками являются ферменты. Они ускоряют химические реакции, обеспечивая тем самым необходимые скорости протекания обменных процессов в клетке.

Многие белки, присущие отдельным живым организмам, выполняют специфические функции, среди которых наиболее важными являются транспортная, регуляторная, защитная, рецепторная, сократительная, запасная и некоторые др.

Транспортные белки переносят различные молекулы и ионы внутри организма. Например: гемоглобин — кислород от легких к тканям; миоглобин — кислород внутри клеток; сывороточный альбумин с током крови — жирные кислоты, а также ионы некоторых металлов. Ту же функцию выполняют специфические белки, транспортирующие различные вещества через клеточные мембраны.

Регуляторные белки участвуют в регуляции обмена веществ как внутри клеток, так и в целом организме. Например, такие сложные процессы, как биосинтез белков и нуклеиновых кислот, протекают под строгим «контролем» множества регуляторных белков. Специфические белковые ингибиторы регулируют активность многих ферментов.

Защитные белки формируют защитную систему живых организмов. Например, иммуноглобулины (антитела) и интерфероны предохраняют организм от проникновения в его внутреннюю среду вирусов, бактерий, чужеродных соединений, клеток и тканей. Белки свертывающей системы крови — фибриноген, тромбин — препятствуют потере крови при повреждениях кровеносных сосудов.

Рецепторные белки воспринимают сигналы, поступающие из внешней среды, и воздействуют на внутриклеточные процессы. Например, белки-рецепторы, сосредоточенные на поверхности клеточных мембран, избирательно взаимодействуют с регуляторными молекулами (например, гормонами).

Рецепторными белками являются родопсин, участвующий в зрительном акте, вкусовой сладкочувствительный и обонятельный белки.

Сократительные белки способны преобразовывать свободную химическую энергию в механическую работу. Например, белки мышц миозин и актин обеспечивают мышечное сокращение.

Запасные белки представляют собой резервный материал, предназначенный для питания развивающихся клеток. Запасными белками являются яичный альбумин, глиадин пшеницы,

Казеин кукурузы, казеин молока и многие другие. Запасные белки — существенный источник пищевого белка для человека.

Некоторые организмы вырабатывают токсические белки. Таковы яды змей, дифтерийный токсин, рицин семян клещевины, лектины семян бобовых и др.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Урок биологии по теме «Функции белков». 10-й класс

Цель урока: используя знания  о строении и свойствах белков расширить представления о функциях белков через творческую и исследовательскую деятельность (Приложение 1. Слайд №2).

Задачи (Слайд №3)

Образовательные:

Расширить знания о белках как природных полимерах, о многообразии их функций во взаимосвязи со строением и свойствами.

Развивающие:

1. Развивать мышление учащихся и умение устанавливать причинно-следственные связи на примере изучения свойств и функций белка.

2. Развивать практические умения постановки цитологических опытов при  установлении роли белков ферментов.
3. Развивать умение делать выводы на основе практических работ, развивать умение самостоятельно получать информацию из дополнительных информационных  источников (информационная компетентность).
4. Развивать умение структурировать материал.
5. Формировать способность анализировать  свою деятельность.

Воспитательные:

1. Воспитывать умение работать в группе
2. Воспитывать аккуратность учащихся при выполнении и оформлении практических работ и записей в тетради.

Тип урока:

комбинированный с использованием исследовательской деятельности.

Технологии: тестовая, ИКТ, проблемного обучения.

Методы: частично-поисковый, словесный, наглядный, исследовательский.

Оборудование:  презентация «Функции белков», компьютер с мультимедийным проектором, лабораторное оборудование к исследованию по теме «Ферментативная функция белка»: чашки петри, пероксид водорода, пипетка, кусочки вареного и сырого мяса, вареного и сырого картофеля, речной песок.

Методическое обеспечение:

  1. Раздаточный материал – текст «Белки» (Приложение 2), инструктивная карточка к лабораторной работе «Ферментативная функция белков» (Приложение 3), задание на установление соответствия между белками и их функциями (Приложение 4). Презентация Microsoft PowerPoint «Функции белков» (Приложение 1) – (POWER POINT).
  2. Актуальность использования средств ИКТ
  3. Возможность представления в мультимедийной форме уникальных информационных материалов (
    Приложение 5
    ).

ХОД УРОКА

1. Организационное начало урока (приветствие,  проверка  готовности к работе, психологический настрой на урок) (Слайд № 4).

Притча

“Жил мудрец, который знал все. Один человек захотел доказать, что мудрец знает не все. Зажав в ладонях бабочку, он спросил: “Скажи, мудрец, какая бабочка у меня в руках: мертвая или живая?” А сам думает: “Скажет живая – я ее умерщвлю, скажет мертвая – выпущу”. Мудрец, подумав, ответил: “Все в твоих руках”.

В наших руках сегодня создать такую атмосферу на уроке, при которой все будут чувствовать себя комфортно.
Эпиграфом нашего урока будут слова А. Эйнштейна «Радость видеть и понимать есть величайший дар природы» (Слайд №5).

2. Мотивация

Задание: сделайте анализ круговой диаграммы (Слайд №6) и ответьте на вопросы:

1) Каков химический состав клетки?
2) Каких веществ органической природы в клетке больше?
3) О чем свидетельствует сходство химического состава клеток?

«Жизнь – это способ существования белковых тел» (Ф.

 Энгельс) (Слайд №7). 
Ни одно вещество химики не изучали так долго, как белок  прежде, чем удалось разгадать их строение. От первых шагов на пути познания состава белка до расшифровки структуры прошло более двухсот лет.
Любой биологический объект, начиная от вирусов и заканчивая человеком, состоит в основном из белков (в пересчете на сухое вещество),
поэтому очень важно знать строение, свойства и функции этих соединений.

3. Личностная значимость изучаемого материала

В сутки человек должен обязательно употреблять 100 г белка, иначе разовьется белковое голодание.
(Слайд №8)  Недостаток белков в питании вызывает у детей замедление роста и развития, а у взрослых – глубокие изменения в печени, нарушение деятельности желез внутренней секреции, изменение гормонального фона, ухудшение усвоения питательных веществ, проблемы с сердечной мышцей, ухудшение памяти и работоспособности.


В 70-х годах отмечались смертельные случаи у людей, длительное время соблюдающих низкокалорийные диеты с выраженным недостатком белка. Происходило это из-за серьезных нарушений в деятельности сердечной мышцы. Дефицит белка уменьшает устойчивость организма к инфекциям.  Кроме того, белковая недостаточность часто сопровождается авитаминозом В12, А, Д, К и так далее, что также влияет на состояние здоровья.

Вопрос к учащимся: «Какой личностный смысл для каждого из Вас имеют эти факты?»

4. Целеполагание

Задание: Установите соответствие между белками и их функциями (Приложение 4, Слайд №9).

Белки:                                                Функции

А. Кератин                                       1. Строительная
Б. Гемоглобин                                  2. Запасающая
В. Актин                                           3. Защитная
Г. Антитела                                      4. Двигательная
Д. Миозин                                        5. Транспортная
Е. Фибриноген                                 6. Ферментативная
Ж. Коллаген                                     7. Регуляторная
З. Альбумин
И. Каталаза
К. Пепсин
Л. Инсулин

1 2 3 4 5 6 7
             

Почему Вы не можете выполнить данное задание? (ответ: не хватает знаний)

Постановка проблемного вопроса. В состав клетки входят белки, жиры, углеводы, нуклеиновые кислоты, вода, минеральные вещества, но ни одно из веществ не выполняет столь специфичных функций, как белки. Справедливо ли это?
Учащиеся ставят цели и задачи  работы на данном уроке.

5. Актуализация знаний

 Задания:

1. Работа со слайдами № 10-15 и беседа по вопросам:

1) Что такое полимеры?
2) Используя схему, ответьте доказательно, к каким полимерам относятся белки?
3) Строение мономера белка.
4) Характеристика структурной организации белка.

2. Работа с текстом «Белки» (Слайд №16).

Вставьте в текст пропущенные термины и слова.

1) В состав белка входят следующие элементы___,___,____,___,____. 2) Белки – _______________,___________________ полимеры,
мономерами которых являются ____________________. 3) В состав природных белков входят ______ аминокислот, ___ из них незаменимые, т. е. синтезируются в организме и их поступление в организм не обязательно вместе с пищей. 4) Мономеры белка состоят из ___________,_________________.________________. 5) В состав всех мономеров белка входят___________,________________, а отличаются_______________. 6) Денатурация – процесс изменения нативной структуры белка.

6.  Изучение нового материала

Свойства и функции белка определяются его структурой, строением и многообразием, поэтому даже малые его дефекты структуры имеют серьезные последствия.
Наследственное заболевание серповидно-клеточная анемия связано с тем, что при синтезе гемоглобина, состоящего приблизительно из 600 аминокислотных остатков, два из них меняются на другие. Это приводит к нарушению функции гемоглобина: эритроциты больных приобретают серповидную форму и утрачивают способность к нормальному переносу кислорода (Слайд №17).
Это пример связи структуры и функции макромолекул.

Работа со слайдом № 18

Результатом данной работы будет таблица, которую по ходу работы будем заполнять.

Функции белков

Функция

Сущность

Пример

Структурная Образование мембраны клеток и органоидов и др. структур Коллаген, кератин
Регуляторная Регулирование обмена веществ в организме Некоторые гормоны – инсулин, глюкагон
Защитная 1. При попадании в организм чужеродных белков и микроорганизмов в лейкоцитах образуются защитные белки.
2. Защита от потери крови при ранении в результате свертывания
Антитела

Фибриноген

Транспортная Присоединение и перенос химических элементов по организму Гемоглобин
Сократительная Осуществление всех типов движения Актин, миозин
Запасающая Резерв для организма, плода Яичный альбумин, казеин молока.
Токсическая   Змеиный яд, дифтерийный токсин
Энергетическая Не основной, но источник энергии в клетке Расщепление 1 г белка – 17 кДж
Сигнальная Узнавание молекул мембраной клетки Гликопротеины
Ферментативная или каталитическая Каталитическое ускорение биохимических реакций в клетке Белки-ферменты (каталаза, пепсин, трипсин)

Давайте вспомним: «О чем в ядре клетки хранится наследственная информация» (представить логическую цепь: признак – вещество – реакция – белок – фермент).   Павлов назвал ферменты  «возбудителями жизни и первым актом жизненной деятельности».
Среди многочисленных функций белков особое место занимает ферментативная.

Наука о ферментах называется энзимологией, а ферменты – энзимами.
Выражение И.П. Павлова  «Не все белки – ферменты, но все ферменты белки» подчеркивают их химическую организацию.
Далее учитель объясняет строение и механизм действия фермента.

Чем же объясняется ускоряющее действие ферментов?

(Слайд 19) Каждый фермент имеет активный центр – определенная группа аминокислотных остатков. В активном центре происходит соединение фермента с субстратом (вещество, которое подлежит превращению) Форма активного центра и субстрата подходят друг другу как ключ к замку.

Процесс действия ферментов можно разделить на три стадии:

  1. Фермент распознает субстрат и связывается с ним.
  2. Образуется активный комплекс, состоящий из фермента и субстрата.
  3. Отделение продукта в результате ферментативной реакции.

Свойства ферментов (анализ графиков) (Слайды 20-23)

Далее учащимся предлагается выполнить исследование.

Исследовательское задание (Работа по группам):

Лабораторная работа  «Ферментативное расщепление пероксида водорода в тканях организма» (Приложение 3)

Цель: сформировать знания о роли ферментов в клетках, закрепить умения проводить опыты и объяснять результаты работы.

Оборудование: свежий 3%-ный раствор пероксида водорода, штатив с пробирками, ткани растений (кусочки сырого и варёного картофеля) и животных (кусочки сырого и варёного мяса), пипетки, песок.

Ход работы:

1. Приготовьте четыре пробирки и поместите в первую пробирку — кусочек сырого картофеля, во вторую — кусочек варёного картофеля, в третью — кусочек сырого мяса, в четвёртую — кусочек варёного мяса. Капните в каждую из пробирок немного пероксида водорода. Пронаблюдайте, что будет происходить в каждой из пробирок.

2. Составьте таблицу, показывающую активность каждой ткани.

«Результаты исследования»

№ пробирки Содержимое Что делаю? Что наблюдаю?
№ 1      
№ 2      
№ 3      
№ 4      

Ответьте на вопросы (устно):

— В каких пробирках проявилась активность фермента? Объясните почему?
— Как проявляется активность фермента в живых и мёртвых тканях? Объясните наблюдаемое явление.
— Различается ли активность фермента в живых тканях растений и животных?
— Как вы считаете, все ли живые организмы содержат фермент каталазу, обеспечивающую разложение пероксида водорода?
— Ответ обоснуйте.
— Сделайте вывод.
Группы учащихся отчитываются о выполнении задания.

7. Рефлексия. Учащиеся выполняют задание, делают вывод (Слайд № 24).

8. Домашнее задание (Слайд № 25):

1. Задание для всех: глава 3.2.1., таблица «Функции белков»,
2. Задание для проявляющих интерес к предмету: найти классификацию ферментов  в Интернете.

Интернет-ресурсы:

www.biology.asvu.ru — все о биологии.
www.biodev.ru — все о биологии.

Структура и функции белков — Лекция

Московский государственный университет

имени М. В. Ломоносова

БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ

Кафедра молекулярной биологии

ПРОГРАММА КУРСА ЛЕКЦИЙ

СТРУКТУРА И ФУНКЦИИ БЕЛКОВ

Составитель курса: д. .ф.-м.н., профессор, член-корр. РАН
А.В. Финкельштейн

2011 г.

КОМПЕТЕНЦИЯ СПЕЦКУРСА

Курс «Физика белка» является составной частью общей программы специализаций по молекулярной биологии.

Данный курс посвящен физике белка, т.е. самым общим проблемам структуры, самоорганизации и функционирования белковых молекул. Изложены те физические идеи и, в частности, те элементы статистической физики и квантовой механики, которые необходимы для понимания студентами строения и функционирования белков.

Курс знакомит студентов, преимущественно, с теорией связанных с белками физических проблем; при этом в нем и дан лишь необходимый минимум экспериментальных данных и методов. Говоря о конкретных белках, даются лишь важнейшие примеры.

КОНСПЕКТ ЛЕКЦИЙ

Лекция 1. Введение.

Основные функции белков. Аминокислотная последовательность определяет пространственную структуру, пространственная структура — функцию. Обратное — неверно. Глобулярные, фибриллярные и мембранные белки. Первичная, вторичная, третичная, четвертичная структура белка. Биосинтез белка; сворачивание белка in vivo и in vitro. Пост-трансляционные модификации.

Лекция 2. Ковалентные взаимодействия в аминокислотных остатках.

Стереохимия L-аминокислотных остатков. Валентные связи и углы между ними. Их колебания. Вращение вокруг валентных связей. Пептидная группа. Транс- и цис-пролины.

Лекция 3. Вандерваальсовы взаимодействия в аминокислотных остатках.

Вандерваальсово взаимодействие: притяжение на больших расстояниях, отталкивание на малых. Разрешенные конформации аминокислотного остатка (карты Рамачандрана для глицина, аланина, валина, пролина).

Лекция 4. Физика водородных связей в водном окружении.

Влияние водного окружения. Водородные связи. Их электрическая природа. Их энергия. Их геометрия в кристаллах. Разболтанность водородных связей в воде. Понятие об энтропии и свободной энергии. Водородные связи в белковой цепи замещают такие же связи этой цепи с водой; в результате водородные связи в белковой цепи приобретают — в водном окружении — энтропийную природу.

Лекция 5 (сдвоенная). Элементы термодинамики.

Элементы термодинамики. Свободная энергия и химический потенциал. Гидрофобные взаимодействия. Их связь с необходимостью насыщения водородных связей в воде. Доступная воде неполярная поверхность аминокислот и их гидрофобность.

Лекция 6 (сдвоенная). Электростатические взаимодействия.

Влияние водного окружения на электростатические взаимодействия. Электрическое поле у поверхности и внутри белка. Диэлектрическая проницаемость. Экранировка зарядов в солевых растворах. Измерение электрических полей в белках при помощи белковой инженерии. Дисульфидные связи. Координационные связи.

Лекция 7. Вторичная структура белковых цепей.

Вторичная структура полипептидов. Спирали: 27, 310, , , poly(Pro) II. Антипараллельная и параллельная -структура. -изгибы. Методы экспериментального обнаружения вторичной структуры.

Лекция 8 (сдвоенная). Элементы статистической физики.

Связь температуры с изменением энергии и энтропии. Вероятности состояний с различной энергией (распределение Больцмана-Гиббса). Статистическая сумма и ее связь со свободной энергией. Конформационные превращения. Понятие о фазовом переходе первого рода (переходе «все-или-ничего») и о не-фазовых переходах. Кинетика преодоления свободно-энергетического барьера при конформационных превращениях. Понятие о теории скоростей реакций. Параллельные и последовательные процессы. Характерные скорости диффузионных процессов.

Лекция 9 (сдвоенная). Стабильность и скорость образования вторичных структур в полипептидах.

Свободная энергия инициации и элонгации -спирали. Теорема Ландау и не-фазовость перехода спираль-клубок. Размер кооперативного участка при переходе спираль-клубок. Стабильность -спирали в воде. Стабильность -структуры в воде. Скорость образования -структуры и -спирали. Что такое «клубок»?

Лекция 10. Физические свойства аминокислотных остатков.

Свойства боковых групп аминокислотных остатков. Включение аминокислотных остатков во вторичную структуру. Аланин, глицин, пролин, валин. Неполярные, короткие полярные и длинные полярные боковые группы. Заряженные боковые группы. Гидрофобные поверхности на вторичных структурах в белках.

Лекция 11. Фибриллярные белки.

Фибриллярные белки, их функции и их периодичные первичные и вторичные структуры; -кератин, -фиброин шелка, коллаген. Упаковка длинных -спиралей и обширных -листов. Белки, образующие матрикс; эластин. Генетические дефекты белков и болезни. Амилоиды.

Лекция 12. Мембранные белки.

Мембранные белки, особенности их строения и функции. Бактериородопсин, рецепторы и G-белки, порин, фотосинтетический центр. Селективная проницаемость мембранных пор. Работа фотосинтетического центра. Понятие о туннельном эффекте. Понятие об электронно-конформационном взаимодействии.

Лекция 13. Строение глобулярных белков; часть I: -белки.

Глобулярные белки. Упрощенное представление структур белковых глобул; структурные классы. Строение -белков: -слои, их продольная и перпендикулярная упаковка. Преимущественная антипараллельность -структуры в -белках. Правопропеллерная скрученность -листов. Топология -белков.

Лекция 14. Строение глобулярных белков; часть II: -, /- и +-белки.

Строение -белков. Пучки и слои спиралей. Модель квазисферической глобулы из -спиралей. Плотная упаковка при контакте -спиралей. Строение /-белков: параллельный -слой, прикрытый -спиралями, и /-цилиндр. Топология -- субъединиц. Строение + белков. Отсутствие прямой связи архитектуры белка с его функцией.

Лекция 15. Физические принципы строения белковой глобулы.

Классификация структур белков. Отсутствие наблюдаемой «макроэволюции» эволюции укладок белковых цепей — при наблюдаемой «микроэволюции» их структур. Дупликация гена и специализация. Эволюция путем перемешивания доменов. “Стандартные” третичные структуры. Типичность “квазислучайного” чередования аминокислот в первичных структурах глобулярных белков, контраст с периодическими первичными структурами фибриллярных белков и блочными — мембранных белков Физические принципы строения белковой глобулы. Основные закономерности, наблюдаемые в структурах белковых глобул: наличие отдельно - и отдельно -слоев; редкость перекрывания петель; редкость параллельности соседних по цепи структурных сегментов; редкость левых -- суперспиралей. “Энергетические” и “энтропийные” дефекты редко встречающихся структур и связь этих “дефектов” с относительной редкостью аминокислотных последовательностей, стабилизирующих “дефектные” структуры. “Принцип множественности”.

Лекция 16. Физический отбор белковых структур.

Какую вторичную структуру можно ожидать для случайных и квази-случайных аминокислотных последовательностей? Доменное строение стабильных структур квази-случайных последовательностей наиболее вероятно. Квази-Больцмановская статистика мелких деталей белковых структур. Она возникает из физического отбора стабильных белковых структур. Влияние стабильности структурного элемента на строгость отбора первичных структур, не разрушающих пространственную структуру глобулярного белка, или: почему одни белковые структуры встречаются часто, а другие — редко? Какую структуру —  или  — следует чаще ожидать в центре большой глобулы? Связь “энтропийных” дефектов с “энергетическими”. Глобулярные белки возникли как “отобранные” случайные полипептиды? Отбор «белковоподобных» случайных последовательностей в белковой инженерии.

Лекция 17 (сдвоенная). Термодинамические состояния белковых молекул.

Денатурация белка. Нативно-развернутые белки.. Кооперативные переходы. Обратимость денатурации белков. Денатурация глобулярного белка — переход типа “все-или-ничего”. Критерий Вант-Гоффа для перехода “все-или-ничего”. Тепловая и холодовая денатурация. Диаграмма фазовых состояний белковой молекулы Как выглядит денатурированный белок? Клубок и расплавленная глобула. Неоднородность расплавленной глобулы. Отсутствие фазового перехода типа “все-или-ничего” при набухании “обычных” полимерных глобул.

Лекция 18. Термодинамика кооперативных переходов в белковых молекулах.

Почему денатурация глобулярного белка — переход типа «все-или-ничего»? Распад плотной упаковки ядра белка и раскрепощение боковых групп. Проникновение растворителя в денатурированный белок, разрушение расплавленной глобулы, постепенное разворачивание белковой цепи по мере увеличения силы растворителя. Энергетическая щель между нативной укладкой белковой цепи и прочими ее глобулярными укладками: основное физическое отличие белковой цепи от случайного сополимера. Различия в плавлении “отобранного” гетерополимера (с энергетической щелью) и случайного сополимера.

Лекция 19. Кинетика кооперативных переходов в белковых молекулах, часть I.

Образование структуры белка in vivo и in vitro. Вспомогательные механизмы при самоорганизации in vivo: ко-трансляционное сворачивание, шапероны, и т.д. Спонтанная самоорганизация возможна in vitro. “Парадокс Левинталя”. Опыты по сворачиванию белка в бесклеточных системах, а также – о разном понимании слов “in vitro”. Стадийный механизм самоорганизации белков. Обнаружение метастабильных (накапливающихся) интермедиатов сворачивания многих белков Расплавленная глобула — обычно (но не обязательно) наблюдаемый интермедиат сворачивания белка в нативных условиях. Простейшее (одностадийное) сворачивание некоторых белков — без каких-либо накапливающихся метастабильных интермедиатов. Самоорганизация мембранных белков.

Лекция 20. Кинетика кооперативных переходов в белковых молекулах, часть II.

Одностадийное сворачивание малых белков. Теория перехòдных состояний. Экспериментальный поиск и изучение нестабильных перехòдных состояний в сворачивании белка. Ядро сворачивания нативной структуры белка. Его экспериментальное обнаружение in vitro методами белковой инженерии. Нуклеационный механизм сворачивания белка.

Лекция 21. Физика самоорганизации белка.

Решение «парадокса Левинталя»: к стабильной структуре цепи автоматически ведет сеть быстрых путей сворачивания. Для этого необходимо только, чтобы между нативной укладкой цепи и прочими ее глобулярными укладками существовала бы заметная энергетическая щель. Обсуждение аномально медленного образования стабильной структуры в некоторых белках (серпины, прионы). Представление об “энергетических ландшафтах” белков. Белковые структуры: физика самоорганизации и естественный отбор самоорганизующихся цепей.

Лекция 22. Предсказание и дизайн белковых структур, часть I: вторичная структура белков.

Потребность в предсказании структур белков по их аминокислотным последовательностям. “Опознавание” белковых структур и функций по гомологии последовательностей. Профили первичных структур семейств белков. Ключевые районы и функциональные сайты белковых структур. Выделение стабильных структур пространственных белковой цепи. “Шаблоны” белковых структур. Мы всегда вынуждены судить о предсказываемой структуре белка только по части взаимодействий, действующих в его цепи. Результат: вероятностные предсказания. Взаимодействия, стабилизующие и разрушающие вторичную структуру полипептидов. Расчет вторичных структур не-глобулярных полипептидов. Предсказание вторичной структуры белков.

Лекция 23. Предсказание и дизайн белковых структур, часть II: третичная структура белков.

Представление о подходах к предсказанию пространственных структур белков по их аминокислотным последовательностям. Базы данных по структурам белков. Предсказание общей укладки цепи отдаленных гомологов понижает неопределенности в опознавании структур белков. Структурная геномика и протеомика. Биоинформатика. Белковая инженерия и дизайн. Первые успехи в конструировании белков.

Лекция 24 (сдвоенная). Элементарные функции белков и структуры белков.

Элементарные функции. Связывающие белки: ДНК-связывающие белки, иммуноглобины. Ферменты. Активный центр — “дефект” глобулярной структуры. Твердость белка важна для элементарной ферментативной функции. Каталитический и субстрат-связывающий центры. Ингибирование. Кофакторы. Многовалентные ионы. Механизм ферментативного катализа. Пример: сериновые протеазы. Теория перехòдного состояния в катализе и ее подтверждение методами белковой инженерии. Абзимы. Специфичность катализа. Узнавание “ключ-замок”.

Лекция 25. Строение белков, имеющих сложные функции.

Сочетание функций. Переход субстрата с одного на другой активный центр. “Двойное сито” повышает специфичность функции. Относительная независимость структуры белка от его элементарной ферментативной активности. Заметная связь структуры с окружением белка. Сопряжение элементарных функций белка и гибкость его структуры. Индуцированное соответствие. Подвижность доменов белка. Перемешивание доменов при эволюции белков. Доменная структура: киназы, дегидрогеназы. Аллостерия — взаимодействие активных центров. Аллостерическая регулировка функции белка. Аллостерия и четвертичная структура белка. Гемоглобин и миоглобин. Механизм мышечного сокращения. Кинезин.

ПРИМЕЧАНИЕ: Лекция — 1 академический час. Сдвоенная лекция — 2 академических часа.

Л И Т Е Р А Т У Р А

ОСНОВНАЯ

  1. Финкельштейн А. В., Птицын О. Б. Физика белка. М: Книжный дом «Университет», 2002 или 2005.

  2. Branden C., Tooze J. Introduction to Protein Structure. New York, London: Garland Publ., Inc., 1991, 1999..

  3. Фершт Э. Структура и механизм действия ферментов, гл. 1,8-12. М: Мир, 1980.

  4. Шульц Г. Е., Ширмер Р. Х. Принципы структурной организации белков. М: Мир, 1982.

ДОПОЛНИТЕЛЬНАЯ

  1. Рубин А. Б. Биофизика. т. 1, гл. 7-14. М: Книжный дом «Университет», 1999.

  2. Волькенштейн М.В. Биофизика, гл.4,6. М: Наука, 1981.

  3. Кантор Ч., Шиммель П. Биофизическая химия, т. 1, гл. 2,5; т.3, гл. 17,20,21. М: Мир, 1982.

  4. Ленинджер А. Основы биохимии, в 3-х тт., гл. 4-8, 23,29. М: Мир, 1985.

  5. Страйер Л. Биохимия, в 3-х тт., гл. 1-9, 27, 33-34. М: Мир, 1984 (т.1) — 1985 (тт. 2-3).

РЕКОМЕНДУЕМАЯ ДЛЯ УГЛУБЛЕННОГО ИЗУЧЕНИЯ ПРЕДМЕТА

  1. Полинг Л. Общая химия, гл. 1-6, 9-13, 16, 24. М: Мир, 1974.

  2. Степанов В.М. Молекулярная биология. Структура и функции белков. М.: Высшая школа, 1996.

  3. Creighton T.E. Proteins, 2-nd ed., NY: W.H.Freeman & Co., 1991.

  4. Perutz M.F. Protein structure. NY: W.H.Freeman & Co., 1992.

  5. Leninger A.L., Nelson D.L., Cox M.X. Principles of biochemistry, 2nd ed., chapters 5-8., NY: Worth Publ. Inc., 1993.

  6. Fersht A. — Structure and mechanism in protein science: A guide to enzyme catalysis and protein folding. — NY: W.H.Freeman & Co., 1999.

  7. Эмануэль Н. М., Кнорре Д. Г. Курс химический кинетики. 4-е изд. — М: Высшая Школа, 1984.

  8. Howard J. Mechanics of motor proteins and the cytoskeleton. — Sunderland, Massachusetts: Sinauer Associates, Inc., 2001. Part III.

ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ: КОЛЛОКВИУМ

Обсуждаемые темы:

Элементарные взаимодействия в белках и вокруг

Вторичные структуры полипептидных цепей

Пространственное строение белков

Кооперативные переходы в белковых молекулах

Предсказание и дизайн белковых структур

Функционирование белков

Структура и функции белков

Экзаменационные билеты 2011 г.

Первичная, вторичная, третичная, четвертичная структура белка. Глобулярные, фибриллярные и мембранные белки. Понятие о биосинтезе белка, о его сворачивании in vivo и in vitro и о пост-трансляционных модификациях.

Стереохимия аминокислотных остатков. Валентные связи и углы между ними. Вращение вокруг валентных связей (примеры). Пептидная группа. Транс- и цис-пролины. Дисульфидные связи. Координационные связи.

Вандерваальсово взаимодействие: притяжение на больших расстояниях, отталкивание на малых. Разрешенные конформации аминокислотного остатка (карты Рамачандрана для глицина, аланина, валина, пролина).

Водородные связи. Их электрическая природа. Их энергия и геометрия в кристаллах. Разболтанность водородных связей в воде (как это показано на опыте?). Водородные связи в водном окружении имеют энтропийную природу.

Гидрофобные взаимодействия (в чем их особенность проявляется на опыте?). Их связь с необходимостью насыщения водородных связей в воде. Гидрофобность и доступная воде неполярная поверхность. Гидрофобность аминокислот.

Влияние окружения, в особенности водного, на электростатические взаимодействия. Электрическое поле у поверхности и внутри белка. Измерение электрических полей в белках при помощи белковой инженерии.

Вторичная структура полипептидов. Спирали: 27, 310, , poly(Pro) II. Антипараллельная и параллельная -структура. -изгибы. Методы экспериментального обнаружения вторичной структуры. Что такое «клубок»? Что такое «нативно-развернутые» белки?

Теорема Ландау и не-фазовость перехода спираль-клубок. Размер кооперативного участка при переходе спираль-клубок.

Стабильность -спирали и -структуры в воде. Скорость образования -структуры (шпилек и листов) и -спиралей.

Свойства аминокислотных остатков (примеры: аланин, глицин, пролин, валин). Неполярные и полярные боковые группы. Заряженные боковые группы. Предпочтительные места для включения аминокислотных остатков во вторичную и в третичную структуру. Гидрофобные поверхности на вторичных структурах в белках.

Фибриллярные белки, их функции и их периодичные первичные и вторичные структуры; -кератин, -фиброин шелка, коллаген. Упаковка длинных -спиралей и обширных -листов. Белки, образующие матрикс; эластин. Амилоиды.

Мембранные белки, особенности их строения и функции. Бактериородопсин, порин, фотосинтетический центр. Селективная проницаемость мембранных пор. Работа фотосинтетического центра. Понятие о туннельном эффекте.

Глобулярные белки. Упрощенное представление структур белковых глобул; структурные классы. Строение -белков: -слои, их продольная и перпендикулярная упаковка. Правопропеллерная скрученность -листов. Примеры.

Строение -белков. Пучки и слои спиралей. Плотная упаковка при контакте -спиралей. Строение /-белков: параллельный -слой, прикрытый -спиралями (укладка Россманна) и /-цилиндр. Топология -- субъединиц. Строение + белков. Примеры.

Классификация структур белков. “Стандартные” третичные структуры (примеры). Отсутствие прямой связи архитектуры белка с его функцией (примеры). Есть ли эволюция белковых структур? Дупликация гена и специализация. Эволюция путем перемешивания доменов.

Основные закономерности, наблюдаемые в структурах белковых глобул: наличие отдельно - и отдельно -слоев; редкость перекрывания петель; редкость параллельности соседних по цепи структурных сегментов; редкость левых -- суперспиралей. Физические причины этих феноменов.

Связь частоты встречаемости разнообразных структурных элементов в нативных глобулярных белках с собственной свободной энергией этих элементов. Примеры.

Кооперативные переходы. Обратимость денатурации белков. Денатурация глобулярного белка — переход типа “все-или-ничего”. Критерий Вант-Гоффа для перехода “все-или-ничего”.

Тепловая и холодовая денатурация, денатурация растворителем. Диаграмма фазовых состояний белковой молекулы. Как выглядит денатурированный белок? Клубок и расплавленная глобула.

Почему денатурация глобулярного белка  —  переход типа «все-или-ничего»? Распад плотной упаковки ядра белка и раскрепощение боковых групп.

Самоорганизация белка in vivo и in vitro. Вспомогательные механизмы при самоорганизации in vivo: ко-трансляционное сворачивание, шапероны, и т.д. Спонтанная самоорганизация возможна in vitro. Понятие о “парадоксе Левинталя”.

Опыты по сворачиванию белка “in vitro”. Обнаружение метастабильных (накапливающихся) интермедиатов сворачивания многих белков Расплавленная глобула — обычно (но не обязательно) наблюдаемый интермедиат сворачивания белка в нативных условиях.

Одностадийное сворачивание малых белков. Теория перехòдных состояний. Ядро сворачивания нативной структуры белка. Его экспериментальное обнаружение in vitro методами белковой инженерии.

Решение «парадокса Левинталя»: к стабильной структуре цепи автоматически ведет сеть быстрых путей сворачивания. Оценка времени сворачивания белка.

Опознавание сходства пространственных структур белков по сходству их аминокислотных последовательностей. Попытки предсказания пространственных структур белков их аминокислотным последовательностям ab initio.

Белковая инженерия (с примерами) и дизайн (с примерами). Подтверждение теории перехòдного состояния в катализе методами белковой инженерии. Абзимы.

Элементарные функции белков. Связывающие белки: ДНК-связывающие белки, иммуноглобины. Ферменты и катализ. Каталитический и субстрат-связывающий центры.

Ферменты и катализ (на примере сериновых протеаз). Почему твердость белка важна для элементарной ферментативной функции?

Сопряжение элементарных функций белка и гибкость его структуры. Индуцированное соответствие. Подвижность доменов белка. Доменная структура: киназы, дегидрогеназы.

Когда белку нужна (и когда не нужна) гибкость? Аллостерическая регулировка функции белка. Гемоглобин и миоглобин. Понятие о механизме мышечного сокращения и о движении кинезина.

Состав и функции белков

 Методическая разработка урока

                                по биологии 10 класс

            Тема урока: «Состав и функции белков»

                                                                                                                             Составила

                                                                                                        учитель биологии

                                                                                                        Тростина Н.А. МОУ  СОШ №52                    

Пояснительная записка

     В 10 классе учащиеся получают знания об основных законах жизни на всех уроках её организации, знакомятся с современными достижениями в области биологии, осознают место человека в биосфере и его ответственность за состояние природы. В курсе также проходятся основы цитологии, генетики, селекции, теория эволюции.

    Учебный курс «Биология», в содержание которого ведущим компонентом являются научные знания, научные методы познания, практические умения и навыки, позволяет сформировать у учащихся  эмоционально-ценностное отношение к научному материалу, создать условия для формирования компетенция в интеллектуальных, гражданско-правовых, коммуникационных и информационных областях.

    Результаты изучения предмета в школе разделены на предметные, метапредметные и личностные.  

 Данная методическая разработка  является одним из вариантов проведения урока по теме «Состав и функции белков» по учебнику Биология.  Авторы А.А.Каменского, Е.А. Криксунов, В.В.Пасечника . Общая биология 10-11  класс.: учеб. для общеобразовательных учреждений . – М.: Дрофа, 2013.  В ней отражена попытка реализовать требования ФГОС  в основе которого лежит  системно — деятельностный подход. Сущность данного подхода состоит в  формировании деятельностных способностей у  обучающихся.

                     

     

Класс 10 

Тема урока«Строение и функции белков».

Целевые установки урока:

Личностные: 

Стремление  к истине и познанию;

Метапредметные: развитие универсальных учебных действий в составе личностных, регулятивных, познавательных, знаково-символических и коммуникативных действий:

Развивать умения учащихся работать с различными источниками информации, формировать навыки  смыслового чтения: учиться выделять главное, анализировать, сравнивать, обобщать, делать соответствующие выводы, выявлять взаимосвязи строения и функций веществ, трансформировать текст в схему, таблицу.

Предметные: Раскрыть особенности строения и функций белков,   иллюстрировать     примерами значение органических веществ  в природе  и жизни

               человека.  

.  

Средства обучения: компьютер, презентация, ЦОРы,  источниковый текст, оборудование для проведения лабораторных работ.

Формы и методы достижения планируемых результатов

1.Работа в группах/парах

2.Самостоятельная  индивидуальная  работа

Ключевые понятия  урока

1.Белки, протеины, протеиды, пептид, пептидная связь, простые и сложные

                 вещества.

2.Первичная, вторичная , третичная и четвертичная структура.

3.Денатурация.

          Учащиеся должны знать:

         состав, строение функции органических веществ, входящих в состав живого.

         Учащиеся должны уметь:

        -проводить несложные биологические эксперименты для изучения свойств     органических веществ и функций ферментов как биологических катализаторов.

                 Ход урока

I этап урока. Мотивация к деятельности и целеполагание.

Цели деятельности:

— мотивировать учащихся к изучению темы «Строение и функции белков»;

— стимулировать эмоционально-ценностное отношение к ситуации;  

— проявлять позитивное отношение к процессу обучения.

Проведем   ряд простых опыты, доказывающих  наличие в растительных  клетках  органических веществ ( в целях экономии времени опыты проводим на перемени с группой консультантов,  на уроке озвучиваем только результат)

 Возьмите немного пшеничной муки. Муку получают, размалывая на мельницах зерна пшеницы. Заверните муку в марлю и тщательно промойте в стакане с водой. Какой стала вода в стакане? Развернем теперь марлю. Что осталось в ней? А в марле осталось клейкое вещество- оно так и называется «клейковина». Это и есть растительный белок.

Вывод: В клетках  растений обнаружили  белки.

 Во всех клетках живых организмов присутствуют белки  (положение  клеточной теории о сходстве химического состава)

  • Целеполагание.

  •  Сегодня на уроке:

  • Изучаем: строение и функции белков.

  • Выявляем  их роль в  биологических системах

  • Находим  примеры  в природе  и жизни человека, связанные с наличием  белков  в клетке и организме.

Психологический настрой

 На доске записано слово «Молодец!»

Учитель:   работаем на позитиве- не скупимся оценивать свою достойную работу и работу одноклассников поощрительным словом  «Молодец!»

     II этап. Учебно-познавательная деятельность (карточки свопросами)

Цели деятельности: познакомить с особенностями строения, функций и значения     белков. в клетке.

План изучения

  1. Состав белков.

  2. Структуры белков.

  3. Функции белков.

         

ПОДУМАЙ!

  1. Почему  медведь никогда не ляжет в спячку не набрав  должное  количество  жира? (энергетическая функция)

  2. У китов  слой жира  может достигать более одного метра какое это имеет значение для животного? (во-первых, жир  легче  воды –он создает плавучесть и защищает животных от холода.)

Изучаем белки

1. Ознакомительное чтение, направленное на извлечение ключевой информации для поиска ответов на вопросы  и озвучивания  анимации. Функции белков.

2. Наблюдаем ферментативную функцию белков «Расщепление пероксида водорода с помощью ферментов, содержащихся в клетках клубней картофеля»

     Форма работы учащихся – в парах. 

 Задание 1.  В изучаемом параграфе найдите информацию о составе  белка  (см.учебник ри.12, 13, стр. 41)

  1. Какие химические элементы образуют белковую молекулу?

  2. Чем протеины отличаются от протеидов?

  3. Все ли существующие аминокислоты способны образовывать белковую молекулу?

 Задание 2. Изучите текст учебника на стр. 43 рис.14.

  1. Какие функциональные группы входят в состав аминокислот?

  2. Какая связь образуется в результате взаимодействия функциональных групп двух аминокислот?

  3. Что собой представляет первичная структура белка?

  4. Чем пептид отличается от полипептида?

        Задание 3. «Вторичная структура белка» (см. учебник рис.14 стр.43)

  1. Какова пространственная конфигурация вторичной структуры белка?

  2. Благодаря чему молекула белка удерживает данную структуру?

  3. В чем необходимость поддержания данного уровня белка?

  Задание 4. »Третичная и четвертичная структуры белка» (см.учебник рис.14 стр.43).

  1. Какова пространственная конфигурация третичной структуры белка?

  2. Для чего возникает третичная структура белка?

  3. Что определяет специфическую активность белка?

Задание 5. Изучите  текст учебника   на стр.44-45 и заполните  таблицу.

№ п/п

       Функции

       белков

                                 Значение

 1.

Строительная

Участвует в образовании клеточных мембран

 2.

Каталитическая

Ускоряют  химические реакции

 3.

Двигательная

Специальные сократительные белки участвуют во всех видах движения

 4.

Транспортная

Перенос газов и глрмонов в ткани и организм

 5.

Защитная

Образует особые белки-антитела

 6.

Энергетическая

При расщеплении 1 г. Белка выделяется 17,6 кДж энергии

     III этап. Интеллектуально-преобразовательная деятельность

Цели деятельности:  :

— использовать полученные знания при  решении практико-ориентированных заданий  

— оценивать результат учебной деятельности.  

         ПОДУМАЙ!            

  1. Как спирт  влияет на белковую молекулу?

Инструктивная карточка

В пробирки наливаем по 5 мл белка куриного яйца и добавляем  70% раствор спирта. Стеклянной палочкой в каждой пробирке все быстро перемешиваем.
Что наблюдаем: (структура белковой молекулы разрушается под действием 70%   раствора спирта, так как белковые молекулы теряют воду, а сам белок сворачивается -денатурирует ).

Вывод  Произошло  нарушение структуры и функции белковой молекулы под действием спирта, такой белок восстановлению не подлежит.

  Вы теперь понимаете, что при поступлении даже незначительных доз спирта в    организме каждая клетка, каждый орган соприкасается с его молекулами, испытывая на себе его токсическое действие

Самостоятельная работа учащихся по отработке основных терминов и понятий.

                                                  Тест

1.Из названных соединений выберите  структурный компонент белка:  

а) нуклеотид;

б) аминокислота;

в) глюкоза.

2.Назовите белки-катализаторы:

а)  гормоны:

б) ферменты;

в) антиоксиданты.

3.Какая химическая связь участвует в образовании первичной структуре белка?

а) водородная;

б) пептидная;

в) сульфидная

4. Вторичная структура, как правило, имеет формы:

а) спирали;

б) глобулы:

в) вытянутой цепи.

5.Третичная структура имеет конфигурацию:

а) спирали;

б) складок;

в) глобулы.

6.Синонимом понятия «белок» является термин:

а) липид;

б) полипептид;

в) нуклеотид.

7.Белки, выполняющие защитные функции, называются:

а) антигенами;

б) гормонами;

в) антителами.

 IV этап. Рефлексивная деятельность

Цели деятельности: научить школьников: соотносить полученный результат с поставленной целью; оценить результат своей деятельности; оценивать результат учебной деятельности.

За что бы  и на каком этапе урока я себе сказал бы « Молодец!» Кого бы еще  похвалил на уроке?

Домашнее задание:$11, записи в тетради, ответить на вопрос «Что такое денатурация? Каковы её причины?

 

Используемая литература

  1. Биология. Авторы А.А.Каменского, Е.А. Криксунов, В.В.Пасечника.

  2. Краткий справочник школьника 5-11 классы /П.И. Алтынов, П.А. Андреев- Москва: Изд-во  Дрофа, 1998. – 624 с

Белки: функции, введение

Белки: функции, введение

Белки или протеины (что в переводе с греческого означает «первые» или «важнейшие» ), количественно преобладают над всеми другими макромолекулами, присутствующими в живой клетке, и составляют более половины сухого веса большинства организмов. Белки служат теми инструментами, посредством которых генетическая информация получает свое реальное воплощение. В соответствии с тем, что в клеточном ядре содержатся тысячи генов, каждый из которых определяет какой-то один характерный признак живого организма, в клетке существуют тысячи белков и каждый из них выполняет специфическую функцию.

Самый многообразный и наиболее высокоспециализированный класс белков, выполняющий важнейшую биологическую функцию — создание точно и гибко координированной системы целенаправленных взаимозависимых химических реакций, в результате совместного протекания которых возникает «жизнь» — это ферменты , функцией которых является управляемый катализ большого числа химических реакций, в которых участвуют как низко- , так и высокомолекулярные субстраты.

Транспортные белки — белки , выполняющие функцию транспорта, специфически связывают и переносят те или другие молекулы и ионы через мембраны клеток ( как внутрь клетки, так и во вне), а также от одного органа организма к другому. Гемоглобин , содержащийся в эритроцитах, при прохождении крови через легкие связывает кислород и доставляет его к периферическим тканям, где кислород высвобождается и используется для окисления компонентов пищи — процесса, в ходе которого производится энергия. Плазма крови содержит липопротеины , осуществляющие перенос липидов из печени в другие органы. В клеточных мембранах присутствует типы транспортных белков, способных связывать глюкозу , аминокислоты и переносить их как внутрь, так и из клеток.

Пищевые и запасные белки — белки, которые выполняют функцию обеспечения питанием зародышей растений и животных на первых стадиях их развития. Наиболее известными примерами таких белков служат белки семян пшеницы, кукурузы и риса. К пищевым белкам относятся яичный альбумин — основной компонент яичного белка, и казеин , главный белок молока. В ферритине , встречающимся в животных тканях, запасено железо.

Сократительные и двигательные белки — белки, которые обеспечивают клетку или организм двигательной функцией,- способностью сокращаться , изменять форму и передвигаться. Белками с такой функцией являются актин и миозин , представляющие собой нитевидные белки, функционирующие в сократительной системе скелетной мышцы, а также во многих немышечных тканях (микрофиламенты эукариотических клеток) . Другим примером таких белков служит тубулин — белок из которого построены микротрубочки , являющиеся важными элементами ресничек и жгутиков, при помощи которых клетки передвигаются. Длинные клетки нервной системы животных также содержат микротрубочки.

Структурные белки — белки образующие волокна, навитые друг на друга или уложенные плоским слоем, выполняют опорную или защитную функцию, скрепляют между собой биологические структуры организмов и придают им прочность. Главным компонентом хрящей и сухожилий является фибриллярный белок коллаген , имеющий очень высокую прочность на разрыв. Связки содержат эластин — структурный белок способный растягиваться в двух измерениях. Волосы, ногти и перья состоят почти исключительно из прочного нерастворимого белка кератина . Главным компонентом шелковых нитей и паутины служит белок фиброин .

Защитные белки защищают организм от вторжения других организмов или предохраняют его от повреждений. Эту функцию выполняют иммуноглобулины ( или антитела ), образующиеся у позвоночных и обладающие способностью распознавать чужеродные клетки, такие,  как  проникшие в организм бактерии или вирусы, клетки самого организма, переродившиеся в раковые, а также чужеродные для организма белки, и затем прочно связываться с ними. Аналогична защитная функция у фибриногена и тромбина — белков, участвующих в процессе свертывания крови; они предохраняют организм от потери крови при повреждении сосудистой системы. Белки змеиного яда , бактериальные токсины и токсичные белки растений , например, рицин , вероятно, также в определенном смысле можно отнести к белкам, выполняющим защитную функцию.

Регуляторные белки имеют функцию регуляции клеточной или физиологической активности. К регуляторным белкам относятся многие гормоны , такие как инсулин , регулирующий обмен глюкозы , гормон роста , синтезируемый в гипофизе, паратиреоидный гормон , регулирующий транспорт ионов кальция и фосфатов и др. Регуляторные белки , называемые репрессорами , функционируют как регуляторы биосинтеза ферментов в бактериальных клетках.

Имеется много других белков, функции которых уникальны, что затрудняет их классификацию. Так, например, монеллин — белок, содержащийся в одном из африканских растений, имеет очень сладкий вкус. Он стал предметом изучения как нетоксичное и не способствующее ожирению вещество, которое может быть использовано вместо сахара. Плазма крови некоторых антарктических рыб содержит белки со свойствами антифриза, предохраняющие кровь этих рыб от замерзания. Шарниры в местах прикрепления крыльев у ряда насекомых состоят из белка резилина , обладающего почти идеальной эластичностью.

Ссылки:

Ферментативная функция — Справочник химика 21

    Многие белки в мембранах выполняют ферментативные функции. Так, например, система транспорта электронов в митохондриях локализована в мембранах (гл. 10), и ряд ферментов, обладающих высокой [c.354]

    Белки — составляющая часть всего живого. На долю белка приходится приблизительно 50% сухого веса клетки. Из природных источников выделяют белки-ферменты, белки-гормоны, белки-токсины, белки-антигены и другие. Осуществляя ферментативную функцию, белки обусловливают динамичность обмена веществ. Белки — органические соединения. Элементарный состав белка углерод —50 — 55,5% водород — 6,5—7,3% азот — 15—18% кислород — 21—24% сера — 0—2,4%. Характерный показатель — содержание азота, в среднем его принимают равным 16%. При определении содержания белка по азоту количество азота умножают на фактор пересчета 6,25(100 16= 6,25). [c.12]


    Ферментативные функции В12 коферментов [c. 292]

    Конечная цель биофизических исследований заключается в физическом истолковании биологических функций белка, прежде всего его ферментативной функции. [c.178]

    Следовательно, белковое голодание, сопровождаясь распадом ферментных белков, приводит к глубоким изменениям обмена, обусловленным нарушениями ферментативных функций печени и других органов. [c.371]

    Белки мышц. Мышцы позвоночных содержат 15—20% белков. Последние подразделяются на нерастворимые белки, выполняющие функцию опорной ткани, и растворимые белки, некоторые из которых выполняют сократительную, а другие — ферментативную функции. В результате исследований при помощи электронного микроскопа установлено, что мышечная фибрилла имеет форму трубки диаметром [c.444]

    Сокращения Г — головка, О — отросток, НО — нити отростка, БП — базальная пластинка, Е — белки, у которых ферментативная функция выражена сильнее, чем структурная. Стрелки, идущие вдоль окружности, охватывают группы совместно транскрибируемых геиов.[c.254]

    Была детально изучена структура рибонуклеазы — пищеварительного фермента, выделяемого поджелудочной железой, и раскрыта зависимость ее ферментативной функции от определенных химических группировок внутри этой белковой молекулы. Этот фермент представляет собой одну полипептидную цепочку, в состав которой входят 124 аминокислотных остатка, причем в настоящее время установлена их точная последовательность. [c.6]

    То, что вирусный капсид состоит из большого числа идентичных субъединиц, станет понятным, если мы учтем, что масса нуклеиновой кислоты у многих вирусов очень невелика цепи ДНК или РНК так коротки, что содержащейся в них информации хватает для кодирования лишь немногих полипептидных цепей, большая часть которых выполняет ферментативные функции при репродукции вируса внутри клетки-хозяина. Принцип построения капсида из множества идентичных субъединиц гарантирует максимальный эффект при минимуме генетического материала. [c. 141]

    Исключительное значение имеет производство медицинских белковых препаратов гормонов, антисывороток, анатоксинов, белков крови, кровезаменителей и иных средств, применяемых как для лечебных, так и профилактических целей. Белки играют важную роль в нормальных и патологических процессах организма исследования их свойств (в частности гемоглобина) позволили расшифровать молекулярные основы некоторых заболеваний, в связи с чем возник термин молекулярные болезни. Говоря о них, имеют в виду определенные изменения в структуре молекул функционально важных белков, которые являются причиной тех или иных нарушений в организме. Все расширяющееся изучение белковых веществ открывает пути глубокого познания процессов жизнедеятельности и их сознательного регулирования. По-видимому, наиболее важным и характерным свойством белков является их способность быть катализаторами, осуществлять ферментативные функции. [c.39]


    Примерно до 1955 г. основные усилия биохимиков были направлены на выявление различных компонентов метаболической машины клетки, и вопрос о способах интеграции бесчисленных реакций, протекающих в клетке, привлекал мало внимания. Только в последние 10—15 лет биохимия начала придавать особое значение тому обстоятельству, что последовательности биохимических реакций функционально связаны между собой и взаимно регулируются. Главный факт, который выяснился в результате этих новых исследований, состоит в том, что регуляция осуществляется с помощью целой иерархии механизмов, заложенных в генах и реализующихся синтезом соответствующих белков. Поскольку практически все клеточные реакции катализируются ферментами, регуляция метаболизма сводится к регуляции типа и интенсивности ферментативных функций. Интенсивность катализа, как теперь уже ясно, может регулироваться только двумя основными способами  [c.15]

    Иерархическая природа контроля вытекает из того простого факта, что регуляция ферментативной функции может осуществляться с помощью операций включения и выключения на любом из этих двух уровней — либо на уровне синтеза ферментов, либо на уровне их активности. Очевидно, что эти два механизма регуляции различаются по ряду свойств  [c.15]

    Следует отметить, что до сих пор внимание обращалось почти исключительно на нерастворимые или набухающие окислительновосстановительные полимеры. Между тем крайне интересным может оказаться использование водорастворимых полимеров, в которых группы, отвечающие за проявление окислительно-восстановитель-ных свойств, находятся в определенных положениях, например соединений, несущих функции ферментов или физиологически активных веществ. С пониманием все более тонких структурных особенностей полимерных молекул, с развитием синтетических методов регулирования их состава и строения появятся и возможности получения сложных, более селективно работающих синтетических высокомолекулярных веществ, способных выполнять ферментативные функции. Естественно, что такого рода редокс-полимеры найдут применение в биологии, биохимии и медицине. [c.10]

    Антибактериальное действие сульфаниламидов как раз и объясняется тем, что эти соединения, будучи по своему химическому строению близкими к п-аминобензойной кислоте, обладают способностью вступать во взаимодействие с теми же химическими группами белков бактерий, с которыми обычно реагирует п-аминобензойная кислота. Но в результате соединения сульфаниламидов с соответствующими активными группировками в молекуле бактериальных протеинов последниетеряют способность соединяться со своими обычными коферментами или простетическими группами и не могут выполнять свойственных им ферментативных функций Все это приводит к более или менее быстрой гибели микроорганизмов. [c.172]

    Накопившиеся в литературе данные показывают, что образование адаптивных ферментов у микроорганизмов может иметь различный характер. К этой категории можно отнести и усиление ферментативной функции, имевшейся до контакта со специфическим субстратом, и образование ранее не синтезировавшегося фермента, [c.87]

    В качестве моделей ферментов, как правило, используют синтетические органические молекулы, обладающие характерными особенностями ферментативных систем. Они меньше ферментов по размеру и проще по структуре. Следовательно, моделирование ферментов — это попытка воспроизвести на гораздо более простом уровне некий ключевой параметр ферментативной функции. Выявление определенного фактора, ответственного за каталитическую активность фермента в биологической системе, является трудоемкой задачей, требующей ясного представления о роли каждого компонента в катализе. Но, располагая подходящими моделями, мы можем оценить относительную важность каждого каталитического параметра в отсутствие других, не рассматриваемых в данный момент. Главное преимущество использования искусственных структур для моделирования ферментативных реакций состоит в том, что вещества можно создавать именно для изучения определенного конкретного свойства. Структура модели в дальнейшем может быть усовершенствована путем сочетания таких особенностей, которые дают наибольший вклад в катализ, и создания таких моделей, которые по своей эффективности действительно приближаются к ферментам. Таким образом, с помощью методов синтетической химии становится возможным создание миниатюрного фермента , который лишен макромоле-кулярного пептидного остова, но содержит активные химические группы, правильно ориентированные в соответствии с геометрией активного центра фермента. Этот подход называют биомимети-ческим химическим подходом к изучению биологических систем . Биомиметическая химия — это та область химии, где делается попытка имитировать такие характерные для катализируемых ферментами реакций особенности, как огромная скорость и селективность [350, 351]. Хочется надеяться, что такой подход в конце концов позволит установить связь между сложными структурами биоорганических молекул и их функциями в живом [c.263]


    Как удалось установить на некоторых белках, слияние генов имело исключительно важное значение в процессе эволюции. Такого рода документация возможна потому, что составной ген в отличие от случая У-С-гена может оказаться и в линии клеток зародыша. Подобные случаи обнаружены при исследовании путей синтеза аминокислот и синтеза жирных кислот. Классическим примером одной полипептидной цепи, выполняющей две ферментативные функции, является аспартокиназа I — гомосериновая дегидрогеназа Е. соИ [578]. Сравнительное изучение ферментов, участвующих в синтезе Тгр, выявило большое разнообразие в размещении по полипептидной цепи нескольких ферментативных центров [579], что указывает на возможнссть как слияния, так и расщепления генов. [c.228]

    Химия распозгагает мегадами синтеза пептидной связи, т. е. линейной сшивки аминокислот (см. [20]). Эти методы, не имеющие ничего общего со способом синтеза белка в живой клетке (см. ниже гл. 9), обычно применяются для получения полиаминокислот — гомополимеров аминокислот, сходных с белками. Однако если первичная структура белка известна, то осуществим его химический синтез in vitro. Так были синтезированы белковые гормоны кортикотропин и инсулин. Меррифилд автоматизировал метод синтеза и впервые получил настоящий искусственный белок, обладающий ферментативной функцией,— рибонуклеазу [21]. [c.78]

    Белки выполняют свою важнейшую — ферментативную функцию большей частью в комплексах с низкомолекулярными кофакторами и с простетическими группами. Последние связаны с белком валентными связями. Кофакторы, коферменты слабее связаны с апоферментом, т. е. с белком, и способны переходить от одной молекулы белка к другой. Это, впрочем, не всегда так, и отличие кофермента от простетической группы не вполне определенно. Фермент в целом, т. е. комплекс белковой части молекулы, именуемой ферментом, с коферментом, называется хо-лоферментом. Роль кофакторов в ряде случаев играют ионы металлов. [c.94]

    Иммобилизация может быть использована также для предотвращения спонтанной ассоциации между субъединицами олигомерных белков. Она позволяет, например, определить, является ли субъединичная форма фермента каталитически активной. Если да, то сравнение свойств фер мента со свойствами соответствующего иммобилизованного олигомера может дать ценную информацию о влиянии взаимодействий субъединиц на ферментативные функции. Примером может служить работа Чена и др. [6], иммобилизовавших мышечную альдолазу в условиях, когда присоединяется только одна из четырех субъединиц. С помощью гуанидинхлорида. молекулы фермента, связанного с нерастворимым носителем, были диссоциированы и элюированы с колонки таким образом, что на колонке остались только ковалентно связанные развернутые субъединицы. Удаление диссоциирующего реагента приводило к свертыванию в нативную конформацию иммобилизованных субъединиц. При использовании мягких диссоциирующих реагентов было показано, что иммобилизованный мономер обладает той же активностью, что и тетрамер. [c.438]

    Средство Ралли для мытья сильно загрязненных рук, разработанное на основе анионоактивных ПАВ, не оказывает раздражающего и сенсибилизирующего влияния на кожу животных и человека. Средство КОМС-5 аналогичного назначения, содержащее кремнийорганический пенорегулятор КЭП-1 и полиэтилсилоксановую жидкость ПЭС-4, не вызывает раздражений кожи, но, всасываясь в организм животных, вызывает их гибель. При этом резко изменяется активность каталазы и траисаминазы, что является признаком нарушения ферментативной функции печени. Применение средства в представленной рецептуре нами не рекомендовано. [c.143]

    Б. с четвертичной структурой привлекают внимание потому, что именно наличие четвертичной структуры обусловливает ряд важных свойств Б., необходимых для выполнения важных биологич. функций. Так, четвертичная структура определяет функции опорных (структурных) белков, напр, коллагена, ферментативную функцию ряда ферментов, иммунные свойства антител (у-глобулинов) и т. д. При нарушении четвертичной структуры утрачиваются соответствующие свойства этих Б. Еще большее общебиологич. значение имеет участие Б. с четвертичной структурой в регуляторных системах живых организмов. Особого внимания в этом отношении заслуживает аллостерич. регуляция. [c.123]

    Повторное и хроническое отравление. Животные. ПК р = = 0,8 мг/м (по показателю СПП) и 0,4 мг/м (по изменению содержания ионов Na+ в эритроцитах). При воздействиях 2, 10, 50, 100, 250 мг/м на крыс в течение от 6 ч до 77 сут установлено влияние на функциональное состояние ЦНС, белковообразующую и ферментативную функции печени, ионный обмен. Кривые зависимости концентрация / время воздействия носили гиперболический характер (Семенова, Копанев). В опытах на лабораторных животных, вдыхавших 25—65 мг/м 2—3 раза в неделю в течение [c.478]

    Вовсе не очевидно, что в будущем при исследовании дифракции кристаллических белков удастся достигнуть значительного улучшения разрешения структуры. Кристаллы белков отличаются от кристаллов малых молекул высоким содержанием растворителя (>40%) в элементарной ячейке [63, 64]. Следовательно, белковые молекулы в кристаллическом состоянии не подвержены силам меж-молекулярного взаимодействия, сравнимым с силами решетки, удерживающими малые молекулы в гораздо более жестком состоянии. В связи с этим результаты рентгеноструктурного анализа белков часто основываются на участках карты электронной плотности с плохим качеством изображения. Классическим примером этого явления служит подвижность концевых областей а и Р субъединиц метгемоглобина лошади [16]. Высокие концентрации соли, используемые при кристаллизации, препятствуют образованию стабилизирующих полярных контактов между этими областями. Кроме того, нельзя не принимать в расчет роль гибкости полипептидной цепи белка, которая может оказаться существенной для ферментативной функции. Подобные факторы, относящиеся к описанию упорядоченной структуры растворителя и взамодействию молекул растворителя с белковыми остатками, препятствуют получению данных, необходимых для точного описания структуры молекулы. Очевидно, что к областям полипептидной цепи белковых молекул, которые на карте Фурье плохо различимы, методы уточнения не применимы. [c.22]

    В состав люминесцентной системы бактерий входит Л. — флавинмононуклеотид (ФМН), высокомолекулярный жирный альдегид с числом атомов углерода от С, до С , напр, пальмитиновый, и восстановленный дифосфопиридиннуклеотид (ДПН-Н). Кристаллич. Л., выделенная из бактерии А с h-roraoba ter fis her i, представляет собой флавопротеид с ФМН в качестве простетич. группы, ее мол. в. 85 ООО, оптимум действия при pH 6,7. Активность фермента подавляется п-хлормеркурибенаоатом, что свидетельствует о существенной роли SH-группы в осуществлении ферментативных функций. [c.500]

    Хроническое отравление. При дозах 0,25 мг/кг и выше нарушение условно-рефлекторной деятельности, гликогенообразующей и ферментативной функций печени. Уровень гистамина в кровн и гомогенате печени у подопытных животных значительно ниже, чем в контроле. Доза 0,025 мг/кг оказалась подпороговой [3, с. 224]. [c.224]

    Скорость образования некоторых структур высшего порядка, по-видимому, строго регулируется. В то время как вторичная структура определяется в основном, если не исключительно, последовательностью аминокислот в самой цепи, третичная и четвертичная структуры, по крайней мере отчасти, находятся под контролем других молекул. Например, агрегация субъединиц в активный голофермент (образование четвертичной струк-» туры) может зависеть от их фосфорилирования, катализируе-мого другим ферментом, а этот процесс может в свою очередь регулироваться гормонами. На равновесие между неактивными субъединицами и активным олигомером часто влияют субстраты и кофакторы данной реакции. Таким образом, эпигенетический, контроль ферментативных функций на уровне образования тре- х ичной и четвертичной структур может играть существенную роль в метаболической регуляции. [c.17]

    Первая важнейшая функция белков — каталитическая. Белки-ферменты осуществляют в живой природе все химические реакции обмена веществ, распада одних соединений и синтеза других. Ферментативной функцией обладают как многие белки сложного организма, так и почтп все белки отдельной, например микробной, клетки. Свойство быть катализаторами (ферментами) присуще отдельным макромолекулам белков и давно изучалось биохимией на выделенных из организма и очищенных белковых растворах. [c.4]

    Проницаемость в живых клетках представляет собой активный процесс и имеет мало общего с молекулярной диффузией или осмотическим потоком. Наоборот, активный транспорт осуществляется чаще всего против градиента концентрации, т. е. в направлении от мепьшей концентрации к большей. Ясно, что это — сложное явление, в котором обязательно должна потребляться энергия, так как движение веществ в направлении, обратном диффузии, связано с уменьшением энтропии. Активный перенос веществ как внутрь клетки из внешней среды, так и внутрь различных структурных элементов из заполяющей клетку гиалоплазмы осуществляется особыми нерастворимыми белками и белковыми комплексами, образующими наружную клеточную мембрану и различные структурные образования внутри клеток. Активный транспорт через мембраны и внутрь клеточных органелл связан с протеканием химических реакций, конечно, ферментативных. Поэтому проблема проницаемости и соответствующая функция белков тесно связана с их ферментативной функцией. С другой стороны, с помощью активного транспорта осуществляется один из механизмов автоматического регулирования. Как мы увидим дальше, регулирование проницаемости митохондрий осуществляется путем их сокращения пли расслабления. Причиной этого движения яляется сократительная реакция в особом белке, т. е. это явление вполне аналогично сокращению мышцы. [c.139]

    Наибольшей адсорбционной поверхностью (120 м /г) и ферментативной активностью (100 относительных единиц) отличался активный ил двухступенчатого аэротенка (тип В). Астеничный ил имел сравнительно низкую адсорбционную поверхность (60 м ) и ферментативнзгю активность (80 относительных единиц). Установлена прямая зависимость между биогенностью активного ила и го адсорбционной и ферментативной функцией. Лучшего качества активный ил имел и наибольшую плотность микробного населения — 1 10 млн. клеток на 1 г. Поэтому илы, образованные смесью куль- [c.118]

    Сульфатированный инсулин не теряет своей активности [61. Наоборот, трипсин [71 теряет свои ферментативные функции после обработки серной кислотой. Авторы полагают, что гидроксильная группа алифатических ок-сиаминокислот является местом связи трипсина с субстратом. [c.327]

    Ферменты представляют собой вещества или чисто белковой структуры, или протеиды — белки, связанные с небелковой простетической группой. Число уже известных ферментов очень велико. Считают, что одна клетка бактерии использует до 1000 разных ферментов. Однако лишь для немногих установлено строение. Примерами чисто белковых ферментов могут служить протеолитические ферменты пищеварения, такие, как пепсин и трипсин. Известны случаи, когда один и тот же белок несет в организме и структурную и ферментативную функцию. Примером служит белок мышц миозин, каталитически разлагающий аденозинтрифосфат— реакция, в данном случае дающая энергию сокращения мышцы (В. А. Энгельгардт, М. Н. Любимова). [c.698]

    Нарушение ферментативной функции печени выразилось в повышении содержания фруктозо-1, 6-фосфат альдолазы (5Р-1,6РА) и глютаминат-оксалатной трансаминазы (ЗООТ) в сыворотке крови интоксицирован-ных животных, что свидетельствует о наличии повреждений паренхимы печени (табл. 6). [c.278]

    Первые наблюдения над образованием адаптивных ферментов относятся к 1882 г., когда Уортман (Wortmann, 1882) обнаружил, что нри добавлении в питательную среду крахмала бактерии, обычно не синтезирующие амилазу, приобретают способность гидролизовать крахмал. Автор считал, что причиной подобного образования фермента является раздражающее влияние субстрата, причем оставалось неясным, появляется ли у бактерий новая ферментативная функция или усиливаются свойства, имевшиеся у этого организма ранее. В 1922 г. Ваксман (Waksman, 1922) в своей сводке о ферментах микроорганизмов отмечал влияние состава среды на образование ферментов. [c.86]


Белки, свойства белков

Белки — высокомолекулярные соединения, построенные из аминокислот и являются одними из наиболее сложных по строению и составу среди всех органических соединений.

Биологическая роль белков исключительно велика: они составляют основную массу протоплазмы и ядер живых клеток. Белковые вещества находятся во всех растительных и животных организмах. О запасе белков в природе можно судить по общему количеству живого вещества на нашей планете: масса белков составляет примерно 0,01% от массы земной коры, то есть 1016 тонн.

Молекулы белка

Белки по по своему элементному составу отличаются от углеводов и жиров: кроме углерода, водорода и кислорода они ещё содержат азот. Кроме того, Постоянной составной частью важнейших белковых соединений является сера, а некоторые белки содержат фосфор, железо и йод.

Свойства белков

1. Разная растворимость в воде. Растворимые белки образуют коллоидные растворы.

2. Гидролиз — под действием растворов минеральных кислот или ферментов происходит разрушение первичной структуры белка и образование смеси аминокислот.

3. Денатурация — частичное или полное разрушения пространственной структуры, присущей данной белковой молекуле. Денатурация происходит под действием:

  • — высокой температуры
  • — растворов кислот, щелочей и концентрированных растворов солей
  • — растворов солей тяжёлых металлов
  • — некоторых органических веществ (формальдегида, фенола)
  • — радиоактивного излучения

Строение белков

Строение белков начали изучать в 19 веке. В 1888г. русский биохимик А.Я.Данилевский высказал гипотезу о наличии в белках амидной связи. Эта мысль в дальнейшем была развита немецким химиком Э.Фишером и в его работах нашла экспериментальное подтверждение. Он предложил полипептидную теорию строения белка. Согласно этой теории молекула белка состоит из одной длинной цепи или нескольких полипептидных цепей, связанных друг с другом. Такие цепи могут быть различной длины.

Фишером проведена большая экспериментальная работа с полипептидами. Высшие полипептиды, содержащие 15-18 аминокислот, осаждаются из растворов сульфатом аммония (аммиачными квасцами), то есть проявляют свойства, характерные для белков. Было показано, что полипептиды расщепляются теми же ферментами, что и белки, а будучи введёнными в организм животного, подвергаются тем же превращениям, как и белки, а весь их азот выделяется нормально в виде мочевины (карбамида).

Исследования, проведённые в 20 веке, показали, что существует несколько уровней организации белковой молекулы.

Белок тирозин

В организме человека тысячи различных белков и практически все они построены из стандартного набора 20 аминокислот. Последовательность аминокислотных остатков в молекуле белка называют первичной структурой белка. Свойства белков и их биологические функции определяются последовательностью аминокислот. Работы по выяснению первичной структуры белка впервые были выполнены в Кембриджском университете на примере одного из простейших белков — инсулина. В течение посте 10 лет английский биохимик Ф.Сенгер проводил анализ инсулина. В результате анализа выяснено, что молекула инсулина состоит из двух полипептидных цепей и содержит 51 аминокислотный остаток. Он установил, что инсулин имеет молярную массу 5687 г/моль, а его химический состав отвечает формуле C254H337N65O75S6. Анализ проводился вручную с использованием ферментов, которые избирательно гидролизуют пептидные связи между определёнными аминокислотными остатками.

В настоящее время большая часть работы по определению первичной структуры белков автоматизирована. Так была установлена первичная структура фермента лизоцима.
Тип «укладки» полипептидной цепочки называют вторичной структурой. У большинства белков полипептидная цепь свёртывается в спираль, напоминающую «растянутую пружину» (называют «А-спираль» или «А-стуктура»). Еще один распространённый тип вторичной структуры — структура складчатого листа (называют «B — структура»). Так, белок шёлкафиброин имеет именно такую структуру. Он состоит из ряда полипептидных цепей, которые располагаются параллельно друг-другу и соединяются посредством водородных связей, большое число которых делает шёлк очень гибким и прочным на разрыв. При всём этом практически не существует белков, молекулы которых на 100% имеют «А-структуру» или «B — структуру».

Белок фиброин — белок натурального шёлка

Пространственное положение полипептидной цепи называют третичной структурой белкой. Большинство белков относят к глобулярным, потому что их молекулы свёрнуты в глобулы. Такую форму белок поддерживает благодаря связям между разнорзаряженными ионами (-COO и -NH3+ и дисульфидных мостиков. Кроме того, молекула белка свёрнута так, что гидрофобные углеводородные цепи оказываются внутри глобулы, а гидрофильные — снаружи.

Способ объединения нескольких молекул белка в одну макромолекулу называют четвертичной стуктурой белка. Ярким примером такого белка может быть гемоглобин. Было установлено, что, например, для взрослого человека молекула гемоглобина состоит из 4-х отдельных полипептидных цепей и небелковой части — гема.

Свойства белков объясняет их различное строение. Большинство белков аморфно, в спирте, эфире и хлороформе нерастворимо. В воде некоторые белки могут растворяться с образованием коллоидного раствора. Многие белки растворимы в растворах щелочей, некоторые — в растворах солей, а некоторые — в разбавленном спирте. Кристаллическое состояние белов встречается редко: примером могут быть алейроновые зёрна, встречающиеся в клещевине, тыкве, конопле. Кристаллизуется также альбумин куриного яйца и гемоглобин в крови.

Гидролиз белков

При кипячении с кислотами или щелочами, а также под действием ферментов белки распадаются на более простые химические соединения, образуя в конце цепочки превращения смесь A-аминокислот. Такое расщепление называется гидролизом белка. Гидролиз белка имеет большое биологическое значение: попадая в желудок и кишечник животного или человека, белок расщепляется под действием ферментов на аминокислоты. Образовавшиеся аминокислоты в дальнейшем под влиянием ферментов снова образуют белки, но уже характерные для данного организма!

В продуктах гидролиза белков кроме аминокислот были найдены углеводы, фосфорная кислота, пуриновые основания. Под влиянием некоторых факторов например, нагревания,растворов солей, кислот и щелочей, действия радиации, встряхивания, может нарушиться пространственная структура, присущая данной белковой молекуле. Денатурация может носить обратимый или необратимый характер, но в любом случае аминокислотная последовательность, то есть первичная структура, остаётся неизменной. В результате денатурации белок перестаёт выполнять присущие ему биологические функции.

Для белков известны некоторые цветные реакции, характерные для их обнаружения. При нагревании мочевины образуется биурет, который с раствором сульфата меди в присутствии щелочи даёт фиолетовое окрашивание или качественная реакция на белок, которую можно провести дома). Биуретовую реакцию даёт вещества, содержащие амидную группу, а в молекуле белка эта группа присутствует. Ксантопротеиновая реакция заключается в том, что белок от концентрированной азотной кислоты окрашивается в жёлтый цвет. Эта реакция указывает на наличие в белке бензольной группы, которая имеется в таких аминокислотах, как фениланин и тирозин.

При кипячении с водным раствором нитрата ртути и азотистой кислоты, белок даёт красное окрашивание. Эта реакция указывает на наличие в белке тирозина. При отсутствии тирозина красного окрашивания не появляется.

3.4 Белки — Биология для курсов AP®

Цели обучения

В этом разделе вы исследуете следующие вопросы:

  • Каковы функции белков в клетках и тканях?
  • Какая связь между аминокислотами и белками?
  • Каковы четыре уровня белковой организации?
  • Какая связь между формой и функцией белка?

Соединение для AP

® Курсы

Белки представляют собой длинные цепи различных последовательностей из 20 аминокислот, каждая из которых содержит аминогруппу (-NH 2 ), карбоксильную группу (-COOH) и вариабельную группу.(Подумайте, сколько белковых «слов» можно составить из 20 «букв» аминокислот). Каждая аминокислота связана со своим соседом пептидной связью, образованной в результате реакции дегидратации. Длинная цепь аминокислот известна как полипептид. Белки выполняют в клетках множество функций. Они действуют как ферменты, которые катализируют химические реакции, обеспечивают структурную поддержку, регулируют прохождение веществ через клеточную мембрану, защищают от болезней и координируют сигнальные пути клетки. Структура белка организована на четырех уровнях: первичном, вторичном, третичном и четвертичном.Первичная структура — это уникальная последовательность аминокислот. Изменение только одной аминокислоты может изменить структуру и функцию белка. Например, серповидноклеточная анемия возникает в результате замены одной аминокислоты в молекуле гемоглобина, состоящей из 574 аминокислот. Вторичная структура состоит из локального сворачивания полипептида за счет образования водородной связи; приводящие к конформации α-спирали и β-складчатого листа. В третичной структуре различные взаимодействия, например водородные связи, ионные связи, дисульфидные связи и гидрофобные взаимодействия между группами R, способствуют укладке полипептида в различные трехмерные конфигурации.Большинство ферментов имеют третичную конфигурацию. Если белок денатурируется, теряет свою трехмерную форму, он может больше не функционировать. Условия окружающей среды, такие как температура и pH, могут денатурировать белки. Некоторые белки, такие как гемоглобин, образованы из нескольких полипептидов, и взаимодействия этих субъединиц образуют четвертичную структуру белков.

Представленная информация и примеры, выделенные в разделе, вспомогательные концепции и цели обучения, изложенные в Большой идее 4 Структуры учебной программы по биологии AP ® .Цели обучения, перечисленные в структуре учебной программы, обеспечивают прозрачную основу для курса биологии AP ® , лабораторного опыта на основе запросов, учебных мероприятий и экзаменационных вопросов AP ® . Цель обучения объединяет требуемый контент с одной или несколькими из семи научных практик.

Большая идея 4 Биологические системы взаимодействуют, и эти системы и их взаимодействия обладают сложными свойствами.
Постоянное понимание 4.A Взаимодействия внутри биологических систем приводят к появлению сложных свойств.
Основные знания 4.A.1 Подкомпоненты биологических молекул и их последовательность определяют свойства этой молекулы.
Научная практика 7,1 Учащийся может связывать явления и модели в пространственных и временных масштабах.
Цель обучения 4,1 Учащийся может объяснить связь между последовательностью и подкомпонентами биологического полимера и его свойствами.
Основные знания 4.A.1 Подкомпоненты биологических молекул и их последовательность определяют свойства этой молекулы.
Научная практика 1.3 Студент может уточнить представления и модели природных или антропогенных явлений и систем в предметной области.
Цель обучения 4,2 Учащийся может уточнить представления и модели, чтобы объяснить, как подкомпоненты биологического полимера и их последовательность определяют свойства этого полимера.
Основные знания 4.A.1 Подкомпоненты биологических молекул и их последовательность определяют свойства этой молекулы.
Научная практика 6,1 Студент может обосновать свои претензии доказательствами.
Научная практика 6,4 Студент может делать утверждения и предсказания о природных явлениях на основе научных теорий и моделей.
Цель обучения 4,3 Учащийся может использовать модели для прогнозирования и обоснования того, что изменения в подкомпонентах биологического полимера влияют на функциональность молекул.

Поддержка учителей

Двадцать аминокислот могут быть преобразованы в практически неограниченное количество различных белков. Последовательность аминокислот в конечном итоге определяет окончательную конфигурацию белковой цепи, придавая молекуле ее специфическую функцию.

Поддержка учителей

Подчеркните, что белки выполняют в организме множество функций. Таблица 3.1 содержит несколько примеров этих функций. Обратите внимание, что не все ферменты работают в одинаковых условиях.Амилаза работает только в щелочной среде, такой как слюна, в то время как пепсин действует в кислой среде желудка. Обсудите другие материалы, которые могут переноситься белками в жидкостях организма в дополнение к веществам, перечисленным в тексте для транспортировки. Белки также переносят нерастворимые липиды в организме и заряженные ионы, такие как кальций, магний и цинк. Обсудите еще один важный структурный белок, коллаген, который содержится во всем теле, в том числе в большинстве соединительных тканей. Подчеркните, что не все гормоны являются белками и что гормоны на основе стероидов обсуждались в предыдущем разделе.

Аминогруппа аминокислоты теряет электрон и становится положительно заряженной. Карбоксильная группа легко получает электрон, становясь отрицательно заряженным. Это приводит к амфипатическим характеристикам аминокислот и придает соединениям растворимость в воде. Присутствие обеих функциональных групп также позволяет дегидратационному синтезу объединять отдельные аминокислоты в пептидную цепь.

Структура белка объясняется так, как будто она состоит из трех-четырех дискретных этапов.В действительности структурные изменения, в результате которых образуется функциональный белок, происходят непрерывно. Поскольку первичная структура формируется из рибосом, полипептидная цепь претерпевает изменения, пока не будет достигнута окончательная конфигурация. Предложите учащимся представить себе нитку спагетти, готовящуюся в прозрачной посуде. Изначально прядь прямая (в этом примере не обращайте внимания на жесткость). Во время приготовления нить будет изгибаться, скручиваться и (опять же, в этом примере) складываться в неплотный шар, состоящий из нити макаронных изделий.Полученная прядь имеет особую форму. Спросите студентов, какие типы химических связей или сил могут влиять на структуру белка. Эти формы продиктованы положением аминокислот вдоль нити. Другие силы завершат складывание и поддержат конструкцию.

Проблемные вопросы по научной практике содержат дополнительные тестовые вопросы для этого раздела, которые помогут вам подготовиться к экзамену AP. Эти вопросы касаются следующих стандартов:
[APLO 1.14] [APLO 2.12] [APLO 4.1] [APLO 4.3] [APLO 4.15] [APLO 4.22]

Типы и функции белков

Белки являются одними из наиболее распространенных органических молекул в живых системах и обладают самым разнообразным набором функций среди всех макромолекул. Белки могут быть структурными, регуляторными, сократительными или защитными; они могут служить для транспортировки, хранения или перепонки; или они могут быть токсинами или ферментами. Каждая клетка живой системы может содержать тысячи белков, каждый из которых выполняет уникальную функцию. Их структуры, как и их функции, сильно различаются.Однако все они представляют собой полимеры аминокислот, расположенных в линейной последовательности.

Ферменты, которые вырабатываются живыми клетками, являются катализаторами биохимических реакций (например, пищеварения) и обычно представляют собой сложные или конъюгированные белки. Каждый фермент специфичен для субстрата (реагента, который связывается с ферментом), на который он действует. Фермент может помочь в реакциях разложения, перегруппировки или синтеза. Ферменты, которые расщепляют свои субстраты, называются катаболическими ферментами, ферменты, которые строят более сложные молекулы из своих субстратов, называются анаболическими ферментами, а ферменты, влияющие на скорость реакции, называются каталитическими ферментами.Следует отметить, что все ферменты увеличивают скорость реакции и, следовательно, считаются органическими катализаторами. Примером фермента является амилаза слюны, которая гидролизует свою субстратную амилозу, компонент крахмала.

Гормоны — это химические сигнальные молекулы, обычно небольшие белки или стероиды, секретируемые эндокринными клетками, которые контролируют или регулируют определенные физиологические процессы, включая рост, развитие, метаболизм и размножение. Например, инсулин — это белковый гормон, который помогает регулировать уровень глюкозы в крови.Основные типы и функции белков перечислены в таблице 3.1.

Типы и функции белков

Тип Примеры Функции
Пищеварительные ферменты Амилаза, липаза, пепсин, трипсин Помощь в переваривании пищи путем катаболизма питательных веществ до мономерных единиц
Транспорт Гемоглобин, альбумин Переносит вещества в крови или лимфе на протяжении всего организма. тело
Структурная Актин, тубулин, кератин Создание различных структур, таких как цитоскелет
Гормоны Инсулин, тироксин Координация активности различных систем организма
Защита Иммуноглобулины Защитить организм от чужеродных патогенов
Сократимость Актин, миозин Эффект сокращения мышц
Хранение Запасные белки бобовых, яичный белок (альбумин) Обеспечить питание в раннем развитии эмбриона и саженец 9 0042

Таблица 3.1

Белки имеют разную форму и молекулярную массу; некоторые белки имеют глобулярную форму, тогда как другие имеют волокнистую природу. Например, гемоглобин — это глобулярный белок, а коллаген, обнаруженный в нашей коже, — это волокнистый белок. Форма белка имеет решающее значение для его функции, и эта форма поддерживается многими различными типами химических связей. Изменения температуры, pH и воздействие химикатов могут привести к необратимым изменениям формы белка, что приведет к потере функции, известной как денатурация.Все белки состоят из 20 наиболее распространенных типов аминокислот.

Аминокислоты

Аминокислоты — это мономеры, из которых состоят белки. Каждая аминокислота имеет одинаковую фундаментальную структуру, которая состоит из центрального атома углерода, также известного как альфа ( α ) углерода, связанного с аминогруппой (NH 2 ), карбоксильной группой (COOH) и атом водорода. У каждой аминокислоты также есть другой атом или группа атомов, связанных с центральным атомом, известная как группа R (Рисунок 3.24).

Рис. 3.24. Аминокислоты имеют центральный асимметричный атом углерода, к которому присоединены аминогруппа, карбоксильная группа, атом водорода и боковая цепь (R-группа).

Название «аминокислоты» происходит от того факта, что они содержат как аминогруппу, так и карбоксильно-кислотную группу в своей основной структуре. Как уже упоминалось, в белках присутствует 20 общих аминокислот. Девять из них считаются незаменимыми аминокислотами у человека, потому что человеческий организм не может их производить, и они получают с пищей.Для каждой аминокислоты группа R (или боковая цепь) отличается (рис. 3.25).

Визуальное соединение

Рис. 3.25. Обычно в белках содержится 20 общих аминокислот, каждая из которых имеет свою группу R (группа вариантов), которая определяет его химическую природу.

Какие категории аминокислот вы ожидаете найти на поверхности растворимого белка, а какие — внутри?

  1. Полярные и заряженные аминокислоты будут находиться на поверхности.Неполярные аминокислоты можно найти в интерьере.
  2. Полярные и заряженные аминокислоты будут найдены в интерьере. Неполярные аминокислоты будут обнаружены на поверхности.
  3. Неполярные и незаряженные белки можно найти как на поверхности, так и внутри.

Химическая природа боковой цепи определяет природу аминокислоты (то есть, является ли она кислотной, основной, полярной или неполярной). Например, аминокислота глицин имеет атом водорода в качестве группы R.Аминокислоты, такие как валин, метионин и аланин, неполярны или гидрофобны по природе, тогда как аминокислоты, такие как серин, треонин и цистеин, полярны и имеют гидрофильные боковые цепи. Боковые цепи лизина и аргинина заряжены положительно, поэтому эти аминокислоты также известны как основные аминокислоты. Пролин имеет группу R, которая связана с аминогруппой, образуя кольцеобразную структуру. Пролин является исключением из стандартной структуры анимокислоты, поскольку его аминогруппа не отделена от боковой цепи (Рисунок 3.25).

Аминокислоты обозначаются одной заглавной буквой или трехбуквенным сокращением. Например, валин обозначается буквой V или трехбуквенным символом val. Так же, как некоторые жирные кислоты необходимы для диеты, некоторые аминокислоты также необходимы. Они известны как незаменимые аминокислоты, а у людей они включают изолейцин, лейцин и цистеин. Незаменимые аминокислоты относятся к тем, которые необходимы для построения белков в организме, но не производятся организмом; Какие аминокислоты являются незаменимыми, варьируется от организма к организму.

Последовательность и количество аминокислот в конечном итоге определяют форму, размер и функцию белка. Каждая аминокислота присоединена к другой аминокислоте ковалентной связью, известной как пептидная связь, которая образуется в результате реакции дегидратации. Карбоксильная группа одной аминокислоты и аминогруппа входящей аминокислоты объединяются, высвобождая молекулу воды. Полученная связь является пептидной связью (рис. 3.26).

Рис. 3.26. Образование пептидной связи — это реакция синтеза дегидратации.Карбоксильная группа одной аминокислоты связана с аминогруппой входящей аминокислоты. При этом выделяется молекула воды.

Продукты, образованные такими связями, называются пептидами. Чем больше аминокислот присоединяется к этой растущей цепи, полученная цепь известна как полипептид. Каждый полипептид имеет свободную аминогруппу на одном конце. Этот конец называется N-концом или амино-концом, а другой конец имеет свободную карбоксильную группу, также известную как C или карбоксильный конец.Хотя термины полипептид и белок иногда используются взаимозаменяемо, полипептид технически представляет собой полимер аминокислот, тогда как термин белок используется для полипептида или полипептидов, которые объединились вместе, часто имеют связанные непептидные простетические группы, имеют различную форму. , и имеют уникальную функцию. После синтеза (трансляции) белков большинство белков модифицируются. Они известны как посттрансляционные модификации. Они могут подвергаться расщеплению или фосфорилированию или могут потребовать добавления других химических групп.Только после этих модификаций белок становится полностью функциональным.

Ссылка на обучение

Просмотрите этапы синтеза белка в этом интерактивном руководстве.

Почему процесс синтеза белка так важен для жизни?

  1. Белок — предпочтительный источник энергии для организма для быстрого производства энергии.
  2. Белок хранится в печени и мышцах, обеспечивая энергию для использования в будущем.
  3. Белок необходим для образования тканей и состоит из гормонов и ферментов.
  4. Белки необходимы для усвоения всех жирорастворимых витаминов.

Evolution Connection

Цитохром c является важным компонентом цепи переноса электронов, частью клеточного дыхания, и обычно он находится в клеточной органелле, митохондрии. Этот белок имеет простетическую группу гема, а центральный ион гема попеременно восстанавливается и окисляется во время переноса электрона. Поскольку роль этого важного белка в производстве клеточной энергии имеет решающее значение, за миллионы лет он очень мало изменился.Секвенирование белков показало, что существует значительная степень гомологии аминокислотной последовательности цитохрома с среди различных видов; другими словами, эволюционное родство можно оценить путем измерения сходства или различий между последовательностями ДНК или белков различных видов.

Ученые определили, что цитохром с человека содержит 104 аминокислоты. Для каждой молекулы цитохрома с из разных организмов, которая была секвенирована на сегодняшний день, 37 из этих аминокислот появляются в одном и том же положении во всех образцах цитохрома с.Это указывает на то, что, возможно, был общий предок. При сравнении последовательностей белков человека и шимпанзе различий в последовательностях не обнаружено. Когда сравнивали последовательности человека и макаки-резуса, единственное обнаруженное различие заключалось в одной аминокислоте. В другом сравнении секвенирование человека и дрожжей показывает разницу в 44-м положении.

Белковая последовательность цитохрома с шимпанзе и человека идентична. Последовательность белка цитохрома с макак-резусов отличается от последовательности человека на одну аминокислоту.Что предлагают эти сравнения?

  1. Обезьяны-резусы более близки к людям, чем шимпанзе.
  2. Шимпанзе более тесно связаны с макаками-резусами, чем с людьми.
  3. Люди родственны шимпанзе, но не связаны с макаками-резусами.
  4. Шимпанзе более тесно связаны с людьми, чем макаки-резусы.

Структура белка

Как обсуждалось ранее, форма белка имеет решающее значение для его функции.Например, фермент может связываться со специфическим субстратом в сайте, известном как активный сайт. Если этот активный центр изменяется из-за локальных изменений или изменений в общей структуре белка, фермент может быть неспособен связываться с субстратом. Чтобы понять, как белок приобретает свою окончательную форму или конформацию, нам необходимо понять четыре уровня структуры белка: первичный, вторичный, третичный и четвертичный.

Первичная структура

Уникальная последовательность аминокислот в полипептидной цепи — это ее первичная структура.Например, гормон поджелудочной железы инсулин имеет две полипептидные цепи, А и В, и они связаны между собой дисульфидными связями. N-концевой аминокислотой A-цепи является глицин, а C-концевой аминокислотой — аспарагин (рис. 3.27). Последовательности аминокислот в цепях A и B уникальны для инсулина.

Рис. 3.27. Инсулин бычьей сыворотки — это белковый гормон, состоящий из двух пептидных цепей: A (длиной 21 аминокислота) и B (длиной 30 аминокислот). В каждой цепи первичная структура обозначена трехбуквенными сокращениями, которые представляют названия аминокислот в порядке их присутствия.Аминокислота цистеин (cys) имеет сульфгидрильную (SH) группу в качестве боковой цепи. Две сульфгидрильные группы могут реагировать в присутствии кислорода с образованием дисульфидной (S-S) связи. Две дисульфидные связи соединяют цепи A и B вместе, а третья помогает цепи A свернуться в правильную форму. Обратите внимание, что все дисульфидные связи имеют одинаковую длину, но для ясности показаны разные размеры.

Уникальная последовательность каждого белка в конечном итоге определяется геном, кодирующим этот белок. Изменение нуклеотидной последовательности кодирующей области гена может привести к добавлению другой аминокислоты к растущей полипептидной цепи, вызывая изменение структуры и функции белка.При серповидно-клеточной анемии цепь гемоглобина β (небольшая часть которой показана на рис. 3.28) имеет единственную аминокислотную замену, вызывающую изменение структуры и функции белка. В частности, аминокислота глутаминовая кислота заменена валином в цепи β . Примечательно, что молекула гемоглобина состоит из двух альфа-цепей и двух бета-цепей, каждая из которых состоит примерно из 150 аминокислот. Таким образом, молекула содержит около 600 аминокислот.Структурное различие между нормальной молекулой гемоглобина и молекулой серповидноклеточных клеток — что резко снижает продолжительность жизни — состоит в одной из 600 аминокислот. Что еще более примечательно, так это то, что эти 600 аминокислот кодируются тремя нуклеотидами каждая, а мутация вызвано одним изменением основания (точечной мутацией), 1 из 1800 оснований.

Рис. 3.28. Бета-цепь гемоглобина имеет длину 147 остатков, однако единственная аминокислотная замена приводит к серповидно-клеточной анемии.В нормальном гемоглобине аминокислота в седьмом положении — глутамат. В серповидно-клеточном гемоглобине этот глутамат заменен валином.

Из-за этого изменения одной аминокислоты в цепи молекулы гемоглобина образуют длинные волокна, которые искажают двояковогнутые или дискообразные эритроциты и заставляют их принимать серповидную или серповидную форму, что закупоривает кровеносные сосуды ( Рисунок 3.29). Это может привести к множеству серьезных проблем со здоровьем, таких как одышка, головокружение, головные боли и боли в животе у людей, страдающих этим заболеванием.

Рис. 3.29. В этом мазке крови, визуализированном при 535-кратном увеличении с использованием светлопольной микроскопии, серповидные клетки имеют форму полумесяца, тогда как нормальные клетки имеют форму диска. (кредит: модификация работы Эда Усмана; данные шкалы от Мэтта Рассела)

Вторичная структура

Локальное сворачивание полипептида в некоторых областях приводит к вторичной структуре белка. Наиболее распространенными являются α -спиральная и β -гофрированная листовые структуры (Рисунок 3.30). Обе структуры удерживаются вместе водородными связями. В структуре α -спираль водородные связи образуются между атомом кислорода в карбонильной группе в одной аминокислоте и другой аминокислотой, которая находится на четыре аминокислоты дальше по цепи.

Рис. 3.30. Спираль α и складчатый лист β являются вторичными структурами белков, которые образуются из-за водородных связей между карбонильными и аминогруппами в основе пептида. Некоторые аминокислоты имеют склонность образовывать α -спираль, в то время как другие имеют склонность образовывать складчатый лист β .

Каждый виток в альфа-спирали содержит 3,6 аминокислотных остатка. Группы R (вариантные группы) полипептида выступают из α -спиральной цепи. В листе с складками β «складки» образованы водородными связями между атомами в основной цепи полипептидной цепи. Группы R прикреплены к атомам углерода и проходят выше и ниже складок складки. Гофрированные сегменты выстраиваются параллельно или антипараллельно друг другу, а водородные связи образуются между частично положительным атомом водорода в аминогруппе и частично отрицательным атомом кислорода в карбонильной группе основной цепи пептида.Спиральные структуры α и складчатые листы β обнаружены в большинстве глобулярных и волокнистых белков, и они играют важную структурную роль.

Третичная структура

Уникальная трехмерная структура полипептида — это его третичная структура (рис. 3.31). Эта структура частично обусловлена ​​химическими взаимодействиями в полипептидной цепи. В первую очередь, взаимодействия между группами R создают сложную трехмерную третичную структуру белка.Природа групп R, присутствующих в задействованных аминокислотах, может противодействовать образованию водородных связей, описанных для стандартных вторичных структур. Например, группы R с одинаковыми зарядами отталкиваются друг от друга, а группы с разными зарядами притягиваются друг к другу (ионные связи). Когда происходит сворачивание белка, гидрофобные группы R неполярных аминокислот лежат внутри белка, тогда как гидрофильные группы R лежат снаружи. Первые типы взаимодействий также известны как гидрофобные взаимодействия.Взаимодействие между боковыми цепями цистеина образует дисульфидные связи в присутствии кислорода, единственную ковалентную связь, образующуюся во время сворачивания белка.

Рис. 3.31. Третичная структура белков определяется множеством химических взаимодействий. К ним относятся гидрофобные взаимодействия, ионные связи, водородные связи и дисульфидные связи.

Все эти взаимодействия, сильные и слабые, определяют окончательную трехмерную форму белка. Когда белок теряет свою трехмерную форму, он может больше не функционировать.

Четвертичная структура

В природе некоторые белки образованы из нескольких полипептидов, также известных как субъединицы, и взаимодействие этих субъединиц образует четвертичную структуру. Слабые взаимодействия между субъединицами помогают стабилизировать общую структуру. Например, инсулин (глобулярный белок) имеет комбинацию водородных и дисульфидных связей, из-за которых он в основном собирается в шар. Инсулин начинается как отдельный полипептид и теряет некоторые внутренние последовательности в присутствии посттрансляционной модификации после образования дисульфидных связей, которые удерживают вместе оставшиеся цепи.Шелк (волокнистый белок), однако, имеет складчатую листовую структуру β , которая является результатом водородных связей между различными цепями.

Четыре уровня структуры белка (первичный, вторичный, третичный и четвертичный) показаны на рис. 3.32.

Рис. 3.32 На этих иллюстрациях можно увидеть четыре уровня белковой структуры. (кредит: модификация работы Национального исследовательского института генома человека)

Денатурация и сворачивание белка

Каждый белок имеет свою уникальную последовательность и форму, которые удерживаются вместе за счет химических взаимодействий.Если белок подвержен изменениям температуры, pH или воздействию химикатов, структура белка может измениться, потеряв свою форму без потери своей первичной последовательности в так называемой денатурации. Денатурация часто обратима, поскольку первичная структура полипептида сохраняется в процессе, если денатурирующий агент удаляется, позволяя белку возобновить свою функцию. Иногда денатурация необратима, что приводит к потере функции. Одним из примеров необратимой денатурации белка является жарение яйца.Белок альбумина в жидком яичном белке денатурируется при помещении на горячую сковороду. Не все белки денатурируются при высоких температурах; например, бактерии, которые выживают в горячих источниках, содержат белки, которые функционируют при температурах, близких к температуре кипения. Желудок также очень кислый, имеет низкий pH и денатурирует белки как часть процесса пищеварения; однако пищеварительные ферменты желудка в этих условиях сохраняют свою активность.

Сворачивание белка имеет решающее значение для его функции.Первоначально считалось, что сами белки несут ответственность за процесс сворачивания. Только недавно было обнаружено, что часто они получают помощь в процессе сворачивания от белков-помощников, известных как шапероны (или шаперонины), которые связываются с целевым белком во время процесса сворачивания. Они действуют, предотвращая агрегацию полипептидов, составляющих полную структуру белка, и отделяются от белка, как только целевой белок сворачивается.

Ссылка на обучение

Чтобы получить дополнительную информацию о белках, просмотрите этот анимационный ролик под названием «Биомолекулы: белки.”

Веганы — это люди, которые не употребляют в пищу продукты животного происхождения. Почему веганам нужно уделять особое внимание белку, который они едят?

  1. Растительные белки содержат все незаменимые и заменимые аминокислоты.
  2. Сложнее получить все незаменимые аминокислоты из отдельных растительных источников.
  3. Растительные белки содержат только заменимые аминокислоты.
  4. Белки растений не содержат всех незаменимых аминокислот, но содержат незаменимые аминокислоты.

Подключение к научной практике для курсов AP®

Подумай об этом
  • Предскажите, что произойдет, если даже одна аминокислота будет заменена другой в полипептиде, и представьте конкретный пример.
  • Какие категории аминокислот вы ожидаете найти на поверхности растворимого белка, а какие — внутри? Какое распределение аминокислот вы ожидаете найти в белке, встроенном в липидный бислой мембраны плазматической клетки?
Деятельность

Сворачивание — важное свойство белков, особенно ферментов.Белки имеют узкий диапазон условий, в которых они правильно сворачиваются; вне этого диапазона белки могут разворачиваться (денатурироваться) и часто не могут складываться заново и снова становиться функциональными. Изучите одно заболевание, которое возникает из-за неправильного сворачивания белка. Опишите причины разворачивания и последствия для молекулярной структуры полипептида, которые приводят к заболеванию.

Поддержка учителей

Первый вопрос «Подумай об этом» — это применение цели обучения 4.3 и научных практик 6.1 и 6.4, потому что студенты предсказывают, как изменение подкомпонентов молекулы может повлиять на свойства молекулы.

Второй вопрос «Подумай об этом» — это применение Задачи обучения 4.2 и Практики 1.3, потому что студенты используют представления молекул вместе с моделью клеточной мембраны, чтобы описать, как молекулярная структура аминокислот определяет их расположение с белком или другим. структура, такая как бислой фосфолипидов.

Это упражнение является применением Задачи обучения 4.1 и научная практика 7.1, цель обучения 4.2 и научная практика 1.3, а также цель обучения 4.3 и научная практика 6.1 и 6.4, потому что студентов просят объяснить, как факторы окружающей среды могут изменить молекулярную структуру белка и как это изменение может привести к изменению в функции, то есть болезни.

8 основных функций белков с примерами (классификация белков по функциям)

Если вы хотите выбрать биомолекулу, которую можно назвать «универсалом», то это, несомненно, белки.Белки — это биомолекулы, которые могут играть множество ролей внутри клетки. Это рабочая сила внутри ячеек, которая выполняет множество функций. Белки состоят из 20 различных видов аминокислот, соединенных ковалентными связями, называемыми пептидными связями. Несмотря на то, что известно более 300 аминокислот, только 20 называются стандартными аминокислотами, поскольку они присутствуют почти во всех клетках.

Классификация белков на основе функции

1. Белки — это ферменты: Ферменты — это биологические катализаторы, участвующие почти во всех биологических реакциях.Ферменты ускоряют биологические реакции, снижая энергию активации без каких-либо изменений. Почти все ферменты представляют собой глобулярные белки.

Примеры: протеаза, амилаза, каталаза, липаза и т. Д.

2. Как структурные белки: Обычно инертны к биологическим реакциям.

Примеры:

  • Коллаген является структурным белком и наиболее распространенным белком у животных

  • Кератин — структурный белок ногтей, волос, перьев, панциря черепахи и т. Д.

  • Фиброин в паутине

  • Ресилин в петлях крыльев некоторых насекомых


3.Транспортные белки или белки-носители

Он участвует в транспортировке основных биологических факторов или молекул к различным частям организмов.

Примеры:

  • Hb эритроцитов переносит кислород в разные ткани

  • Плазма крови содержит липопротеины, переносящие липиды из печени в другие органы

  • Церулоплазмин, транспортный белок, переносящий медь в крови

    ,00

4.Пищевые или запасные белки

Примеры:

5. Белки в движении: сократительные или моторные белки

6. Защитные белки: Антитела, участвующие в иммунном ответе, являются белками.

7. Регуляторные белки: Многие белки участвуют в передаче сигналов. Пептидные гормоны присутствуют и регулируют клеточную и физиологическую активность.

Примеры:

8. Токсичные белки: Функция — защита.

Примеры:

Таким образом, белки с поразительным разнообразием функций являются самой распространенной бимолекулой в клетке.

функций белков | 5 основных функций, что, где и как

Белки — это самые распространенные органические молекулы, присутствующие на Земле. Они в изобилии присутствуют в каждой живой клетке. Белки — это полимеры, состоящие из тысяч аминокислот, связанных пептидными связями. Длинные цепи аминокислот, известные как полипептиды, складываются вокруг себя несколькими способами, образуя сложные структуры, называемые белками.

Функции, выполняемые белками, можно разделить на разные категории.Некоторые функции важны на клеточном уровне, в то время как другие необходимы для лучшей работы организма в целом. Здесь мы попытаемся понять различные функции, выполняемые белками в нашем организме, на различных примерах.

Все ферменты — это белки

Ферменты — это белки, которые необходимы для любой химической реакции в нашем организме. Они катализируют биохимическую реакцию, чтобы жизнь могла продолжаться.

Пример ферментативной реакции в нашем организме — гликолиз.Это процесс высвобождения энергии из молекулы глюкозы. Эта энергия требуется для выполнения нескольких процессов, происходящих внутри клетки. Процесс гликолиза включает около 10 этапов, каждый из которых требует определенного фермента. Отсутствие единственного фермента останавливает процесс, и энергия из глюкозы не может быть получена.

Для синтеза белков также требуются определенные ферменты. Синтез белка включает транскрипцию ДНК в мРНК, а затем трансляцию мРНК рибосомами.Оба эти шага требуют ферментов, которые являются белками. Например;

  • РНК-полимераза — это фермент, необходимый для соединения нуклеотидов РНК в процессе транскрипции.
  • Аминоацил тРНК синтетаза — это фермент, который присоединяет определенные аминокислоты к тРНК, чтобы ее можно было использовать в синтезе белка.

Таким образом, от получения энергии до производства белков, все химические процессы в живых организмах нуждаются в ферментах, и все ферменты являются белками. Роль белков как ферментов — самая важная и важная функция, выполняемая белками.

Белки действуют как рецепторы на клеточных мембранах

Белки являются важными компонентами всех клеточных мембран и мембран органелл. Одна из функций этих мембранных белков состоит в том, что они действуют как рецепторы. Гормоны, нейротрансмиттеры и другие сигнальные молекулы связываются с этими рецепторами и передают сигналы клеткам. Таким образом, белки играют роль в передаче сигналов клетками, которая важна для скоординированной функции всех клеток, присутствующих в нашем организме. Рассмотрим следующий пример, чтобы понять роль белков как рецепторов.

  • Инсулин — это гормон, контролирующий уровень глюкозы в крови. Он выполняет свою функцию, связываясь со своим рецептором, который является белком. Инсулин связывается со своим рецептором, который посылает сигналы для открытия каналов глюкозы, так что глюкоза может поступать из крови в печень и мышечные клетки. Если рецепторы инсулина отсутствуют, уровень глюкозы в крови нельзя регулировать.

Этот и ряд других примеров в нашем организме доказывают, почему белки необходимы для передачи клеточных сигналов и координации клеточных функций.

Некоторые гормоны также являются белками

Белки действуют не только как клеточные рецепторы, но и как гормоны. Инсулин и глюкагон — два гормона, которые по своей природе являются белками. Оба эти гормона необходимы для регулирования уровня глюкозы в крови. Они контролируют поглощение и высвобождение глюкозы клетками, гликолиз и глюконеогенез, а также синтез и разложение гликогена. Роли этих гормонов в нашем организме перечислены ниже;

  • Инсулин вырабатывается поджелудочной железой при высоком уровне глюкозы в крови.Он способствует усвоению клетками глюкозы, ее расщеплению, а также хранению в виде гликогена. Он также подавляет синтез новых молекул глюкозы из неуглеводных источников (глюконеогенез).
  • Глюкагон высвобождается поджелудочной железой при низком уровне глюкозы в крови. Он способствует расщеплению гликогена с высвобождением глюкозы. Он также способствует глюконеогенезу.

Белки действуют как транспортные каналы в клеточных мембранах

Белки, присутствующие в клеточных мембранах, также действуют как транспортные каналы.Вещества, не проницаемые через мембраны из-за своего размера или заряда, могут проникать в клетку через эти белковые каналы. Один белковый канал специфичен для одного или нескольких веществ. Примеры белковых каналов приведены ниже;

  • Аквапорины — это белковые каналы, которые позволяют молекулам воды проходить через клетки
  • GLUT (переносчик глюкозы) — переносчики молекул глюкозы
  • Натриевые каналы позволяют проходить ионам натрия внутри клетки
  • Калиевые каналы пропускают только калий ионы проходят через них
  • Кальциевые каналы специфичны только для ионов кальция

Это несколько примеров белковых каналов, присутствующих в мембранах.

Белки поддерживают форму и структуру клетки

Это еще одна важная клеточная функция, выполняемая белками. Цитоскелет состоит из нескольких связанных между собой белковых нитей. Белки в цитоскелете организованы в виде микротрубочек, микрофиламентов и промежуточных филаментов. Все эти компоненты цитоскелета расположены определенным образом, сохраняя форму клетки. Важные белки, из которых состоит цитоскелет, включают актин и тубулин.В отсутствие этих белков клетка не могла бы поддерживать свою структуру.

Белки участвуют в делении клеток

Деление клеток — это процесс, посредством которого зрелая взрослая родительская клетка делится на дочерние клетки. Белки также необходимы для этого процесса.

Во время деления клетки хромосомы разделяются на две половины путем растяжения. Это разделение хромосом осуществляется белками, известными как волокна веретена.

Белки также необходимы для деления цитоплазмы, которое происходит после разделения хромосом.

Белки необходимы для транспорта внутри клетки

Определенные транспортные белки необходимы для внутриклеточного транспорта различных веществ. Различные белки, которые участвуют во внутриклеточных белках, известны как моторные белки. Эти белки используют энергию в форме АТФ и перемещаются по микротрубочкам для транспортировки различных веществ в цитоплазме клетки. Примером моторных белков является белок кинезин. Он участвует в транспорте различных веществ в аксонах нейронов.

Белки необходимы для транспорта кислорода

Эта функция белков важна для выживания организма в целом. В этом процессе участвуют два белка — гемоглобин и миоглобин.

Гемоглобин

Это белок, присутствующий в красных кровяных тельцах. Гемоглобин состоит из четырех полипептидных цепей, двух альфа-цепей и двух бета-цепей, которые намотаны друг на друга. Каждая из этих полипептидных цепей несет одну гемовую группу (содержащую атом железа).

Этот белок отвечает за перенос кислорода из легких в тканевую жидкость. Одна молекула кислорода может связываться с четырьмя молекулами кислорода. Он связывается с молекулами кислорода, присутствующими в воздухе, проходя через легкие. Эти молекулы кислорода высвобождаются, когда кровь проходит через ткани.

Любой недостаток или отклонение от нормы гемоглобина нарушает перенос кислорода кровью. Наши клетки не могут выжить без кислорода. Любое нарушение подачи кислорода приведет к гибели клеток в пораженных тканях.

Миоглобин

Миоглобин — еще один белок, участвующий в транспортировке кислорода. Он состоит из одной полипептидной цепи с гемовой группой. Это цитоплазматический белок, имеющий более высокое сродство к молекулам кислорода, что означает, что он может связываться с кислородом даже при высокой концентрации кислорода. Его функция — переносить кислород из тканевой жидкости в клетки.

Из-за своего высокого сродства к кислороду миоглобин выделяет кислород в очень низких концентрациях.Эта особенность миоглобина отвечает за хранение кислорода в тканях.

Белки необходимы для транспортировки различных веществ в крови

Хотя кровь действует как транспортная среда, белки необходимы для удержания и транспортировки некоторых веществ, которые не могут растворяться в крови. Эта функция белков также важна для правильного функционирования организма. Некоторые примеры транспортных белков, присутствующих в крови, следующие.

  • Альбумин является основным транспортным белком крови.Он действует как переносчик жирных кислот, стероидов, гормонов щитовидной железы, липофильных препаратов, тяжелых металлов, ионов кальция и билирубина
  • Преальбумин — еще один транспортный белок в крови, который переносит стероидные гормоны, тироксин и витамин А
  • Гаптоглобин — транспортный белок. белок, несущий свободный гемоглобин, присутствующий в плазме
  • Связывающий тироксин белок специфичен для гормона щитовидной железы
  • ЛПВП — это липопротеин, который переносит холестерин из тканей в печень
  • ЛПНП — еще один липопротеин, который переносит холестерин из печени в ткани

Белки участвуют в сокращении мышц

Сокращение мышц — это процесс, который позволяет нам выполнять наши повседневные жизненные задачи, такие как ходьба, бег, сидение, стояние, письмо и даже речь.Этот процесс сокращения мышц также происходит из-за белков. Сократительные белки присутствуют в мышечных волокнах. Эти белки взаимодействуют особым образом, что позволяет сокращать и расслаблять мышцы. Самыми важными сократительными присутствующими являются:

Белки предотвращают отек

Отек — это состояние, при котором избыточная жидкость вытекает из кровеносных сосудов и собирается в тканевых пространствах. Потеря жидкости из крови приводит к снижению артериального давления. Это потенциально смертельное состояние, которое может поставить под угрозу эффективную доставку крови к тканям организма.

Белки, присутствующие в крови, известные как белки плазмы, предотвращают утечку жидкости через капилляры благодаря своему осмотическому эффекту. Онкотическое давление из-за белков плазмы удерживает воду внутри кровеносных сосудов, предотвращая ее попадание в тканевые жидкости, предотвращая отек. Если эти белки отсутствуют, отек развивается в разных частях тела.

Белки защищают наш организм от болезней

Эту функцию выполняют антитела. Антитела или иммуноглобулины — это белки плазмы, которые вырабатываются в ответ на попадание в наш организм различных болезнетворных агентов.Они борются с этими патогенами и защищают наш организм от их вредного воздействия. Если в нашем организме уже присутствуют антитела против патогена, они уничтожают патоген до того, как он вызовет какое-либо заболевание. Этот процесс известен как иммунитет.

Белки необходимы для пищеварения

Процесс пищеварения включает расщепление сложных веществ, присутствующих в нашем рационе, на более простые, чтобы они могли всасываться в кровь. Расщепление различных пищевых веществ на более простые молекулы происходит в нашей пищеварительной системе ферментами, которые по своей природе являются белками.

Белки также действуют как запасные вещества

Белки представляют собой полимеры аминокислот. Они действуют как запасные вещества, в которых хранятся тысячи аминокислот. Эти аминокислоты высвобождаются из белков, когда они необходимы организму. Примеры запасных белков:

  • Казеин в молоке
  • Альбумин в яйце

Эти белки обеспечивают незаменимые аминокислоты, необходимые организму для производства нескольких белков. Более того, во время голодания белки, присутствующие в организме, также могут использоваться в качестве источника энергии для обеспечения калорий, необходимых для выполнения различных функций организма.

Белки контролируют экспрессию генов

Экспрессия генов — это процесс, с помощью которого информация в конкретном гене копируется в форме мРНК, а позже эта мРНК используется рибосомами для создания белка, кодируемого этим геном.

Этот процесс экспрессии генов контролируется факторами транскрипции. Эти факторы транскрипции позволяют транскрипцию генов только тех белков, которые в настоящее время необходимы организму.

Факторы транскрипции также являются белками по своей природе.Таким образом, белки регулируют свой собственный синтез, регулируя экспрессию генов.

Резюме

Белки — это полимеры, состоящие из аминокислот. Они участвуют практически во всех процессах, происходящих в нашем организме. Сводка функций, выполняемых белками, выглядит следующим образом;

  • Как ферменты, белки необходимы для всех химических процессов в живых организмах
  • Как гормоны и клеточные рецепторы, они необходимы для клеточной передачи сигналов и координации
  • Как транспортные каналы, белки необходимы для проникновения ионов и более -размерные частицы в клетки
  • Являясь компонентами цитоскелета, они поддерживают форму клеток
  • Волокна веретена — это белковые волокна, необходимые для деления клеток
  • Гемоглобин и миоглобин — белки, необходимые для транспорта кислорода
  • Альбумин и другая плазма белки необходимы для транспорта липидов, лекарств и других веществ в крови
  • Сократительные белки необходимы для сокращения мышц
  • Антитела — это белки, которые защищают наш организм от вредоносных болезней
  • Белки плазмы поддерживают баланс жидкости в нашем организме
  • Они регулируют экспрессию генов
  • Белки также обеспечивают эргия тела во время голода

Ссылки

  1. Лодиш Х, Берк А., Мацудаира П., Кайзер Калифорния, Кригер М., Скотт М.П., ​​Зипуркси С.Л., Дарнелл Дж. (2004).Молекулярная клеточная биология (5-е изд.). Нью-Йорк, Нью-Йорк: WH Freeman and Company
  2. Zhang C, Kim SH (февраль 2003 г.). «Обзор структурной геномики: от структуры к функции» . Текущее мнение в химической биологии. 7 (1): 28–32. дои : 10.1016 / S1367-5931 (02) 00015-7 . PMID 12547423
  3. Sleator RD (2012).«Прогнозирование функций белков». Функциональная геномика. Методы молекулярной биологии. 815 . С. 15–24. дои : 10.1007 / 978-1-61779-424-7_2 . ISBN 978-1-61779-423-0 . PMID 22130980

Электронное обучение — Белки


Брат Грегори говорит со своим классом,

На сегодняшний день предметом обсуждения является структура и функция белков .Вы должны следовать уроку, отвечать на вопросы, а затем, при необходимости, завершить исследовательское расследование.

«Начнем …….

«Белки — одна из четырех основных групп макромолекул, которые встречаются во всех живых организмах. Эти гигантские молекулы выполняют многие жизненно важные функции, необходимые клеткам.

«Белки участвуют в таких процессах, как переваривание пищи, структура клеток, катализ, движение, манипуляции с энергией и многое другое.Это сложные огромные ассоциации молекулярных субъединиц, которые невозможно понять. К счастью, все они построены по одному и тому же принципу.

«Как и все макромолекулы, белки представляют собой полимеры, состоящие из более мелких субъединиц — аминокислот, соединенных вместе в длинные цепи.

«В большинстве белков содержится около 20-22 общих аминокислот. Все эти небольшие молекулы, кроме одной, имеют одинаковую общую структуру, но различаются по природе одной химической группы, называемой« R-группа ».Это различная структура и свойства этих R-групп , которые делают аминокислоты отличными друг от друга.

«Аминокислоты объединены в длинные цепи, называемые« полипептиды », название происходит от типа связи, удерживающей цепи аминокислот вместе. Группа атомов, которые удерживают аминокислоты вместе, называется пептидной связью • Порядок или последовательность аминокислот в полипептидной цепи устанавливает первое критическое свойство белков, их первичную структуру.

Продолжая этот урок, проверьте себя, отвечая на некоторые из этих вопросов типа «правда / ложь».

Трехмерные формы

«Большинство свойств большинства белков, однако, основаны на уникальных и особых трехмерных формах, которые белки принимают, когда аминокислоты действуют и реагируют друг с другом и с окружающей водой.Вторичные, третичные и четвертичные структуры — это разные уровни более высокой трехмерной структуры.

«Форма очень важна. Аминокислота R-группы могут быть сгруппированы в четыре основные категории, и именно взаимодействие этих различных R-групп в значительной степени определяет форму и роль конечных белок.

«В большинстве белков имеется различное количество вторичной структуры, но два наиболее распространенных, узнаваемых повторяющихся паттерна структуры — это альфа-спираль и бета-складчатый лист.

«Хотя именно пептидная связь соединяет аминокислоты вместе в их полипептидных цепях, существуют другие, более слабые силы, удерживающие полипептид в его правильной трехмерной форме.

«Эти силы могут« сваривать »две части цепи вместе или просто обеспечивать локальную гидрофобную среду, из которой исключены молекулы воды.

«Обретя форму, белковые молекулы способны объединяться и образовывать сложные структуры или структуры, которые состоят из более чем одной полипептидной субъединицы.Довольно часто эти более крупные структуры также содержат дополнительный небелковый материал, такой как углеводы, липиды или даже полинуклеотиды.

Roles Proteins Play — несколько примеров

«Белки участвуют почти во всех аспектах клеточной жизни и структуры. Они также играют важную роль в удерживании клеток вместе в многоклеточные структуры (как мы!) И обеспечивают протекание химических реакций с« жизненной скоростью ».

«Ниже приводится частичный список с несколькими примерами ролей, которые белки играют в жизни:

Научно-исследовательское исследование
проверьте свое расписание, чтобы узнать, требуется ли это
Проклятие Амона
Исследование белка Исследование
Вопросы концепции
к уроку

проверьте свое расписание, чтобы узнать, требуется ли это
Protein Set
Concept Вопросы и страница личных вопросов
Требуемые чтения
к уроку
Ключевые концепции
биополимеры
e -учебник
Содержание — | — Полимеры — | — Белки

Форма белка — | — Слабые силы — | — Сборка

Роли
В цитоскелете — | — В складах

В мембранах — | — В мышцах

Наука @ на расстоянии
© 2003, профессор Джон Бламир

Как классифицируются белки? (Биохимические заметки)


Белки — важные макромолекулы клеток, образованные полимеризацией аминокислот в соответствии с последовательностью генетического кода в мРНК.Белки — это способ выражения генетической информации. Они выполняют множество функций в клетках, например, действуют как структурные компоненты клеток, ферменты, гормоны, пигменты, запасные белки и некоторые токсины в клетках. Белки подразделяются на множество категорий на основе разных критериев.

Критерий классификации белков:

Ø Белки классифицируются на основе следующего критерия ТРИ :
(I).Классификация основана на СТРУКТУРЕ белка
(II). Классификация основана на СОСТАВЕ ​​белка
(III). Классификация основана на ФУНКЦИЯХ белков

(I). Классификация белков на основе структуры белков

Ø В зависимости от структуры белки подразделяются на 3 группы.
(А). Волокнистые белки
(B). Глобулярные белки

(C).Промежуточные белки

(А). Волокнистые белки

Ø Они имеют линейную (длинноволокнистую) форму.

Ø Вторичная структура — важнейшая функциональная структура волокнистых белков.

Ø Обычно эти белки не имеют третичной структуры.

Ø Физически волокнистые белки очень прочные и прочные.

Ø Не растворяются в воде.

Ø Длинные параллельные полипептидные цепи сшиты через равные промежутки времени.

Ø Волокнистые белки образуют длинные волокна или оболочки.

Ø Функции волокнистых белков: выполняют структурные функции в клетках.

Ø Примеры волокнистых белков: коллаген, миозин, шелк и кератин.

(В). Глобулярные белки

Ø Глобулярные белки имеют сферическую или глобулярную форму.

Ø Полипептидная цепь плотно свернута в сферическую форму.

Ø Третичная структура является наиболее важной функциональной структурой глобулярных белков.

Ø Физически они мягче волокнистых белков.

Ø Легко растворяются в воде.

Ø Большинство белков в клетках относятся к категории глобулярных белков.

Ø Функции: Образует ферменты, антитела и некоторые гормоны.

Ø Пример: инсулин, гемоглобин, ДНК-полимераза и РНК-полимераза

(C). Промежуточные белки

Ø Их структура является промежуточной между линейными и глобулярными структурами.

Ø Это короткие белки с более или менее линейной формой.

Ø В отличие от волокнистых белков, они растворимы в воде.

Ø Функция: белки свертывания крови

Ø Пример: фибриноген

(II). Классификация белков на основе состава:

Ø Две широкие категории белков в соответствии с их составом:

(A). Простые белки

(B). Конъюгированные белки

(А). Простые белки

Ø Простые белки, состоящие ТОЛЬКО из аминокислот.

Ø Белки могут быть волокнистыми или глобулярными.

Ø Обладают относительно простой структурной организацией.

Ø Пример: коллаген, миозин, инсулин, кератин

(B). Конъюгированные белки

Ø Конъюгированные белки представляют собой сложные белки.

Ø Они содержат один или несколько не аминокислотных компонентов.

Ø Здесь белковая часть плотно или слабо связана с одной или несколькими небелковыми частями.

Ø Небелковые части этих белков называются простетическими группами.

Ø Простетической группой могут быть ионы металлов, углеводы, липиды, фосфорные кислоты, нуклеиновые кислоты и FAD.

Ø Простетическая группа важна для биологических функций этих белков.

Ø Конъюгированные белки обычно имеют глобулярную форму и растворимы в воде.

Ø Большинство ферментов представляют собой конъюгированные белки.

Ø Исходя из природы простетических групп, конъюгированные белки далее классифицируются следующим образом:

$ Фосфопротеин: Протезная группа — фосфорная кислота, пример — казеин молока, вителлин яичного желтка.

$ Гликопротеины: Протезная группа — углеводы. Пример — большинство мембранных белков, муцин (компонент слюны).

$ Нуклеопротеин: Протезная группа — нуклеиновая кислота, Пример — белки в хромосомах, структурные белки рибосомы.

$ Хромопротеины: Протезная группа — пигмент или хром, например: гемоглобин, фитохром и цитохром.

$ Липопротеины: Протезная группа — липиды, Пример: мембранные белки

$ Флавопротеины: Протезная группа — FAD (флавин-адениндинуклеотид), пример: белки электронной транспортной системы (ETS).

$ Металлопротеины: Протезная группа — это ионы металлов, пример: нитратредуктаза.

(III). Классификация белков на основе функций:

(A). Структурные белки:

Ø Образуют компонент соединительной ткани, костей, сухожилий, хрящей, кожи, перьев, ногтей, волос и рога.

Ø Большинство из них представляют собой волокнистые белки и не растворяются в воде.

Ø Пример: коллаген, кератин и эластин.

(Б). Ферменты:

Ø Они являются биологическими катализаторами.

Ø Ферменты снижают энергию активации реагентов и ускоряют метаболические реакции в клетках.

Ø Большинство из них представляют собой глобулярные конъюгированные белки

Ø Пример: ДНК-полимераза, нитрогеназа, липаза

(c). Гормоны:

Ø Они содержат белковые гормоны в клетках.

Ø Пример: инсулин, глюкагон, ACH

(D).Респираторные пигменты

Ø Это цветные белки

Ø Все они являются конъюгированными белками и содержат пигменты (хром) в качестве своей простетической группы.

Ø Пример: гемоглобин, миоглобин

(E). Транспортные белки

Ø Они транспортируют материалы в клетках

Ø Они образуют каналы в плазматической мембране

Ø Они также являются одним из компонентов крови и лимфы у животных.

Ø Пример: Сывороточный альбумин

(F).Сократительные белки

Ø Они являются генераторами силы мышц.

Ø Они могут сокращаться за счет энергии молекул АТФ.

Ø Пример: актин, миозин

(G). Белки-хранилища

Ø Они действуют как хранилища ионов металлов и аминокислот в клетках.

Ø Содержится в семенах, яйцах и молоке

Ø Обильно встречается в бобовых (семена бобовых).

Ø Пример: ферритин, содержащий железо, казеин, овальбумин, глютен пшеницы

(F).Токсины

Ø Это токсичные белки

Ø Пример: Змеиный яд


Исследование в автономном режиме (без Интернета)

Теперь вы можете Скачать PDF этого сообщения Абсолютно бесплатно!

Нажмите ссылку для скачивания / Кнопка ниже, чтобы сохранить сообщение как единый файл PDF. PDF-файл откроется в новом окне в самом браузере. Щелкните правой кнопкой мыши PDF-файл и выберите опцию « Сохранить как », чтобы сохранить файл на свой компьютер.

IB Биологические заметки — 7,5 белков

Существует четыре уровня структуры белка:

Первичная структура : Первичной структурой белка является его аминокислотная последовательность.Эта аминокислотная последовательность определяется последовательностью оснований гена, кодирующего белок.

Вторичная структура : Вторичные структуры имеют α-спирали и β-складчатые листы. Они образуются в результате водородных связей между пептидными группами основной цепи. Следовательно, белки, которые содержат вторичные структуры, будут иметь области, которые являются цилиндрическими (α-спирали) и / или области, которые являются плоскими (β-складчатые листы).

Третичная структура : Третичная структура белка — это его трехмерная конформация, которая возникает в результате сворачивания белка.Это складывание стабилизируется водородными связями, гидрофобными взаимодействиями, ионными связями и дисульфидными мостиками. Эти внутримолекулярные связи образуются между группами R разных аминокислот.

Четвертичная структура : Четвертичная структура образуется, когда две или более полипептидных цепей связываются с образованием единого белка. Примером может служить гемоглобин, состоящий из четырех полипептидных цепей. В некоторых случаях некоторые белки могут иметь неполипептидную структуру, называемую простетической группой.Эти белки называются конъюгированными белками. Группа гемов в гемоглобине — это простетическая группа.

Форму белка можно разделить на волокнистую или глобулярную. Волокнистые белки имеют тенденцию быть удлиненными, физически прочными и нерастворимыми в воде. Коллаген, содержащийся в коже, и кератин, содержащийся в волосах, являются примерами волокнистых белков. Глобулярные белки имеют тенденцию быть компактными, округлыми и растворимыми в воде. Гемоглобин и ферменты являются примерами глобулярных белков.

Аминокислоты имеют разные группы R.Некоторые из этих групп R будут гидрофильными, что сделает аминокислоту полярной, в то время как другие будут гидрофобными, что сделает аминокислоту неполярной. Распределение полярных и неполярных аминокислот в белке влияет на функцию и расположение белка в организме. Неполярные аминокислоты находятся в центре водорастворимых белков, а полярные аминокислоты находятся на поверхности.

Примеры того, как распределение неполярных и полярных аминокислот влияет на функцию и расположение белка:

Контроль положения белков в мембранах : неполярные аминокислоты заставляют белки встраиваться в мембраны, в то время как полярные аминокислоты заставляют части белков выступать из мембраны.

Создание гидрофильных каналов через мембраны : Полярные аминокислоты находятся внутри мембранных белков и создают канал, через который могут проходить гидрофильные молекулы.

Специфичность активного центра ферментов : Если аминокислоты в активном центре фермента неполярны, это делает этот активный центр специфичным для неполярного вещества. С другой стороны, если активный сайт состоит из полярных аминокислот, тогда активный сайт специфичен для полярного вещества.

Функция

Пример

Строительный

Коллаген укрепляет кости, кожу и сухожилия.

Механизм

Миозин, обнаруженный в мышечных волокнах, вызывает сокращение мышцы, что приводит к движению.

Транспорт

Гемоглобин переносит кислород из легких в другие ткани организма.

Оборона

Иммуноглобулин действует как антитело.

(PDF) Глава-04 Белки: структура и функции

46

Осаждение органическими растворителями

При добавлении органического растворителя к раствору белка

молекул воды, доступных для белков, восстанавливаются,

и происходит осаждение. Органические растворители снижают диэлектрическую проницаемость среды

, что также способствует осаждению белка

.Следовательно, алкоголь является мощным прецизионным агентом, повышающим эффективность белка. Этим можно объяснить дезинфицирующее действие спирта

.

Осаждение ионами тяжелых металлов

В щелочной среде белки имеют общий отрицательный заряд

или являются анионами. К такому раствору, если добавить соли тяжелых металлов

, положительно заряженные ионы металлов могут образовывать комплекс

с молекулами белка, и протеинаты металлов осаждаются. Соли меди, цинка, свинца, кадмия

и ртути токсичны, потому что они имеют тенденцию осаждать нормальные белки стенки желудочно-кишечного тракта.Исходя из этого принципа

, сырое яйцо иногда используется в качестве противоядия

при отравлении ртутью.

Осаждение алкалоидными реагентами

Вольфрамовая кислота, фосфорновольфрамовая кислота, трихлоруксусная

кислота, пикриновая кислота, сульфосалициловая кислота и дубильная кислота

являются мощными осаждающими белками веществами. Эти кислоты

понижают pH среды, когда белки несут чистые

положительных зарядов. Эти катионы белка образуют комплекс

с отрицательно заряженными ионами с образованием белок-вольфрамат,

белок-пикрат и т. Д., образуется густой жидкий осадок

. В клинической лаборатории для осаждения белков

обычно используют фосфорновольфрам или трихлоруксусную кислоту

. Дубление при обработке кожи основано на осаждении белка

дубильной кислоты. При определенных условиях

белки подвергаются денатурации, что составляет

— мягкую форму реакции преципитации (вставка 4.5). Коагуляция Heat

— это необратимый процесс осаждения

(вставка 4.6 и рис. 4.13).

КЛАССИФИКАЦИЯ БЕЛКОВ

Практически невозможно правильно классифицировать все белки.

Следующие ниже классы даны только для того, чтобы представить учащимся

более широкую идею.

Классификация по функциям

1. Каталитические белки, например ферменты

2. Структурные белки, например коллаген, эластин

3. Сократительные белки, например миозин, актин

4. Транспортные белки, e.грамм. гемоглобин, миоглобин, альбу-

мин, трансферрин

ВСТАВКА 4.4: Значение изоэлектрического pH (pI)

1. Аминокислотный состав будет определять изоэлектрический pH

(pI) белка. Альфа-аминогруппа и карбоксильная группа

используются для образования пептидной связи, и, следовательно,

не ионизируются. Все другие ионизируемые группы, присутствующие в белке

, будут влиять на pI белка.

2. В изоэлектрической точке количество анионов и катионов

, присутствующих в молекуле белка, будет равным, а общий заряд

равен нулю.

3. При значении pI белки не будут мигрировать в электрическом поле

. При pI растворимость, буферная способность и вязкость будут минимальными

; и осадков будет максимум.

4. На кислой стороне pI белки представляют собой катионы, а на щелочной стороне

они являются анионами по своей природе.

5. ИП пепсина составляет 1,1; казеин 4,6; человеческий альбумин 4,7; человеческий

инсулин 5,4; человеческие глобулины 6.4; гемоглобин человека 6.7;

миоглобин 7; и лизоцим 11.

6. Кислотные красители, такие как эозин, будут диссоциировать на краситель H + +

, который затем присоединится к белку –Nh4

+ (катионы белка).

Основные красители, такие как гематоксилин и метиленовый синий,

диссоциируют до красителя OH– +, который затем окрашивает белок

COO– (анионы). Таким образом, характеристика окрашивания белка составляет

, определяемая pI этого белка.

ВСТАВКА 4.5: Денатурация белков

1.Мягкое нагревание, обработка мочевиной, салицилатом, рентгеновское излучение, ультрафиолетовое излучение

лучей, высокое давление, сильное встряхивание и аналогичные химические вещества физико-

вызывают денатурацию.

2. Будут неспецифические изменения во вторичных, третичных

и четвертичных структурах белковых молекул. Первичная структура

не изменяется при денатурации (рис. 4.12).

3. Обычно во время процесса растворимость снижается

, в то время как осаждаемость белка увеличивается.Часто

вызывает потерю биологической активности.

4. Нативные белки часто устойчивы к протеолитическим ферментам,

, но денатурированные белки будут иметь больше открытых участков для действия ферментов

. Поскольку приготовление пищи приводит к денатурации

белков, приготовленные продукты легче усваиваются.

5. Денатурированные белки иногда регенерируют, когда удаляют физический агент

. Рибонуклеаза

является хорошим примером такой обратимой денатурации.Цепи иммуноглобулина

диссоциируют при обработке мочевиной. Когда мочевина

удаляется диализом, субъединицы повторно связываются, и восстанавливается биологическая активность иммуноглобулина

.

6. Но многие белки претерпевают необратимую денатурацию. Например, для

альбумин нельзя ренатурировать, удалив физический агент

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *