Белки их строение и функции в организме: Белки — Википедия – Билеты по Биологии

Содержание

Билеты по Биологии

1 курс

Билет №1

1. Белки, их строение и функции в организме.

Белки́ (протеины)— высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью(белковая молекула представляет собой линейный полимер, построенный из аминокислот, соединенных между собой валентными амидными связями (пептидными связями). 

Говоря о строении белка, различают: — первичную структуру — последовательность аминокислот, прочитываемую, начиная от С-конца молекулы, в направлении к N-концу; — вторичную структуру — наличие и локализацию альфа-спиральных участков цепи и участков, сложенных в бета-структуры; — третичную структуру ( пространственную) — взаимное расположение аминокислотных остатков молекулы белка в пространстве; — четвертичную структуру — компонентный состав, стехиометрию и взаимную ориентацию субъединиц комплекса, в том случае, когда молекулы белка обладают способностью к его образованию. 

В организме человека белки выполняют следующие функции: Пластическую.На долю белков приходится 15-20% сырой массы различных тканей (липиды и углеводы составляют 1-5 %). Белки являются главным строительным материалом клетки и межклеточного вещества. Они вместе с фосфолипидами образуют остов всех биологических мембран. Каталитическую.Белки служат основным компонентом всех ферментов. Ферментам принадлежит решающая роль в ассимиляции пищевых веществ организмом человека и в регуляции всех внутриклеточных обменных процессов. Гормональную.Большая часть гормонов по своей природе является белками или полипептидами. К их числу принадлежат гормоны гипофиза (АКТГ, соматотропный, тиреотропный и др.) , инсулин, паратиреоидный гормон. Специфичности.Белки обеспечивают тканевую индивидуальную и видовую специфичность, лежащую в основе проявлений иммунитета и аллергии, а также защиту организма от чужеродных антигенов. 

Транспортную.Белки участвуют в переносе кровью кислорода (гемоглобин) , липидов (липопротеиды) , углеводов (гликопротеиды) , некоторых витаминов, гормонов, лекарственных веществ и др. Специфические белки-переносчики обеспечивают проникновение минеральных веществ и витаминов через мембраны клеток и субклеточных структур. 

2. Наследственная изменчивость как движущая сила эволюции.

Наследственность— свойство организмов передавать особенности строения и жизнедеятельности из поколения в поколение. 

Материальные основы наследственности— хромосомы и гены, в которых хранится информация о признаках организма. Передача генов и хромосом из поколения в поколение благодаря размножению. Развитие дочернего организма из одной клетки — зиготы или группы клеток материнского организма в процессе размножения. Локализация в ядрах клеток, участвующих в размножении, генов и хромосом, определяющих сходство дочернего организма с материнским. 

Изменчивость— общее свойство всех организмов приобретать новые признаки в процессе индивидуального развития. 

Наследственная изменчивость— фактор эволюции. Появление новых признаков у организмов и их многообразие — материал для действия естественного отбора, сохранения особей с изменениями, соответствующими среде обитания, формирования приспособленности организмов к изменяющимся условиям внешней среды.

Билет №2

Белки как молекулы. Состав, структура и функции белков

Белки выполняют ведущую роль в жизни организмов, преобладая в них и количественно. В теле животных они составляют 40-50% сухой массы, в растениях – 20-35%. Это самая разнообразная группа молекул – как химически, так и функционально. Состав и структура белков определяет огромное разнообразие их функций в клетке: их так много, что невозможно перечислить и описать их все. Однако можно сгруппировать эти функции в следующие восемь категорий. Но этот список также будет неполным.

Функции белков фото

    1. Ферментативная (каталитическая). Ферменты имеют белковое происхождение. Это трёхмерные глобулярные (свёрнутые) белки, плотно прилегающие к молекуле для её расщепления или сборки. Такая подгонка ускоряет специфические химические реакции в клетке.
    2. Защитная. Другие глобулярные белки используют свою форму для распознавания чужеродных микроорганизмов и раковых клеток. Эти приёмные устройства формируются эндокринной и иммунной системами. Многие живые организмы выделяют белки, ядовитые для других. Токсины синтезируют ряд животных, грибов, растений, микроорганизмов. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.
    3. Транспортная. Глобулярные белки присоединяют и транспортируют мелкие молекулы и ионы. Например, транспортный белок гемоглобин переносит кислород и углекислоту с потоком крови. Мембранные транспортные белки помогают молекулам и ионам двигаться через плазмалемму. Альбумины крови транспортируют жирные кислоты, глобулины – ионы металлов и гормоны.
    4. Структурная. Белковые молекулы входят в состав всех клеточных мембран и органоидов. Из белков построены элементы цитоскелета, сократительные структуры мышечных волокон. Структурными являются кератин в волосах, фибрин
      в сгустках крови, коллаген в коже, связках, сухожилиях и костях. В состав связок, стенок артерий и лёгких входит также структурный белок эластин.
    5. Двигательная. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Мышцы сокращаются за счёт движения двух видов белковых нитей: актина и миозина. Контрактильные (лат. contraho, contractum – стягивать, сокращать) протеины играют ключевую роль в цитоскелете и передвижении веществ внутри клетки. Белок тубулин также входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.
    6. Регуляторная. Крошечные белки, называемые гормонами, служат межклеточными посланниками в теле животных. Другие белки регулируют синтез РНК на ДНК, включая и выключая гены. Кроме того белки получают информацию, действуя в качестве рецепторов клеточной поверхности (эту функцию иногда считают отдельной, называя рецепторной).
    7. Запасающая. Кальций и железо хранятся в организме в виде ионов, связанных с белками хранения. В семенах растений запасаются резервные белки, которые используются зародышем при прорастании, а затем и проростком как источник азота.
  1. Энергетическая. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6 кДж энергии. Однако белки расходуются на энергетические нужды лишь в крайних случаях, когда исчерпаны запасы углеводов и липидов.
Сравнительный размер белков фотоСравнительный размер молекул белков. Слева направо: антитело (IgG) (150 кДа), гемоглобин (66,8 кДа), гормон инсулин, фермент аденилаткиназа и фермент глютаминсинтетаза.
Автор: en:User:Gareth White, CC BY-SA 2.0

Функции белков

 

Функция Класс белка Образцы Примеры использования
Каталитическая Ферменты Карбогидразы Расщепляют полисахариды
Протеазы Разрушают белки
Полимеразы Синтезируют нуклеиновые кислоты
Киназы Фосфорилируют сахара и белки
Защитная Иммуноглобулины Антитела Маркируют чужеродные белки для элиминации (удаления)
Токсины Змеиный яд Блокирует нервные импульсы
Клеточные белки-антигены МНС-белки (главный комплекс гистосовместимости) Опознание чужеродных белков
Транспортная Циркуляционные транспортёры Гемоглобин Переносит кислород и углекислый газ крови
Миоглобин Переносит кислород и углекислый газ в скелетных мышцах и мышце сердца
Цитохромы Транспортируют электроны
Мембранные транспортные белки Натриево-калиевый насос Возбуждение мембраны
Протонный насос Хемиосмос
Транспортёр глюкозы Транспортирует глюкозу в клетки
Структурная Волокна Коллаген Образует хрящ
Кератин Формирует волосы, ногти, перья и др.
Фибрин Образует сгустки крови
Двигательная Мускулы Актин Сокращение мышечных волокон
Миозин Сокращение мышечных волокон
Регуляционная Осмотические белки Сывороточный альбумин Поддерживает осмотическую концентрацию крови
Регуляторы генов Репрессор Регулирует транскрипцию
Гормоны Инсулин Контролирует уровень глюкозы в крови
Вазопрессин Увеличивает задержку воды почками
Окситоцин Регулирует сокращение матки и выделение молока
Запасающая Ион-связывание Ферритин Хранит железо, особенно в селезёнке
Казеин
Хранит ионы в молоке
Кальмодулин Связывает ионы кальция

Белки – это полимеры

Белки, или протеины – это нерегулярные (не имеющие определённой закономерности в последовательности мономеров) полимеры, состоящие из мономеров, называемые аминокислотами. Протеины, в состав молекул которых входит от пятидесяти до нескольких тысяч остатков аминокислот, называются белками. Молекулы с меньшим количеством мономеров именуются пептидами.

Пептиды и белки фотоОбщие сведения о пептидах и белках

Белок состоит из одной или нескольких длинных неразветвлённых цепей. Каждая цепь называется полипептидом и состоит из аминокислот, скреплённых пептидными связями. Термины «белок» и «полипептид» часто используются свободно, что может вызывать путаницу. Для белка, который включает только одну полипептидную цепь, оба термина являются синонимами.

В природе существуют около 500 аминокислот. В образовании белков обычно (но не всегда) участвуют только 20 из них – их называют белокобразующими. Порядок соединения мономеров в белке определяет его структуру и функции. Многие учёные считают, что аминокислоты были первыми органическими молекулами, появившимися на Земле. Возможно, океаны, которые существовали в начале истории нашей планеты, содержали большое их разнообразие.

Болокобразующие аминокислоты фотоБелокобразующие аминокислоты

Автотрофные организмы синтезируют все необходимые им аминокислоты из продуктов фотосинтеза и азотсодержащих неорганических соединений. Для гетеротрофов источником аминокислот являются продукты питания. В организме человека и животных некоторые аминокислоты могут синтезироваться из продуктов обмена веществ (в первую очередь — из других аминокислот). Такие аминокислоты называются заменимыми.

Другие же, так называемые незаменимые аминокислоты, не могут быть собраны в организме и поэтому должны постоянно поступать в него в составе белков пищи. Протеины, содержащие остатки всех незаменимых аминокислот, называются полноценными. Неполноценные белки – это те, в составе которых отсутствуют остатки тех или иных незаменимых аминокислот.

Незаменимыми аминокислотами для человека являются: триптофан, лизин, валин, изолейцин, треонин, фенилаланин, метионин и лейцин. Для детей незаменимыми являются также аргинин и гистидин.

Полипептидные цепи могут быть очень длинными и включать самые разные комбинации аминокислотных остатков. Каждый конкретный белок характеризуется строго постоянным составом и последовательностью аминокислот.

Как выглядят белки? Блок мембранного кальциевого насоса фотоДимер мембранного белка кальсеквестрина.
Deposition authors: Wang, S., Trumble, W.R., Liao, H., Wesson, C.R., Dunker, A.K., Kang, C., CC BY 3.0

Белки, образованные только остатками аминокислот, называются простыми. Сложными являются протеины, имеющие в своём составе компонент неаминокислотной природы. Это могут быть ионы металлов (Fe2+, Zn2+, Mg2+, Mn2+), липиды, нуклеотиды, сахара и др. Простыми белками являются альбумины крови, фибрин, некоторые ферменты (трипсин) и др. Сложные белки – это большинство ферментов, иммуноглобулины (антитела).

Состав аминокислот

Аминокислоты, как следует из их названия, содержат основную аминогруппу (— NH2), а также кислотную карбоксильную группу (—COOH), обе они связаны с центральным атомом углерода. Углерод дополнительно скреплен с водородом и функциональной белковой группой, называемой радикалом (R). Эти компоненты полностью заполняют все связи центрального атома углерода.

Белки: общая струкутра аминокислот фотоОбщая структура α-аминокислот, составляющих белки (кроме пролина).
Автор: User:X-romix

Уникальный характер каждой аминокислоты определяется природой группы радикала. Обратите внимание, что если группа радикала не содержит атома водорода (Н), как в глицине, то аминокислота хиральна и может существовать в форме двух энантиомеров: d или L. В белках живых систем содержатся обычно α (L)-аминокислоты, а β (d)-аминокислоты встречаются крайне редко.

Группа радикала определяет химические свойства аминокислот – они могут быть полярными или неполярными, гидрофобными или гидрофильными. Серин с радикалом -CH2OH является полярной молекулой, Аланин, который имеет –CH3 как группу радикала – неполярен.

Существуют также основные аминокислоты (более чем с одной аминогруппой) и кислые аминокислоты (более чем с одной карбоксильной группой). Наличие дополнительной амино- или карбоксильной группы оказывает влияние на свойства аминокислоты, которые играют определяющую роль в формировании пространственной структуры белка.

В состав радикала некоторых аминокислот (например, цистеина) входят атомы серы. Все 20 аминокислот сгруппированы в пять химических классов, основанных на группе их радикала.

  1. Неполярные аминокислоты, такие как лейцин, часто имеют в качестве радикала —CH2 или —CH3.
  2. Полярные незаряженные аминокислоты, такие как треонин, с радикалом, содержащим кислород или гидроксильную группу (-OH).
  3. Заряженные аминокислоты, такие как глутаминовая кислота, с радикалом, имеющим кислоты или основания, способные к ионизации.
  4. Ароматические аминокислоты, такие как фенилаланин, имеющий группу радикала, содержащую органическое (углеродное) кольцо с чередованием одиночных и двойных связей. Они также неполярны.
  5. Аминокислоты, обладающие особыми функциями и свойствами. Например, метионин, который часто является первой аминокислотой в цепи белков, пролин, вызывающий перегибы в цепях, цистин, связывающий цепи вместе.

Каждая аминокислота влияет на форму белка по-разному, в зависимости от химической природы боковых групп. Например, части белковой цепи с многочисленными неполярными аминокислотами сворачиваются внутрь своей цепи путём гидрофобного исключения.

Белки и пептидные связи

В дополнении к группе радикала каждая аминокислота имеет положительно заряженную аминогруппу (NH3 +) на одном конце и отрицательно заряженную гидроксильную группу (COO -) на другом. Амино- и карбоксильные группы у пары аминокислот могут подвергаться реакции дегидрации (выделение молекулы воды) с образованием ковалентной связи. Ковалентная связь, скрепляющая две аминокислоты, называется пептидной. Скреплённые таким способом аминокислоты не могут свободно вращаться вокруг N-C связи. Этот факт является основным фактором образования конструкции белковых молекул.

Пептидная связь фотоПептидная связь

Наличие как основной, так и кислотной групп обусловливает амфотерность (проявление как кислотных, так и основных свойств) и высокую реакционную способность аминокислот.

При соединении двух аминокислот образуется дипептид. На одном конце молекулы дипептида находится свободная аминогруппа, на другом — свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды. Если таким образом соединяется более 10 остатков аминокислот, то образуется полипептид.

Новаторская работа Фредерика Сангера в начале 1950-х годов доказала, что каждый вид белка имеет определённую аминокислотную последовательность. Для отщепления аминокислот он использовал химические методы, после этого определял их. Сангер преуспел в расшифровке аминокислотной последовательности инсулина. Он продемонстрировал, что все молекулы инсулина имеют одинаковый состав аминокислот.

Уровни структурной организации белков

Форма белка определяет его функцию. Один из способов изучить что-то столь же маленькое как белок – посмотреть на него при помощи коротковолнового излучения, которое представлено рентгеновскими лучами. Рентгеновские лучи пропускают через белок для получения дифракции его узора. Эта картинка кропотливо анализируется и позволяет исследователю построить трёхмерное изображение молекулы с положением каждого её атома. Первым белком, проанализированным таким образом, был миоглобин; вскоре такому же анализу был подвергнут связанный с ним белок гемоглобин.

Когда было изучено достаточное количество протеинов, стал очевиден общий принцип их строения: в каждом исследованном белке все внутренние аминокислоты, такие как лейцин, валин и фенилаланин, неполярны. Тенденция воды к исключению неполярных молекул буквально толкает такие части цепи аминокислот внутрь протеина. Неполярные аминокислоты вынуждены тесно контактировать друг с другом, оставляя мало свободного места внутри молекулы. Полярные и заряженные аминокислоты концентрируются на поверхности белка, за исключением немногих, играющих ключевые функциональные роли.

Структура белков, как правило, описывается как иерархия четырёх уровней: первичного, вторичного, третичного и четвертичного. Мы рассмотрим эту точку зрения, а затем интегрируем её с более современным подходом, вытекающим из расширяющихся знаний о белковой структуре.

Уровни белковых молекул фотоУровни организации молекул белка

Первичная структура белков

Первичная структура белка – это его аминокислотная последовательность, т. е. это цепочка из множества аминокислотных остатков, соединённых пептидными связями. Это наиболее важная структура, так как именно она определяет форму, свойства и функции белка. На основе первичной структуры создаются другие формы молекулы.

Группы радикалов, которыми отличаются аминокислоты, не играют роли в пептидной цепи белков и протеин может включать любую последовательность аминокислот. Так как любая из 20 аминокислот может появиться в любом месте, белок, содержащий 100 мономеров, может образовать любую из 20 100 различных аминокислотных последовательностей. Это важное свойство белков позволяет им быть разнообразными, но каждый из них функционирует только при определённой аминокислотной последовательности.

Белки: первичная структура инсулина фото

Вторичная структура белка

Боковые и пептидные группы полипептидных цепей могут образовывать водородные связи. Вторичная структура белка возникает в результате связывания атомов водорода NH-групп и кислорода CO-групп. Полипептидная цепь при этом спирально закручивается. Водородные связи слабые, но благодаря их большому числу они обеспечивают стабильность этой структуры. Спиральную конфигурацию имеют, например, молекулы кератина, миозина и коллагена.

Водородные связи пептидов могут образовываться с водой. Если связей с водой будет слишком много, белки не смогут приобрести глобулярной структуры. Лайнус Полинг предположил, что пептидные группы могут взаимодействовать друг с другом, если пептид свёрнут в спираль, которую он назвал α-спиралью. Этот вид регулярного взаимодействия в пептиде формирует его вторичную структуру.

Вторичная структура инсулина фотоВторичная структура инсулина

Другая форма вторичной структуры формируется между зонами пептида, расположенными в один ряд, в результате чего получается плоская молекула, собранная в складки, называемая β-листом. Части белка могут быть либо параллельными, либо антипараллельными – в зависимости от того, являются ли смежные участки пептида ориентированными в одном или в противоположном направлении.

Эти два вида вторичной структуры создают зоны белка – цилиндрические (α-спирали) и плоские (β-листы). Конечная структура белка может включать области каждого типа вторичной структуры. Например ДНК-связывающие белки обычно имеют области α-спирали, которые могут лежать поперёк ДНК и взаимодействовать непосредственно с основаниями ДНК. Белки порины, образующие отверстия в мембранах, состоят из β-листов. В гемоглобине α и β-структуры (глобины) имеют в молекуле свои зоны.

Вторичная структура белков фотоВторичная структура белков

Третичная структура белков

Окончательная структура химически связанных белков называется третичной. Третичная структура формируется за счет образования водородных, ионных и других связей, возникающих в водной среде между разными группами атомов белковой молекулы вторичной структуры.

У некоторых белков важную роль в образовании третичной структуры играют S – S связи (дисульфидные) между остатками цистеина (аминокислоты, содержащей серу). При этом полипептидная спираль укладывается в своеобразный клубок (глобулу) таким образом, что гидрофобные аминокислотные радикалы погружаются внутрь глобулы, а гидрофильные располагаются на поверхности и взаимодействуют с молекулами воды. Третичной структурой определяются специфичность белковых молекул, их биологическая активность. Её имеют многие белки, например миоглобин (белок, который участвует в создании запаса кислорода в мышцах) и трипсин (фермент, расщепляющий белки пищи в кишечнике).

Третичная структура стабилизируется рядом сил, в том числе:

  • водородными связами между радикалами различных аминокислот;
  • электростатическим притяжением радикалов с противоположными зарядами;
  • гидрофобным исключением неполярных радикалов;
  • ковалентными дисульфидными связами.

На стадии третичной структуры по форме молекул белки можно разделить на две группы:

  • глобулярные – имеют округлую форму. Такую форму имеют глобулины и альбумины крови, фибриноген, гемоглобин;
  • фибриллярные – характеризуются вытянутой, нитевидной формой молекул. Это кератин, коллаген, миозин, эластин и др.

Третичная структура белка фото

Четвертичная структура белка

Когда два или более полипептида связываются с образованием функционального белка, отдельные его цепи называются субъединицами. Расположение этих субъединиц и есть четвертичная структура. Субъединицы в таких белках чаще всего неполярны, поэтому они не связаны химически и отвечают за отдельные виды деятельности. Прочность четвертичной структуры обеспечивается взаимодействием слабых межмолекулярных сил.

Четвертичная структура характерна для белка гемоглобина. Вспомните, что гемоглобин состоит из двух α-цепей и двух β-цепей, а ещё в его состав входит небелковый компонент – гем.

Субъединицы располагаются в их окончательной четвертичной структуре. Это конечная структура некоторых, но не всех белков. У протеинов, которые состоят только из одной полипептидной цепи, например у фермента лизоцима, конечной структурой является третичная.

Четвертичная структура белка фото

Мотивы и домены – структурные элементы белков

Ручное определение последовательности аминокислот в белке – трудоёмкая работа. Эту ситуацию изменило открытие способности хранения информации о белке молекулой ДНК. Первоначально геном человека был расшифрован вручную. Появление технологий следующего поколения привело к заметному ускорению секвенирования.

Сегодня расшифрованы более 40 000 бактериальных геномов и почти 8 000 геномов эукариот, в том числе 80 последовательностей генов млекопитающих. Так как состав ДНК имеет непосредственное отношение к последовательности аминокислот в белках, у биологов теперь есть огромная база данных строения протеинов.

Новая информация заставила задуматься о логике генетического кода и основных закономерностях структуры белка. Исследователи до сих пор рассматривают иерархическую систему из четырёх уровней как важную, но в лексикон биологов вошли и новые термины: мотив укладки и белковый домен.

Мотив укладки белковых молекул

Когда биологи обнаружили третичную структуру белка (ещё более трудоёмкая работа, чем определение последовательности аминокислот в цепи), они заметили сходные элементы, расположенные в непохожих белках. Подобные структуры называются мотивами, а иногда «сверхсекундными структурами». Термин «мотив» заимствован из искусства и относится к тематическому повторяющемуся элементу в музыке или дизайне.

Один общий мотив β-α-β образует так называемую «складку Россмана» у большого количества протеинов. Вторым часто встречающимся мотивом является β-баррель, который представляет собой β-лист, сложенный по кругу, чтобы сформировать трубку. Третий тип мотива – спираль-поворот-спираль, состоит из двух α-спиралей, разделённых изгибом. Его используют белки для связывания с молекулой ДНК.

Логику структуры мотивов укладки исследователи до сих пор не могут понять. Вероятно, если аминокислоты являются буквами в языке белков, то мотивы представляют собой повторяющиеся слова или фразы. Мотивы укладки помогли определить неизвестные функции белков, а база данных белковых мотивов используется для поиска новых неизвестных протеинов.

Мотивы укладки являются довольно консервативными и встречаются в белках, которые не имеют ни функциональных, ни эволюционных связей. Определение мотивов укладки лежит в основе физической, или рациональной классификации белков.

Белковые домены

Домены – это функциональные единицы в виде глобулы внутри более крупной структуры белков. Их можно рассматривать как субструктуры внутри третичной структуры белка. В языке белков это «абзацы». Большинство белков состоит из нескольких доменов, которые выполняют различные части функций протеинов.

Во многих структурах эти домены могут быть физически разделены. Например, так устроены факторы транскрипции – белки, которые связываются с ДНК и инициируют построение РНК по комплементарной ей ДНК. Было выяснено, что если ДНК-связывающие области поменять местами с факторами транскрипции, специфичность фактора может быть изменена без изменения его способности стимулировать транскрипцию. Эксперименты по замене доменов были проведены со многими факторами транскрипции, и они указывают, что активационные и ДНК-связывающие домены действуют отдельно.

Эти образования также могут помогать протеинам складываться. По мере того, как полипептидная цепь приобретает свою структуру, домены принимают правильную форму. Это действие может быть продемонстрировано экспериментально. Искусственное продуцирование фрагмента полипептида, который образует домен в интактном белке, показывает, что фрагмент складывается, чтобы сформировать такую же структуру, как у прототипа.

Процесс складывания, белки-шапероны

Первоначально биохимики думали, что новоиспечённые белки сворачиваются спонтанно, пробуя различные конфигурации, как гидрофобные взаимодействия с водой толкают неполярные аминокислоты внутрь белков до тех пор, пока не будет достигнута их окончательная структура. Оказалось, что эта точка зрения слишком проста. Цепи протеинов могут быть сложены многими способами, поэтому пробы и ошибки заняли бы слишком много времени. По мере того как первичная цепь складывается, приобретая финальную структуру, неполярные «липкие» внутренние участки во время промежуточных стадий обнажаются. Если эти промежуточные формы поместить в пробирку со средой, идентичной той, что внутри клетки, они прилипают к другим, и нежелательные белки-партнёры образуют клейкую массу.

Как клетки избегают того, чтобы их белки слипались в массу? Ответ на вопрос появился во время изучения необычных мутаций, которые спасают бактериальные клетки от размножения внутри них вирусов. При этом белки вирусов, произведённые внутри клетки, не могут сложиться как следует. Дальнейшее исследование помогло выяснить, что клетки содержат белки-шапероны, помогающие другим белкам складываться правильно.

Свёртывание белков фотоСвёртывание белков

В настоящее время молекулярные биологи выявили массу белков, действующих как шапероны. Это большой класс полимеров, который можно разделить на подклассы. Представители шаперонов были найдены в каждом исследуемом организме. Некоторые из них, называемые тепловыми шоковыми белками, вырабатывается в ответ на повышение температуры тела. Высокие температуры служат фактором денатурации белков, шоковые белки-шопероны помогают белкам правильно сворачиваться и в такой ситуации.

Один из хорошо изученных классов этих белков, названных шаперонинами, был изучен у кишечной палочки (Escherichia coli). У мутантов при инактивации шаперонинов 30% бактериального белка не складывались должным образом. Шаперонины собираются в комплекс, напоминающий цилиндрический контейнер. Белки могут заходить в этот контейнер, и даже неправильно сложенные молекулы складываются там заново.

Исследователи склонны думать о белках как о фиксированных структурах, но это не относится к шаперонинам. Их гибкость поразительна. Видимо, это нужно им для выполнения своих функций. Клетки используют эти белки для складывания некоторых молекул протеинов и восстановления их неправильной структуры.

Денатурация инактивирует белки

Еще одной важной особенностью белков является то, что они проявляют свою активность лишь в узких температурных рамках и в определённом диапазоне кислотности среды.

Если условия, окружающие белок, изменяются, то он может частично потерять свою структуру или полностью развернуться. Этот процесс называется денатурацией. Белки могут быть денатурированы, когда рН, температура или ионная концентрация окружающего раствора изменена. Денатурация происходит вследствие разрыва водородных, ионных, дисульфидных и других связей, стабилизирующих пространственную структуру белковых молекул. При этом может утрачиваться их четвертичная, третичная и даже вторичная структуры.

Денатурированные белки как правило биологически неактивны. Это особенно значимо в отношении ферментов: так как почти каждая химическая реакция происходит при их помощи, жизненно важно, чтобы они функционировали нормально.

До появления морозильников и холодильников единственным способом предохранения продуктов от размножения в них микроорганизмов было хранение их внутри раствора, содержащего высокую концентрацию соли или уксуса, которые денатурировали ферменты микроорганизмов и предотвращали их рост.

Большинство ферментов функционирует в очень узком диапазоне условий окружающей среды. У каждого энзима этот диапазон специфичен. Ферменты крови, которые работают при рН около 7,4, быстро денатурируют в кислой среде желудка. И наоборот, протеолитические ферменты желудка, работающие при рН=2 или менее, разбираются в основной среде крови. Аналогично у организмов, живущих вблизи океанических гидротермальных источников, есть ферменты, которые хорошо работают только в экстремальных температурах (до 100°С). Эти организмы не могут выжить в более прохладных водах, потому что их энзимы не функционируют должным образом при относительно низких температурах.

Если нормальные показатели окружающего раствора восстанавливаются, небольшой белок, не потерявший первичной структуры, может восстановиться. Этот процесс называется ренатурацией, он происходит благодаря взаимодействию неполярных аминокислот и воды. Первоначально этот процесс был установлен для энзима рибонуклеазы, его ренатурация привела к выводу, что первичная структура определяет третичную структуру белка. Более сложные белки редко складываются вновь из-за их сложной окончательной структуры. Их денатурация носит необратимый характер.

Денатурация белков фото

Важно отличать денатурацию от диссоциации. Субъединицы белков с четвертичной структурой могут быть диссоциированы (разделены) без потери своей индивидуальной третичной структуры. Например, молекула гемоглобина может диссоциировать на 4 молекулы (2 α-глобина и 2 β-глобина) без денатурации свёрнутых глобиновых белков. Они легко восстанавливают свою четвертичную структуру из четырёх субъединиц.

 

 

Вам будет интересно

Строение и функции белков

Строение белков

Определение 1

Белки – сложные органические соединения (биополимеры), в состав молекул которых входят углерод, водород, кислород и азот (иногда серы). Их мономеры — аминокислоты.

Белки играют первостепенное значение в жизни всех организмов. Они характеризуются неисчерпаемым разнообразием, которое одновременно очень специфично.

Замечание 1

Белки и нуклеиновые кислоты являются материальной основой всего богатства организмов окружающей среды. Их доля составляет 50 – 80% сухой массы клетки.

Молекулы белков похожи на длинные цепи, состоящие из 50 – 1500 остатков аминокислот, соединённых крепкой ковалентной азотно-углеродной (пептидной) связью. В результате образуется первичная структура белка — полипептидная цепь.

Замечание 2

Молекула белка — это полипептид, молекулярная масса которого составляет от 5 тыс. до 150 тыс. Бывает и больше.

Простые белки состоят лишь из аминокислот, а сложные белки, кроме аминокислот, могут содержать нуклеиновые кислоты (нуклеопротеиды), липиды (липопротеиды), углеводы (гликопротеиды), окрашенные химические соединения (хромопротеиды) и т.п.

Все свойства клетки (химические, морфологические, функциональные) зависят от специфических белков, содержащихся в ней.

Замечание 3

Именно набор аминокислот, их количество и последовательность расположения в полипептидной цепи и определяет специфичность белка.

Замена лишь одной аминокислоты в составе белковой молекулы или изменение последовательности расположения аминокислот может привести к изменению функций белка. Этим и объясняется большое разнообразие в строении белковой молекулы первичной структуры. Потому не удивительно, что живой организм, чтобы иметь возможность выполнять свои функции, использует особенный виды белков и его возможности в этом отношении неограниченные.

Пространственное расположение полипептидных цепей также определяет свойства белков. В живой клетке полипептидные цепи скрученные или согнутые, имеют вторичную или третичную структуру.

Вторичная структура представлена спирально закрученной белковой цепочкой. Витки спирали удерживаются благодаря водородным связям, образующимся между расположенными на соседних витках СО – и NH – группами.

В результате дальнейшего закручивания спирали возникает специфическая конфигурация каждого белка — третичная структура. Образуется она благодаря связям между белковыми радикалами аминокислотных остатков:

  • ковалентным дисульфидным (S – S-связям) между остатками цистеина,
  • водородным,
  • ионными.
  • гидрофобным взаимодействиям.

В количественном соотношении наиболее важными являются гидрофобные взаимодействия, вызванные тем, что неполярные боковые цепи аминокислот стремятся объединиться друг с другом, не смешиваясь с водной средой. Белок при этом свёртывается так, чтобы его гидрофобные боковые цепи были спрятаны внутри молекулы, то есть защищены от контакта с водой, а наружу, наоборот, выставлены боковые гидрофильные цепи.

Для каждого белка специфичны количество молекуламинокислот с гидрофобными радикалами и количество молекул цистеина и характер их взаимного расположения в полипептидной цепи.

Взаимное расположение групп атомов, обходимое для проявления активности белка как катализатора, его гормональных функций и др. обеспечивается сохранением определённой формы молекулы. Потому стойкость макромолекул – не случайное свойство, а один из важнейших способовстабилизации организма.

Биологическая активность белка может проявлятся лишь когда он имеет третичную структуру, потому при замене в полипептидной цепи даже одной аминокислоты могут возникнуть изменения в конфигурации белка, а его биологическая активность снизится или же исчезнет совсем.

Иногда две, три, и больше белковых молекул с третичной структурой могут объединиться в единый комплекс. Подобные образования являются четвертичной структурой белка.

Пример 1

Примером такого сложного белка является гемоглобин, который состоит из четырёх субединиц и небелковой части – гема. Он способен выполнять свои функции только в такой форме.

В четвертичной структуре белковые субединицы не связаны химически, однако вся структура достаточно крепкая благодаря действию слабых межмолекулярных сил.

Под влиянием разнообразных физических и химических факторов (обработка щелочами, кислотами, спиртом, ацетоном, влияние высоких температур и давления и пр.) третичная и четвертичная структуры белка изменяются, потому что разрываются водородные и ионные связи.

Определение 2

Денатурация – нарушение естественной (нативной) структуры белка.

При денатурации уменьшается растворимость белков, изменяется форма и размеры молекул, теряется ферментативная активность и т.п. Процесс денатурации оборотный, то есть возвращение нормальных условий сопровождается непроизвольным оновлением естественной (природной) структуры белка. Этот процесс называют ренатурацией.

Замечание 4

Все особенности строения и функционирования белковой макромолекулы зависят от его первичной структуры.

Функции белков в клетке

  • Строительная (пластическая) функция белковых молекул является одной из важнейших.Они являются составным компонентом клеточных мембран и органел. Стенки кровеносных сосудов, сухожилия, хрящи высших животных также состоят в основном из белка.
  • Двигательная функция обеспечивается особенными сократительными белками, благодаря которым осуществляются движения жгутиков и ресничек, перемещение хромосом во время деления клеток, сокращение мускулатуры, движения органов растений и т.п., пространственные изменения положения различных структур организма.
  • Транспортная функция белков обеспечивается их способностью связывать и переносить с течением крови химические соединения.

Пример 2

Белок крови гемоглобин переносит кислород из лёгких в клетки других органов и тканей (аналогичную функцию в мышцах выполняет миоглобин).

Белки сыворотки крови переносят липиды и жирные кислоты, различные биологически активные вещества.

Молекулы белков, входящих в состав плазматической мембраны, берут участие в транспорте веществ как в клетку, так и из неё.

Белки выполняют и защитную функцию. Как ответ на проникновение внутрь чужеродных веществ (антигенов – белков или высокомолекулярных полисахаридов бактерий, вирусов) в клетке вырабатываются особенные белки – иммуноглобулины (антитела), которые нейтрализуют чужеродные вещества и осуществляют иммунологичную защиту организма.

Благодаря функционированию иммунной системы организма обеспечивается распознавание антигенов антигенным детерминантам (характерным участкам их молекул). Благодаря этому специфически связываются и обеззараживаются чужеродные вещества за.

Замечание 5

Внешнюю защитную функцию могут выполнять также и белки, токсические для других организмов ( белок яда змей).

Белкам свойственна также сигнальная функция. В поверхность клеточной мембранны встроены молекулы белков, которые в ответ на действия факторов внешней среды способны к изменению свей третичной структуры. Так происходит восприятие сигналов из внешней среды и передача команд в клетку.

Регуляторная функция свойственна белкам-гормонам, которые влияют на обмен веществ. Гормоны поддерживают постоянную концентрацию веществ в крови, учавствуют в росте размножении и других жизненно важных процессах.

Пример 3

Одним из наиболее известных гормонов является инсулин, понижающий содержание сахара в крови. В случае стойкой недостаточности инсулина содержание сахара в крови увеличивается и развивается сахарны диабет. Главными регуляторами биохимических процессов в организме могут быть и многочисленные белки-ферменты (каталитическая функция).

Белки являются и энергетическим материалом. При расщеплении 1 г белка до конечных продуктов выделяется 17,6 кДж энергии, необходимой для большинства жизненно важных процессов в клетке.

Ферменти, их роль в клетке

Определение 3

Ферменты (энзимы) – это специфические белки, присутствующие во всех организмах и выполняющие функцию биологических катализаторов.

Химические реакции в живой клетке происходят при умеренной температуре нормальном давлении и в нейтральной среде. При таких условиях течение реакций синтеза или распада веществ в клетке был быочень медленным, если бы не действие ферментов. Ферменты ускоряют реакции за счёт снижения энергии активации не измененяя их общего результата, то есть при их наличии для придания молекулам, вступающим в реакцию, реакционной способности, необходимо значительно меньше энергии

Все процессы в живом организме прямо или косвенно происходят с участием ферментов.

Под действием ферментов составляющие компоненты пищи (белки, липиды, углеводы и др.) расщепляются до простейших соединений, а из них позже синтезируются новые, свойственные данному виду макромолекулы. Потому нарушение образования и активности ферментов часто становятся причиной тяжёлых заболеваний.

Ферментативный катализ подчиняется тем же законам, что и неферментативный катализ в химической промышленности, однако в отличие от последнего характеризируется чрезвычайно высокой степенью специфичности (фермент катализирует только одну реакцию или действует лишь на один тип связи). Этим обеспечивается тонкое регулирование всех жизненно важных процессов (дыхание, пищеварение, фотосинтез и т. п.), происходящих в клетке и организме.

Пример 4

Фермент уреаза катализирует расщепление только одного вещества – мочевины, но не действует каталитически на структурно родственные соединения.

Для понятия механизма действия ферментов, которые имеют высокую специфичность, чрезвычайно важна теория активного центра. Согласно с ней, в молекуле каждого фермента есть один или больше участков, в которых катализ происходит за счёт тесного (во многих местах) контакта между молекулами фермента и субстрата (специфического вещества), а функциональная группа (пример – ОН – группа аминокислоты серина), или же отдельная аминокислота, выступает активным центром.

Обычно для действия катализатора необходимо, чтобы объединились несколько аминокислотных остатков, расположенных в определённой последовательности (в среднем 3 – 12).

Активный центр также может формироваться благодаря связи ферментов с ионами металов, витаминами и другими соединениями небелковой природы – так называемыми коферментами, или кофакторами.

Химическое строение и форма активного центра такова, что с ним способны связывать лишь определённые субстраты благодаря их идеальному соответствию (взаимодополняемости, или комплементарности) друг другу.

Остальные аминокислотные остатки обеспечивают большой молекуле ферментп соответствующую глобулярную форму, необходимую для эффективной работы самого центра.

Кроме того, вокруг большой молекулы фермента возникает сильное электрическое поле. В таком поле становится возможной ориентация молекул субстрата и приобретение ими ассиметрической формы. В результате ослабевают химические связи и начальная затрата энергии на реакцию, которая катализируется, будет меньше, а значит, значительно увеличится её скорость.

Пример 5

Одна молекула фермента каталазы способна за 1 мин расщепить более 5 млн. молекул перекиси водорода, которая возникает во время окисления в организме различных соединений.

Активный центр некоторых ферментов в присутствии субстрата может изменять конфигурацию: для обеспечения наибольшей каталитической активности такой фермент специально ориентирует свои функциональные группы. Молекулы субстрата, присоединяясь к ферменту, также в определённых пределах изменяют свою конфигурацию для увеличения реакционной способностит функциональных групп центра. На заключительном этапе химической реакции комплекс фермента и субстрата распадается, образуются конечные продукты и свободный фермент. Активный центр при этом освобождается и способен снова принимать новые молекулы субстрата.

Скорость реакций с участием ферментов зависит от многих факторов: от концентрации фермента, от природы субстрата, от давления, температуры, кислотности среды, от наличия ингибиторов.

При температурах, близких к 0˚С, до минимума замедляется скорость биохимических реакций. Это свойство широко используют в различных отраслях, особенно в медицине и сельском хозяйстве.

Пример 6

Для консервации органы человека (почки, серце, селезёнка, печень) перед пересадкой больному подвергают охлаждению, чтобы понизить интенсивность биохимических реакций и тем самым продлить время жизни этих органов. При быстром замораживании пищевых продуктов предотвращается размножение микроорганизмов, а так же инактивируются их ферменты, потому они уже не способны вызывать разложение пищевых продуктов.

Строение и функции белков — конспект

  
Вернуться к теме «Строение и функции белков»

Белки – полимеры, мономерами которых являются аминокислоты.

Среди органических веществ белки занимают первое место по количеству и по значению. В организме человека встречаются 5 млн разнообразных белковых молекул, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и сложность строения они построены всего из 20 различных аминокислот.

Строение аминокислоты:

 

В левой части молекулы расположены группа h3N–, которая обладает свойствами основания; справа — группа –COOH — кислотная, характерная для всех органических кислот. Следовательно, аминокислоты – амфотерные соединения, совмещающие свойства и кислоты и основания. Этим обусловлена их способность взаимодействовать друг с другом. Соединяясь, молекулы аминокислот образуют связи между углеродом кислотной и азотом основной групп. Такие связи называются ковалентными, а в данном случае – пептидными связями:

Соединение двух аминокислот в одну молекулу называется дипептидом, трех аминокислот – трипептидом и т. д., а соединение, состоящее из 20 и более аминокислотных остатков, – полипептидом.

Последовательность аминокислот в полипептидной цепи принято называть первичной структурой белка.

Однако молекула белка в виде цепи аминокислотных остатков, последовательно соединенных между собой пептидными связями, еще не способна выполнять специфические функции. Для этого необходима более высокая структурная организация. Путем образования водородных связей между остатками карбоксильных и аминогрупп разных аминокислот белковая молекула принимает вид спирали (α-структура) или складчатого слоя – «гармошки» (β-структура). Это вторичная структура белка. Но и ее часто недостаточно для приобретения характерной биологической активности.

Часто только молекула, обладающая третичной структурой, может выполнять роль катализатора или любую другую. Третичная структура образуется благодаря взаимодействию радикалов, в частности радикалов аминокислоты цистеина, которые содержат серу. Атомы серы двух аминокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, или S–S, связи. Благодаря этим взаимодействиям, а также другим, менее сильным связям, белковая спираль сворачивается и приобретает форму шарика, или глобулы. Способ укладки полипептидных спиралей в глобуле называют третичной структурой белка. Многие белки, обладающие третичной структурой, могут выполнять свою биологическую роль в клетке. Однако для осуществления некоторых функций организма требуется участие белков с еще более высоким уровнем организации.

Такую организацию называют четвертичной структурой. Присутствует не у всех белков. Она представляет собой функциональное объединение нескольких (двух, трех и более) молекул белка, обладающих третичной структурной организацией. Пример такого сложного белка – гемоглобин. Его молекула состоит из четырех связанных между собой молекул. Другим примером может служить гормон поджелудочной железы – инсулин, включающий два компонента. В состав четвертичной структуры некоторых белков включаются помимо белковых субъединиц и разнообразные небелковые компоненты. Тот же гемоглобин содержит сложное гетероциклическое соединение, в состав которого входит железо.

Строение белковой молекулы: А – первичная; Б – вторичная; В – третичная; Г – четвертичная структура

Строение молекулы гемоглобина

Гемоглобин – белок четвертичной структуры. В молекуле гемоглобина белковый компонент представлен белком глобином, небелковый компонент – гем. Глобин состоит из 4 субъединиц. Внутри каждой субъединицы имеется гидрофобный «карман», в котором располагается гем. Содержащийся в геме атом железа связывает кислород.

Свойства белка

Белки, как и другие неорганические и органические соединения, обладают рядом физико-химических свойств:

  1. Белки – преимущественно водорастворимые молекулы и, следовательно, могут проявлять свою функциональную активность только в водных растворах.
  2. Белковые молекулы несут большой поверхностный заряд. Это определяет целый ряд электрохимических эффектов, например изменение проницаемости мембран каталитической активности и других функций.
  3. Белки термолабильны, то есть проявляют свою активность в узких температурных рамках.

Денатурация и ренатурация белков

Денатурация  – это утрата белковой молекулой своей структурной организации: четвертичной, третичной, вторичной, а при более жестких условиях – и первичной структуры. В результате денатурации белок теряет способность выполнять свою функцию. Причинами денатурации могут быть высокая температура, ультрафиолетовое излучение, действие сильных кислот и щелочей, тяжелых металлов и органических растворителей. Если изменение условий среды не приводит к разрушению первичной структуры молекулы, то при восстановлении нормальных условий среды полностью воссоздается структура белка и его функциональная активность. Такой процесс носит название ренатурации.

Функции белков

1. Каталитическая (ферментативная) функция:

Многие белки являются ферментами. Ферменты — это биологические катализаторы, т. е. вещества, ускоряющие протекание химических реакций в живых организмах. Ферменты участвуют в процессах синтеза и расщепления различных веществ. Они обеспечивают фиксацию углерода в процессе фотосинтеза, расщепление питательных веществ в пищеварительном тракте и т. д. 

 

2. Транспортная функция

Многие белки способны присоединять и переносить различные вещества. Гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют жирные кислоты, глобулины — ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из нее.

3. Защитная функция

Белки предохраняют организм от вторжения чужеродных организмов и от повреждений. Так, в ответ на проникновение чужеродных объектов (антигенов) определенные лейкоциты вырабатывают специфические белки — иммуноглобулины (антитела), участвующие в иммунном ответе организма. Белок плазмы крови фибриноген, участвуя в свертывании крови и тем самым уменьшая кровопотери.

4. Двигательная (сократительная) функция

Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Так, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения.

5. Структурная (строительная, пластическая) функция

Белки входят в состав всех клеток и тканей живых организмов. Белки являются обязательным компонентом всех клеточных мембран и органоидов клетки. Из белков построены элементы цитоскелета, сократительные элементы мышечных волокон. Преимущественно из белков состоят хрящи и сухожилия. В их состав входит белок коллаген. Важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт у животных является белок кератин. В состав связок, стенок артерий и лёгких входит структурный белок эластин.

6. Сигнальная (рецепторная) функция

Некоторые белки клеточных мембран способны изменять свою структуру в ответ на действие внешних факторов. С помощью этих белков происходит прием сигналов из внешней среды и передача информации в клетку.

7. Регуляторная функция

Некоторые белки являются гормонами. Они влияют на различные физиологические процессы. Например, инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) — процессы роста и физического развития.

8. Запасающая (питательная) функция

В семенах растений запасаются резервные белки, которые используются при прорастании зародышем.

9. Энергетическая функция

При полном окислении 1 г белка выделяется 17,6 кДж энергии. Однако белки расходуются на энергетические нужды лишь в крайних случаях, когда исчерпаны запасы углеводов и жиров.

белки — урок. Биология, Общие биологические закономерности (9–11 класс).

Белки (протеины, полипептиды) — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. В состав молекул белков входят атомы углерода, кислорода, водорода, азота и иногда серы, фосфора и железа.

Мономерами белков являются аминокислоты, которые (имея в своём составе карбоксильную и аминогруппы) обладают свойствами кислоты и основания (амфотерны).

700px-AminoAcidball_rus.svg_.png

Благодаря этому аминокислоты могут соединяться друг с другом (их количество в одной молекуле может достигать нескольких сотен). В связи с этим молекулы белков имеют большие размеры, и их называют макромолекулами.

Структура белковой молекулы

Под структурой белковой молекулы понимают её аминокислотный состав, последовательность мономеров и степень скрученности молекулы белка.

В молекулах белков встречается всего \(20\) видов различных аминокислот, и огромное разнообразие белков создаётся за счёт различного их сочетания.

  • Последовательность аминокислот в составе полипептидной цепи — это первичная структура белка (она уникальна для любого белка и определяет его форму, свойства и функции). Первичная структура белка уникальна для любого типа белка и определяет форму его молекулы, его свойства и функции.
  • Длинная молекула белка сворачивается и приобретает сначала вид спирали в результате образования водородных связей между —СО и —NН группами разных аминокислотных остатков полипептидной цепи (между углеродом карбоксильной группы одной аминокислоты и азотом аминогруппы другой аминокислоты). Эта спираль — вторичная структура белка.
  • Третичная структура белка — трёхмерная пространственная «упаковка» полипептидной цепи в виде глобулы (шарика). Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот (гидрофобными, водородными, ионными и дисульфидными S–S связями).
  • Некоторые белки (например, гемоглобин крови человека) имеют четвертичную структуру. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Четвертичная структура удерживается непрочными ионными, водородными и гидрофобными связями.

 

Структура белков может нарушаться (подвергаться денатурации) при нагревании, обработке некоторыми химическими веществами, облучении и др. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остаётся в виде полипептидной цепи. В результате денатурации белок теряет способность выполнять свою функцию.

Нарушение четвертичной, третичной и вторичной структур обратимо. Этот процесс называют ренатурацией.

 

Разрушение первичной структуры необратимо.

 

Кроме простых белков, состоящих только из аминокислот, есть ещё и сложные белки, в состав которых могут входить углеводы (гликопротеины), жиры (липопротеины), нуклеиновые кислоты (нуклеопротеины) и др.

Функции белков

  • Каталитическая (ферментативная) функция. Специальные белки — ферменты — способны ускорять биохимические реакции в клетке в десятки и сотни миллионов раз. Каждый фермент ускоряет одну и только одну реакцию. В состав ферментов входят витамины.
  • Структурная (строительная) функция — одна из основных функций белков (белки входят в состав клеточных мембран; белок кератин образует волосы и ногти; белки коллаген и эластин — хрящи и сухожилия).
  • Транспортная функция — белки обеспечивают активный транспорт ионов через клеточные мембраны (транспортные белки в наружной мембране клеток), транспорт кислорода и углекислого газа (гемоглобин крови и миоглобин в мышцах), транспорт жирных кислот (белки сыворотки крови способствуют переносу липидов и жирных кислот, различных биологически активных веществ).
shema.jpg
  • Сигнальная функция. Приём сигналов из внешней среды и передача информации в клетку происходит за счёт встроенных в мембрану белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды.
  • Сократительная (двигательная) функция — обеспечивается сократительными белками — актином и миозином (благодаря сократительным белкам двигаются реснички и жгутики у простейших, перемещаются хромосомы при делении клетки, сокращаются мышцы у многоклеточных, совершенствуются другие виды движения у живых организмов).
aktin-miozin.jpg
  • Защитная функция — антитела обеспечивают иммунную защиту организма; фибриноген и фибрин защищают организм от кровопотерь, образуя тромб.
image002.jpg
  • Регуляторная функция присуща белкам — гормонам (не все гормоны являются белками!). Они поддерживают постоянные концентрации веществ в крови и клетках, участвуют в росте, размножении и других жизненно важных процессах (например, инсулин регулирует содержание сахара в крови).
  • Энергетическая функция — при длительном голодании белки могут использоваться в качестве дополнительного источника энергии после того, как израсходованы углеводы и жиры (при полном расщеплении \(1\) г белка до конечных продуктов выделяется \(17,6\) кДж энергии). Аминокислоты, высвобождающиеся при расщеплении белковых молекул, используются для построения новых белков.
ehnergetich.funkcija.jpg

 

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

http://ours-nature.ru/lib/b/book/1063747118/348

Что такое белки — строение и функции

Белки играют центральную роль в организме человека, выполняя одни из самых важных функций: двигательную, защитную, биологическую, регуляторную и другие.

Без этих универсальных молекулярных машин жизнь на нашей планете и вовсе не могла бы появиться.

В данной статье мы подробно рассмотрим что такое белки, какие существуют виды, где содержатся и многое другое.

Что такое белок и каковы его функции

На уроках биологии и химии довольно много времени уделяется этой важной теме. Белки (protein) являются природными гетерополимерами, состоящие из α-аминокислот. Соединяет их вместе пептидная связь. Для синтеза огромного множества белков в человеческом организме используется 20.

Состав каждого белка, синтезированного в организме, определяется геномом. Различные комбинации генетического кода позволяют создавать из стандартных аминокислот огромное множество белков, отвечающих за разнообразные функции в нашем теле.

Некоторые белки довольно сложно классифицировать исключительно по их функциям. Так как один белок часто может отвечать за выполнение нескольких задач.

Список функций белков выглядит следующим образом:

  1. Структурная – отвечает за образование цитоскелета клеток, придает форму разным тканям. Наиболее известные — это коллагены и эластин, входящие в состав межклеточного вещества. А также кератин – основной белок, формирующий ногти и волосы.
  2. Защитная функция разделяется на физическую, иммунную и химическую. За физическую защиту в основном отвечают тромбины, свертывающие кровь, и коллагены и кератин, формирующие роговые щитки, волосы, кожу. Химическую защиту от различных токсинов в организме выполняют в основном ферменты печени. Они растворяют токсины, позволяя быстрее вывести их. За иммунную защиту отвечают различные иммуноглобулины.
  3. Каталитическая функция использует ферменты. Это особые белки, позволяющие катализировать реакции, расщепляющие большие молекулы, или же наоборот их синтезировать. Ферменты позволяют ускорять все химические реакции в сотни и тысячи раз. За последнее время науке стало известно свыше 5000 различных ферментов.
  4. Регуляторная функция отвечает за управление всей жизнедеятельностью клетки. Белки из данной группы регулируют количество и активность остальных белков, а также множество процессов внутри самой клетки.
  5. Сигнальная функция выполняется гормонами и цитокинами. Эти белки являются сигнальным веществом, позволяя передавать информацию или сигналы частями организма.
  6. Транспортная – позволяет переносить различные вещества от одних органов и клеток к другим. Наиболее известный пример – это гемоглобин, транспортирующий кислород и углекислый газ.
  7. Запасная функция. Ее выполняют белки, запасающиеся в организме для экстренных случаев в качестве энергии или источника аминокислот.
  8. Рецепторная. Ее выполняют белки, реагирующие свет, физическое воздействие или химическое вещество.
  9. Моторная функция выполняется целыми группами белков. Среди них, например, актин и миозин. Они являются основными компонентами мышц и позволяют им сокращаться. Другие белки позволяют клеткам лейкоцитов передвигаться внутри организма.

Строение белков

Беки относятся к линейным полимерам. В их составе могут присутствовать несколько α-амиокислот и неаминокислотные компоненты. На первый взгляд всего 20 аминокислот – это небольшой выбор.

Но на самом деле молекула белка, состоящая всего из 5 компонентов аминокислот, может иметь свыше миллиона вариантов построения. Небольшой белок может иметь в своей цепочке сотню аминокислотных остатков.

При синтезе белка аминокислоты соединяются благодаря пептидной связи. Они соединяются разными концами, одна с помощью карбоксильной группы (-COOH), а другая аминогруппой (-NH2). При таком соединении у белка появляются два соответственных конца С и N.

Структуры белков

Структурные организации белков классифицируют на 4 уровня. Это первичная, вторичная, третичная и четвертичная структуры.

Первичная представляет собой стандартную цепочку аминокислот. Их последовательность закодирована генетически. Она обычно описывается трехбуквенными обозначениями аминокислотных остатков в цепочке.

Вторичная представляет собой упорядоченно свернутую спиралеобразно цепочку аминокислот. Она напоминает пружинку. У спирали стабильная структура, так как ее витки крепятся между собой водородными связями. Почти все СО- и NН- группы устанавливают друг с другом такие связи. Среди белков данной структуры особенно выделяются коллагены и кератин.

Третичная – в основном формируется благодаря гидрофильно-гидрофобным взаимодействиям. Возникающие водородные ионные и дисульфидные связи способствуют взаимодействию между радикалами аминокислот. Благодаря этому полипептидная связь укладывается в специальные глобулы. К белкам третичной структуры уже относятся множество ферментов, антител и гормонов.

Четвертичная – присуща сложным формам ферментов или белков, которые состоят из 2 или 3 глобул. Они связываются в молекуле как ионными, так и гидрофобными взаимодействиями. А иногда возникают электростатические взаимодействия или дисульфидные связи. Наиболее известный и изученный белок данной классификации – гемоглобин.

Протеины и протеиды — простые и сложные белки

Еще одна классификация белков это – протеины и протеиды. Первые — это простые белки, в состав которых входят исключительно остатки аминокислот. А вот в протеидах, помимо основного скелета из аминокислот, присутствуют еще не белковые группы (простетические).

В зависимости от дополнительной небелковой составляющей протеиды делят на другие группы:

  1. Липопротеины – включают в себя различные липиды. В основном данные белки выполняют транспортировку липидов.
  2. Фосфопротеины – имеют фосфорную кислоту. К таким белкам относятся вителлин и казеноген.
  3. Металлопротеины – могут иметь катионы одного и более металлов в своей структуре. Наиболее известен гемоглобин с молекулами железа.
  4. Гликопротеины – имеют в своем составе различные углеводы.
  5. Нуклеопротеины – являются главными белками, отвечающими за передачу наследственной информации.

Физико-химические свойства белков

Белки проявляют свойства амфотерности (от греч. «двойственность). Они могут в зависимости от различных факторов проявлять как кислотные, так и основные свойства.

Также белки могут быть растворимыми или не растворимыми в воде. На растворимость могут влиять как сама структура белка, так и характер растворителя, pH самого раствора или ионная сила.

Белки могут быть гидрофобными или гидрофильными. Последние в основном располагаются в ядре, цитоплазме или межклеточном веществе.

Еще одно свойство белков это денатурация. Это так называемая потеря четвертичной, третичной структур. Белки отлично приспособлены для жизни и функционирования в условиях организма, но при резком изменении внешних условий структура белка может разрушиться.

Среди таких воздействий выделяют ультразвук, высокие и низкие температуры, облучения, встряхивания, вибрации, а также действие кислот или щелочей. Денатурация может быть как частичной, так и полной, или же обратимой и необратимой.

Значение белков для организма

Как мы увидели из вышеприведенных функций и особенностей, белки имеют огромное значение для организма человека. Они придают форму клеткам и тканям организма, переносят различные элементы между органами и клетками, отвечают за восприятие окружающего мира.

Белки защищают нас от природных факторов и от воздействий вредоносных микроорганизмов. Без них в принципе невозможно как минимум прохождение химических реакций в организме и обмен веществ, так и наличие жизни как самовоспроизводящейся структуры. По истине, роль белков сложно переоценить.

Что относится к белковой пище

Белки являются одним из самых основных строительных материалов для нашего организма. Поэтому, чтобы питание снабжало организм человека нужными веществами, следует всегда иметь в рационе белковые продукты.

Богаты по содержанию белка следующие:

  • мясо;
  • рыба;
  • различные морепродукты;
  • яйца;
  • бобовые;
  • молочные продукты.

Заключение

Белок является одним из ключевых элементов жизни на нашей планете. Он отвечает за множество процессов и функций в живом организме, а недостаток белков может вызвать серьезные заболевания.

Большое разнообразие источников белка убережет ваш организм от недостатка незаменимых аминокислот и множества других ценных элементов питания. Старайтесь не исключать белковые продукты из рациона и будьте здоровы.

Белки их строение, функции и значение.

Аминокислоты

В клетках и тканях встречается свыше 170 различных аминокислот. В составе белков обнаруживаются лишь 26 из них; обычными же компонентами белка можно считать лишь 20 аминокислот.

Растения синтезируют все необходимые им аминокислоты из более простых веществ. В отличие от них животные не могут синтезировать все аминокислоты, в которых они нуждаются; часть из них они должны получать в готовом виде, т. е. с пищей. Эти последние принято называть незаменимыми аминокислотами. Следует, однако, подчеркнуть: название «незаменимые» вовсе не означает, что эти аминокислоты в качестве компонентов животных белков в чем-то важнее остальных. «Незаменимы» они лишь в том смысле, что организм животного не способен их синтезировать.

Часть аминокислот синтезируются в самом организме человека, но существует, как известно, 10 незаменимых аминокислот (валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин, гистидин и аргинин), синтез которых в организме невозможен. Незаменимые аминокислоты поступают в организм в составе белков пищи. Отсутствие или недостаток незаменимых аминокислот приводит к остановке роста, падению массы, нарушениям обмена веществ, при острой недостаточности — к гибели организма.

Белки, в которых содержится достаточное количество таких аминокислот, называют полноценными. Лишь белки немногих растений (семена бобовых) приближаются по аминокислотному составу к животным белкам.

Белки

Белки — это сложные органические соединения, состоящие из углерода, водорода, кислорода и азота.

В некоторых белках содержится еще и сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь. Молекулы белков — цепи, построенные из аминокислот, — очень велики; это макромолекулы, молекулярная масса которых колеблется от нескольких тысяч до нескольких миллионов. В природных белках встречаются двадцать различных аминокислот. Потенциально разнообразие белков безгранично, поскольку каждому белку свойственна своя особая аминокислотная последовательность, генетически контролируемая, т.е. закодированная в ДНК клетки, вырабатывающей данный белок. Белков в клетках больше, чем каких бы то ни было других органических соединений: на их долю приходится свыше 50% общей сухой массы клеток. Они — важный компонент пищи животных и могут превращаться в животном организме как в жир, так и в углеводы. Большое разнообразие белков позволяет им выполнять в живом организме множество различных функций, как структурных, так и метаболических.

Классификация белков

Сложность строения белковых молекул и чрезвычайное разнообразие их функций крайне затрудняют создание единой четкой классификации белков на какой-либо одной основе. В табл. приведены три разные классификации белков, основанные на различных их характеристиках.

Структура белков

Каждому белку свойственна своя особая геометрическая форма, или конформация. При описании трехмерной структуры белков рассматривают обычно четыре разных уровня организации.

Первичная структура

Под первичной структурой белка понимают число и последовательность аминокислот, соединенных друг с другом пептидными связями в полипептидной цепи. Первые исследования по выяснению аминокислотной последовательности белков были выполнены в Кембриджском университете Ф. Сэнгером, дважды удостоенным за свои работы Нобелевской премии. Сэнгер работал с гормоном инсулином, и это был первый белок, для которого удалось выяснить аминокислотную последовательность. Работа заняла ровно 10 лет (1944-1954 гг.). В молекулу инсулина входит 51 аминокислота, а молекулярная масса этого белка равна 5733. Молекула состоит из двух полипептидных цепей, удерживаемых вместе дисульфидными мостиками.

Рис. 5.33. Первичная структура лизоцима. Лизоцим-это фермент, обнаруженный во многих тканях и секретах человеческого тела, в растениях и яичном белке. Этот фермент катализирует разрушение клеточных стенок бактерий. Молекула лизоцима состоит из одной пол и пептидной цепи, в которую входит 129 аминокислотных остатков. В молекуле имеется четыре внутри цепочечных дисульфидных мостика.

В настоящее время большая часть работ по определению аминокислотных последовательностей автоматизирована, и теперь первичная структура известна уже для нескольких сотен белков. В организме человека свыше 10 000 различных белков, и все они построены из одних и тех же 20 стандартных аминокислот. Аминокислотная последовательность белка определяет его биологическую функцию. В свою очередь эта аминокислотная последовательность однозначно определяется нуклеотидной последовательностью ДНК. Замена одной — единственной аминокислоты в молекулах данного белка может резко изменить его функцию, как это наблюдается, например, при так называемой серповидноклеточной анемии.

Интересные данные могут быть получены в результате анализа аминокислотных последовательностей гомологичных белков, принадлежащих разным биологическим видам; такие данные позволяют судить о возможном таксономическом родстве между этими видами.

Вторичная структура

Для всякого белка характерна помимо первичной еще и определенная вторичная структура. Обычно белковая молекула напоминает растянутую пружину. Это так называемая а-спираль, стабилизируемая множеством водородных связей, возникающих между находящимися поблизости друг от друга СО- и NH-группами. Атом водорода NH-группы одной аминокислоты образует такую связь с атомом кислорода СО-группы другой аминокислоты, отстоящей от первой на четыре аминокислотных остатка (считая вдоль цепи назад) (рис. 5.34 Рис. 5.34. Структура a-спирали. А. Показаны a-атомы углерода. Соединяющая их линия описывает а-спираль. Б. Модель а-спирал и из стержней и шариков. В. Часть а-спирал и в растянутом виде. Спираль стабилизируется водородными связями.). Рентгеноструктурный анализ показывает, что на один виток спирали приходится 3,6 аминокислотного остатка.

Третичная структура

У большинства белков полипептидные цепи свернуты особым образом в компактную глобулу. Способ свертывания полипептидных цепей глобулярных белков называется третичной структурой. Третичная структура поддерживается уже обсуждавшимися выше связями трех типов — ионными, водородными и дисульфидными, а также гидрофобными взаимодействиями. В количественном отношении наиболее важны именно гидрофобные взаимодействия; белок при этом свертывается таким образом, чтобы его гидрофобные боковые цепи были скрыты внутри молекулы, т.е. защищены от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу.

Четвертичная структура.

Многие белки с особо сложным строением состоят из нескольких полипептидных цепей, удерживаемых в молекуле вместе за счет гидрофобных взаимодействий, а также при помощи водородных и ионных связей. Способ совместной упаковки и укладки этих полипептидных цепей называют четвертичной структурой белка. Четвертичная структура имеется, например, у гемоглобина. Его молекула состоит из четырех отдельных полипептидных цепей двух разных типов: из двух а-цепей и двух р-цепей. Две а-цепи содержат по 141 аминокислотному остатку, а две Р-цепи-по 146 остатков. Полную структуру гемоглобина определили Кендрью и Перуц (Kend-rew, Perutz).

Некоторые вирусы, например вирус мозаики табака, имеют белковую оболочку, состоящую из многих полипептидных цепей, упакованных высокоупорядоченным образом.

Рис. 5.39. Структура гемоглобина. Молекула состоит из четырех полипептидных цепей: двух a-цепей и двух fi-цепей. С каждой цепью связанаодна группа тема, к которой присоединяется молекула кислорода. Гемоглобин — пример белка, состоящего из отдельных субьединиц, т. е. обладающего четвертичной структурой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *